The Relict Ecosystem of Maytenus senegalensis subsp. europaea in an Agricultural Landscape: Past, Present and Future Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Distribution Models
2.3. Presence Data
2.4. Environmental Variables
2.5. Potential Distribution of M. europaea
3. Results
3.1. M. europaea SDMs in the Past
3.2. M. europaea SDMs in the Present
3.3. M. europaea SDMs Towards the Future (2070)
4. Discussion
4.1. Distribution Dynamics
4.2. Evolution of Distribution Patterns over Time
- The presence of M. europaea growing and showing its maximum abundance dovetailing with that of the deciduous forests located in Sierra de Gádor during the Mid-Holocene according to palynological studies,
- The link between M. europaea with C. tricoccon and B. balearica, which have mesothermophilic characteristics, capable of generating debate on the Maytenus-Periploca-Ziziphus trilogy, which was considered until now as a set of Ibero-African species with a hyperxerophytic conduct. This could explain the absence of M. europaea from Cabo de Gata to the Murcia region, being this area the most arid and with the smallest rainfall in the entire Spanish southeast, where conversely both Z. lotus and P. angustifolia are frequent.
4.3. Considerations for Conservation of This Plant Species in an Agricultural Matrix
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Archibold, O.W. Ecology of World Vegetation; Chapman and Hall: London, UK, 1995. [Google Scholar] [CrossRef]
- Bobe, R. The evolution of arid ecosystems in eastern Africa. J. Arid. Environ. 2006, 66, 564–584. [Google Scholar] [CrossRef]
- Verdcourt, B.; Trump, E.C. Common Poisonous Plants of East Africa; Collins: London, UK, 1969. [Google Scholar]
- Blanca, G.; Cabezudo, B.; Cueto, M.; Fernández López, C.; Morales Torres, C. Flora Vascular de Andalucía Oriental; Consejería de Medio Ambiente, Junta de Andalucía: Sevilla, Spain, 2009. [Google Scholar]
- Castroviejo, S. Flora Iberica. Plantas Vasculares de la Península Ibérica e Islas Baleares; Real Jardín Botánico de Madrid: Madrid, Spain, 2012. [Google Scholar]
- Díez-Garretas, B.; Asensi, A.; Rivas-Martínez, S. Las comunidades de Maytenus senegalensis subsp. europaeus (Celastraceae) en la Península Ibérica. Lazaroa 2005, 26, 83. [Google Scholar]
- Ferrer-Gallego, P.; Laguna, E. Remarks on the nomenclatural types of Celastrus senegalensis and C. europaeus (Celastroideae-Celastraceae). Acta Bot. Malac. 2020, 45, 194–202. [Google Scholar] [CrossRef]
- Pérez-Latorre, A.V.; Gavira, O.; Cabezudo, B. Phenomorphology and ecomorphological characters of Maytenus senegalensis L. shrublands in the Iberian Peninsula: A comparison with other Mediterranean plant communities. Flora 2010, 205, 200–210. [Google Scholar] [CrossRef]
- Ruiz de la Torre, J. Flora Mayor; Organismo Autónomo de Parques Nacionales, Dirección General para la Biodiversidad: Madrid, Spain, 2006. [Google Scholar]
- Uclés, O.; Villagarcía, L.; Moro, M.J.; Canton, Y.; Domingo, F. Role of dewfall in the water balance of a semiarid coastal steppe ecosystem. Hydrol. Process. 2014, 4, 2271–2280. [Google Scholar] [CrossRef]
- Pérez Salmerón, E. Efectos de la Fragmentación del Habitat Sobre la Diversidad Genética de Maytenus sengalensis (Lam.) Exell (CELASTRACEAE) en el sur de la Peninsula Ibérica. Implicaciones en su Conservación. UAL. 2017. Available online: https://www.ual.es/estudios/grados/presentacion/plandeestudios/trabajofinestudios/curso/4509/2016-17 (accessed on 21 January 2020).
- Esteve Chueca, F. Descripción de comunidades con Gymnosporia europaea Webb y Periploca laevigata Ait. en el semiárido de la costa de Murcia. An. Jard. Bot. Madr. 1955, 12, 265–291. [Google Scholar]
- GBIF Home Page. Available online: www.gbif.org (accessed on 10 November 2019).
- Güemes, J.; Crespo, B. Maytenus senegalensis (lam.) Exell subsp. europaeus (Boiss.) Rivas Martínez, comb. nov. (Celastraceae), y noticias diversas acerca del mismo. An. Jard. Bot. Madr. 1990, 48, 86–88. [Google Scholar]
- López González, G.A. Los árboles y Arbustos de la Península Ibérica e Islas Baleares (Especies Silvestres y las Principales Cultivadas) Tomo II; Mundi-Prensa: Madrid, Spain, 2001. [Google Scholar]
- Pérez Latorre, A.V.; Navas, D.; Gavira, O.; Caballero, G.; Cabezudo, B. Vegetación del Parque Natural de las sierras Tejeda, Almijara y Alhama (Málaga-Granada) España. Acta Bot. Malac. 2004, 29, 117–191. [Google Scholar] [CrossRef]
- Pérez García, F.J.; Cueto, M.; Jiménez Sánchez, M.L.; Garrido, J.; Martínez-Hernández, F.; Medina-Cazorla, J.M.; Rodríguez-Tamayo, M.L.; Sola, A.J.; Mota Poveda, J.F. Contribución al conocimiento de la flora de Andalucía: Citas novedosas e interesantes de la provincia de Almería. Acta Bot. Malac. 2003, 28, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Von Raab-Straube, E. Celastraceae. In Euro+Med Plantbase-the Information Resource for Euro-Mediterranean Plant Diversity; 2018; Available online: https://www.emplantbase.org/home.html (accessed on 15 January 2020).
- Manzano Cano, J. Maytenus senegalensis subsp. europaea en la peninsula ibérica: Distribución, ecología, fitosociología y conservación. Acta Bot. Malac. 2020, 45. [Google Scholar] [CrossRef] [Green Version]
- Quézel, P. Definition of the Mediterranean region and the origin of its flora. In Plant Conservation in the Mediterranean Area; Gomez-Campo, C., Junk, W., Eds.; Geobotany 7; Springer: Dordrecht, The Netherlands, 1985; pp. 9–24. [Google Scholar]
- Blanca, G. Origen de la Flora de Andalucía; Valdés Bermejo, E., Ed.; Junta de Andalucía: Sevilla, Spain, 1993; pp. 19–35.
- Carrión, J.S.; Munuera, M.; Dupré, M.; Andrade, A. Abrupt vegetation changes in the Segura Mountains of southern Spain throughout the Holocene. J. Ecol. 2001, 89, 783–797. [Google Scholar] [CrossRef] [Green Version]
- Carrión, J.S.; Sánchez-Gómez, P.; Mota, J.F.; Yll, R.; Chaín, C. Holocene vegetation dynamics, fire and grazing in the Sierra de Gádor, southern Spain. Holocene 2003, 13, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Anon. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. DOCE 1992, 206, 7–50. [Google Scholar]
- Mota, J.F.; Peñas, J.; Castro, H.; Cabello, J.; Guirado, J.S. Agricultural development vs biodiversity conservation: The Mediterranean semiarid vegetation in El Ejido (Almería, southeastern Spain). Biodivers. Conserv. 1996, 5, 1597–1617. [Google Scholar] [CrossRef]
- Mendoza-Fernández, A.J.; Salmerón-Sánchez, E.; Martínez-Hernández, F.; Pérez-García, F.J.; Lahora, A.; Merlo, E.; Mota, J.F. Intensive Habitat Loss in South Spain: Arborescent Scrubs with Ziziphus (5220*). In Habitats of the World-Biodiversity and Threats; Musarella, C.M., Cano Ortiz, A., Quinto Canas, R., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Parras, J.M.; Peinado, M.; Alcaraz, F. Sobre la vegetación termófila de la cuenca mediterránea de Granada y sus áreas limítrofes. Lazaroa 1985, 8, 251–268. [Google Scholar]
- Peinado, M.; Alcaraz, F.; Martínez-Parras, J.M. Vegetation of Southeastern Spain. In Flora et Vegetatio Mundi Volume X; J. Cramer: Berlin, Germany; Stuttgart, Germany, 1992. [Google Scholar]
- Rivas Goday, S.; Rivas-Martínez, S. Matorrales y tomillares de la Península Ibérica comprendidos en la clase Ononido-Rosmarinetea Br.-Bl. An. Inst. Bot. Cavanilles 1968, 1025, 1–297. [Google Scholar]
- Rivas-Martínez, S.; Fernández-González, F.; Loidi, J.; Lousã, M.; Penas, A. Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobot. 2001, 14, 5–341. [Google Scholar]
- Rivas-Martínez, S.; Díaz González, T.E.; Fernández-González, F.; Izco, J.; Loidi, J.; Lousã, M.; Penas, A. Vascular plant communities of Spain and Portugal. Itinera Geobot. 2002, 15, 5–432. [Google Scholar]
- Mendoza-Fernández, A.J.; Pérez-García, F.J.; Martínez-Hernández, F.; Medina-Cazorla, J.M.; Garrido-Becerra, J.A.; Merlo Calvente, M.E.; Romero, J.S.; Mota, J.F. Threatened plants of arid ecosystems in the Mediterranean Basin: A case study of the south-eastern Iberian Peninsula. Oryx 2014, 48, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Rey, P.J.; Cancio, I.; Manzaneda, A.J.; González-Robles, A.; Valera, F.; Salido, T.; Alcántara, J.M. Regeneration of a keystone semiarid shrub over its range in Spain: Habitat degradation overrides the positive effects of plant-animal mutualisms. Plant Biol. 2018, 20, 1083–1092. [Google Scholar] [CrossRef]
- Rey, P.J.; Alcántara, J.M.; Manzaneda, A.J.; Sánchez-Lafuente, A.M. Facilitation contributes to Mediterranean woody plant diversity but does not shape the diversity-productivity relationship along aridity gradients. New Phytol. 2016, 211, 464–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Robles, A. Disrupción de los Mutualismos Planta-Polinizador de Ziziphus lotus (L.) Lam Por Pérdida de Hábitat y Degradación del Paisaje: Consecuencias Para el Flujo Génico y la Conservación de sus Poblaciones en el Sureste Semiárido de España. Ph.D. Thesis, Universidad de Jaén, Jaén, Spain, 2019. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=255239 (accessed on 12 February 2020).
- Rathcke, B.J.; Jules, E.S. Habitat fragmentation and plant-pollinator interactions. Curr. Sci. 1993, 65, 273–277. [Google Scholar]
- Gill, R.J.; Baldock, K.C.R.; Brown, M.J.F.; Cresswell, J.E.; Dicks, L.V.; Fountain, M.T.; Grarratt, M.P.D.; Gough, L.A.; Heard, M.S.; Ollerton, J.; et al. Protecting an Ecosystem Service: Approaches to Understanding and Mitigating Threats to Wild Insect Pollinators. Adv. Ecol. Res. 2016, 54, 135–206. [Google Scholar] [CrossRef] [Green Version]
- Rojas Rodriguez, J.; Rossetti, M.R.; Videla, M. Importance of flowers in field margins for insect communities in agroecological farms from Cordoba, Argentina. Rev. Fac. Cienc. Agrar. Univ. Nac. Cuyo 2019, 51, 249–259. [Google Scholar]
- López García, G.P.; Mazzitelli, M.E.; Fruitos, A.; González, M.; Marcucci, B.; Giusti, R.; Alemanno, V.; Barrio, L.D.; Portela, J.; Debandi, G. Pollinator and predator insects biodiversity in vineyards agroecosystems of Mendoza, Argentina. Considerations for habitat management. Rev. Fac. Cienc. Agrar. Univ. Nac. Cuyo 2019, 51, 309–322. [Google Scholar]
- Cotes, B.; González, M.; Benítez, E.; De Mas, E.; Clemente-Orta, G.; Campos, M.; Rodríguez, E. Spider Communities and Biological Control in Native Habitats Surrounding Greenhouses. Insects 2018, 9, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loreau, M.; Mouquet, N.; Gonzales, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. USA 2003, 100, 12765–12770. [Google Scholar] [CrossRef] [Green Version]
- López Martos, J.M. Artineras, mirar desde el cielo para reconstruir el paisaje primitivo del Campo de Dalías. Farua 2014, 17, 153–172. [Google Scholar]
- De Andalucía, J. Decreto 104/1994, de 10 de mayo, por el que se establece el Catálogo Andaluz de Especies de Flora Silvestre Amenazada. BOJA 1994, 107, 7948–7953. [Google Scholar]
- De Andalucía, Comunidad Autónoma. Ley 8/2003, de 28 de octubre, de la Flora y la Fauna Silvestres. BOE 2003, 288, 42808–42830. [Google Scholar]
- Del Estado, J. Ley 42/2007, de 13 de diciembre, del Patrimonio Natural y de la Biodiversidad. BOE 2007, 299, 51275–51327. [Google Scholar]
- Anon. Decreto 23/2012, de 14 de febrero, por el que se regula la conservación y el uso sostenible de la flora y la fauna silvestres y sus hábitats. BOJA 2012, 60, 114–163. [Google Scholar]
- Mendoza-Fernández, A.J.; Martínez-Hernández, F.; Pérez-García, F.J.; Garrido-Becerra, J.A.; Benito, B.M.; Salmerón-Sánchez, E.; Guirado, J.; Merlo, M.E.; Mota, J.F. Extreme habitat loss in a Mediterranean habitat: Maytenus senegalensis subsp. europaea. Plant Biosyst. 2015, 149, 503–511. [Google Scholar] [CrossRef]
- Mota, J.; Cabello, J.; Cueto, M.; Gómez, F.; Giménez, E.; Peñas, J. Datos Sobre la Vegetación del Sureste de Almería (Desiertos de Tabernas, Karst en Yesos de Sorbas y Cabo de Gata); Servicio Publicaciones Universidad de Almería: Almería, Spain, 1997. [Google Scholar]
- Blanca, G.; Cabezudo, B.; Hernández-Bermejo, J.E.; Herrera, C.M.; Muñoz, J.; Valdés, B. Libro Rojo de la Flora Silvestre Amenazada de Andalucía; Tomo II: Especies Vulnerables; Consejería de Medio Ambiente, Junta de Andalucía: Sevilla, Spain, 2000. [Google Scholar]
- Cabezudo, B.; Talavera, S.; Blanca, G.; Salazar, C.; Cueto, M.; Valdés, B.; Hernández Bermejo, J.E.; Rodríguez Hiraldo, C.; Navas Fernández, D.; Vega Durán, C. Lista Roja de la Flora Vascular de Andalucía; Consejería de Medio Ambiente, Junta de Andalucía: Sevilla, Spain, 2005. [Google Scholar]
- Hernández Bermejo, J.E.; Clemente, M. Protección de la Flora de Andalucía. Catálogo General de Especies de Recomendada Protección en Andalucía (Endémicas, Raras y Amenazadas de Extinción); Junta de Andalucía: Sevilla, Spain, 1994.
- Moreno, J.C. (Ed.) Lista Roja 2008 de la Flora Vascular Española; Dgmnpf, Mmamrm, Sebicop: Madrid, Spain, 2008. [Google Scholar]
- Sánchez-Gómez, P.; Carrión Vilches, M.A.; Hernández González, A.; Guerra Montes, J. Libro Rojo de la Flora Silvestre Protegida de la Región de Murcia; Dirección General del Medio Natural: Murcia, Spain, 2002. [Google Scholar]
- Rivas-Martínez, S.; Asensi, A.; Díaz-Garretas, B.; Molero, J.; Valle, F.; Cano, E.; Costa Talens, M.; López, M.L. Mapa de series, geoseries y geopermaseries de vegetación de España, Memoria del mapa de vegetación potencial de España. Itinera Geobot. 2007, 17, 5–436. [Google Scholar]
- Cañadas, E.M.; Giuseppe, F.; Peñas, J.; Lorite, J.; Mattana, E.; Bacchetta, G. Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation. Biol. Conserv. 2014, 170, 282–291. [Google Scholar] [CrossRef]
- Médail, F.; Quézel, P. Biodiversity hotspots in the Mediterranean basin: Setting global conservation priorities. Conserv. Biol. 1999, 13, 1510–1513. [Google Scholar] [CrossRef]
- Mendoza-Fernández, A.J.; García, F.J.P.; Martínez-Hernández, F.; Salmerón-Sánchez, E.; Medina-Cazorla, J.M.; Garrido-Becerra, J.A.; Martínez-Nieto, M.I.; Calvente, M.E.M.; Mota, J.F. Areas of endemism and threatened flora in a Mediterranean hotspot: Southern Spain. J. Nat. Conserv. 2015, 23, 35–44. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Kefi, S.; Rietkerk, M.; Alados, C.L.; Pueyo, Y.; Papanastasis, V.P.; El Aich, A.; De Ruiter, P.C. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 2007, 449, 213–217. [Google Scholar] [CrossRef]
- Klausmeyer, K.R.; Shaw, M.R. Climate Change, Habitat Loss, Protected Areas and the Climate Adaptation Potential of Species in Mediterranean Ecosystems Worldwide. PLoS ONE 2009, 4, e0006392. [Google Scholar] [CrossRef] [Green Version]
- Peñas, J.; Benito, B.; Lorite, J.; Ballesteros, M.; Cañadas, E.M.; Martinez-Ortega, M. Habitat fragmentation in arid zones: A case study of Linaria nigricans under land use changes (SE Spain). Environ. Manag. 2011, 48, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Peterman, W.E.; Crawford, J.A.; Kuhns, A.R. Using species distribution and occupancy modeling to guide survey efforts and assess species status. J. Nat. Conserv. 2013, 21, 114–121. [Google Scholar] [CrossRef]
- Smeraldo, S.; Bosso, L.; Fraissinet, M.; Bordignon, L.; Brunelli, M.; Ancillotto, L.; Russo, D. Modelling risks posed by wind turbines and electric power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodiv. Conserv. 2020, 29, 1959–1976. [Google Scholar] [CrossRef]
- Zhang, Z.; Mammola, S.; Liang, Z.; Capinha, C.; Wei, Q.; Wu, Y.; Zhou, J.; Wang, C. Future climate change will severely reduce habitat suitability of the Critically Endangered Chinese giant salamander. Freshw. Biol. 2020, 65, 971–980. [Google Scholar] [CrossRef]
- De Siqueira, M.F.; Durigan, G.; de Marco Júnior, P.; Peterson, A.T. Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. J. Nat. Conserv. 2009, 17, 25–32. [Google Scholar] [CrossRef]
- Williams, J.N.; Seo, C.; Thorne, J.; Nelson, J.K.; Erwin, S.; O’Brien, J.M.; Schwartz, M.W. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 2009, 15, 565–576. [Google Scholar] [CrossRef]
- Fois, M.; Cuena-Lombraña, A.; Fenu, G.; Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecol. Model. 2018, 385, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Raffini, F.; Bertorelle, G.; Biello, R.; D’Urso, G.; Russo, D.; Bosso, L. From Nucleotides to Satellite Imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 2020, 12, 4508. [Google Scholar] [CrossRef]
- Guirado, E.; Alcaraz-Segura, D.; Rigol-Sanchez, J.P.; Gisbert, J.; Martínez-Moreno, F.; Galindo-Zaldívar, J.; González-Castillo, L.; Cabello, J. Remote-sensing-derived fractures and shrub patterns to identify groundwater dependence. Ecohydrology 2018, 11, e1933. [Google Scholar] [CrossRef]
- Guirado, E.; Blanco-Sacristán, J.; Rigol-Sánchez, J.P.; Alcaraz-Segura, D.; Cabello, J. A multi-temporal object-based image analysis to detect long-lived shrub cover changes in drylands. Remote Sens. 2019, 11, 2649. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijimans, R.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; Li, J. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Zimmermann, N. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Benito, B.M.; Lorite, J.; Pérez-Pérez, R.; Gómez-Aparicio, L.; Peñas, J. Forecasting plant range collapse in a Mediterranean hotspot: When dispersal uncertainties matter. Divers. Distrib. 2014, 20, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Fois, M.; Cuena-Lombraña, A.; Fenu, G.; Cogoni, D.; Bacchetta, G. The reliability of conservation status assessments at regional level: Past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. J. Nat. Conserv. 2016, 33, 1–9. [Google Scholar] [CrossRef]
- De Luis, M.; Bartolomé, C.; Óscar, C.; Álvarez Jiménez, J. Gypsophila bermejoi G. López: A possible case of speciation repressed by bioclimatic factors. PLoS ONE 2018, 13, e0190536. [Google Scholar] [CrossRef] [Green Version]
- De Luis, M.; Álvarez Jiménez, J.; Labarga, J.M.; Carmen, B. Four climate change scenarios for Gypsophila bermejoi G. López (Caryophyllaceae) to address whether bioclimatic and soil suitability will overlap in the future. PLoS ONE 2019, 14, e0218160. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (VERSION 3.4.1). c2020. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 15 March 2019).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Baldwin, R.A. Use of maximum entropy modeling in wildlife research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- Deblauwe, V.; Barbier, N.; Couteron, P.; Lejeune, O.; Bogaert, J. The global biogeography of semi-arid periodic vegetation patterns. Global. Ecol. Biogeogr. 2008, 17, 715–723. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Riordan, E.C.; Rundel, P.W. Modelling the distribution of a threatened habitat: The California sage scrub. J. Biogeogr. 2009, 36, 2176–2188. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Saracino, A.; Bosso, L.; Russo, D.; Moroni, A.; Bonanomi, G.; Allevato, E. Coastal pine-oak glacial refugia in the Mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 2020, 11, 673. [Google Scholar] [CrossRef]
- Kaky, E.; Nolan, V.; Alatawi, A.; Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 2020, 60, 101150. [Google Scholar] [CrossRef]
- Peterson, A.T.; Nakazawa, Y. Environmental data sets matter in ecological niche modelling: An example with Solenopsis invicta and Solenopsis richteri. Glob. Ecol. Biogeogr. 2008, 17, 135–144. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 2008, 62, 2868–2883. [Google Scholar] [CrossRef]
- Bucklin, D.N.; Basille, M.; Benscoter, A.M.; Brandt, L.A.; Mazzotti, F.J.; Romañach, S.S.; Speroterra, C.; Watling, J.I. Comparing species distribution models constructed with different subsets of environmental predictors. Divers. Distrib. 2015, 21, 23–35. [Google Scholar] [CrossRef]
- Virgili, A.; Racine, M.; Authier, M.; Monestieza, P.; Ridoux, V. Comparison of habitat models for scarcely detected species. Ecol. Model. 2017, 346, 88–98. [Google Scholar] [CrossRef]
- Zaniewski, A.E.; Lehmann, A.; Overton, J.M. Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns. Ecol. Model. 2002, 157, 261–280. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological-niche factor analysis: How to compute habitat- suitability maps without absence data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Hirzel, A.; Guisan, A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Model. 2002, 157, 331–341. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N. Ensemble habitat mapping of invasive plant species. Risk Anal. 2010, 30, 224–235. [Google Scholar] [CrossRef]
- ANTHOS. Information System of the Plants of Spain. Real Jardín Botánico, CSIC-Fundación Biodiversidad. Available online: www.anthos.es (accessed on 5 February 2020).
- FAME. Sistema de Información Sobre Flora Amenazada y de Interés en Andalucía. Available online: http://www.juntadeandalucia.es/medioambiente/site/rediam (accessed on 12 June 2019).
- QGIS Development Team. QGIS Geographic Information System. 2020. Open Source Geospatial Foundation Project. Available online: https://www.qgis.org/es/site/ (accessed on 20 March 2020).
- Worldclim. Global Climatic Data. Available online: http://www.worldclim.org (accessed on 10 December 2019).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Booth, T.H. Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral Ecol. 2018, 43, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The community climate system model version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- Li, J.; Fan, G.; He, Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci. Total Environ. 2020, 698, 134141. [Google Scholar] [CrossRef]
- Fox, J. Applied Regression Analysis and Generalized Linear Models; Sage Publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Fox, J.; Monette, G. Generalized collinearity diagnostics. J. Am. Stat. Assoc. 1992, 87, 178–183. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; Sage Publications: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- SIOSE. Sistema de Información Sobre Ocupación del Suelo de España. Available online: www.siose.es (accessed on 20 January 2020).
- Médail, F.; Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 2009, 36, 1333–1345. [Google Scholar] [CrossRef]
- Carrión, Y.; Ntinou, M.; Badal, E. Olea europaea L. in the north Mediterranean Basin during the Pleniglacial and the Early-Middle Holocene. Quat. Sci. Rev. 2010, 29, 952–968. [Google Scholar] [CrossRef] [Green Version]
- Quinto-Canas, R.; Mendes, P.; Cano-Ortiz, A.; Musarella, C.M.; Pinto-Gomes, C. Forest fringe communities of the southwestern Iberian Peninsula. Rev. Chapingo Ser. Cienc. For. Ambient. 2018, 24, 415–434. [Google Scholar] [CrossRef]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plants species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Weniger, G.-C.; De Andrés-Herrero, M.; Bolín, V.; Kehl, M.; Otto, T.; Potì, A.; Tafelmaier, Y. Late Glacial rapid climate change and human response in the Westernmost Mediterranean (Iberia and Morocco). PLoS ONE 2019, 14, e0225049. [Google Scholar] [CrossRef] [Green Version]
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. How much does agriculture depend on pollinators? Lessons from long- term trends in crop production. Ann. Bot. 2009, 103, 1579–1588. [Google Scholar] [CrossRef]
- Winfree, R.; Bartomeus, I.; Cariveau, D. Native Pollinators in Anthropogenic Habitats. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
Code | Description | VIF Results |
---|---|---|
BIO1 | Annual Mean Temperature | 6.86 |
BIO2 * | Mean Diurnal Range (Mean of monthly (max ta − min ta)) | <5 |
BIO3 * | Isothermality (BIO2/BIO7) (×100) | <5 |
BIO4 | Temperature Seasonality (standard deviation ×100) | 40.31 |
BIO5 | Max Temperature of Warmest Month | 219.46 |
BIO6 | Min Temperature of Coldest Month | ∞ |
BIO7 | Temperature Annual Range (BIO5-BIO6) | 682.55 |
BIO8 * | Mean Temperature of Wettest Quarter | <5 |
BIO9 * | Mean Temperature of Driest Quarter | <5 |
BIO10 | Mean Temperature of Warmest Quarter | 3073.98 |
BIO11 | Mean Temperature of Coldest Quarter | 668.59 |
BIO12 | Annual Precipitation | 330.16 |
BIO13 | Precipitation of Wettest Month | 28.38 |
BIO14 | Precipitation of Driest Month | 11.50 |
BIO15 * | Precipitation Seasonality (Coefficient of Variation) | <5 |
BIO16 | Precipitation of Wettest Quarter | 255.57 |
BIO17 | Precipitation of Driest Quarter | 123.96 |
BIO18 | Precipitation of Warmest Quarter | 50.32 |
BIO19 * | Precipitation of Coldest Quarter | <5 |
Available EOO (ha) | Suitable Area (ha) | Remaining EOO (%) | |
---|---|---|---|
Andalucía | 149,952.1603 | 284,747.7731 | 52.6614 |
Murcia | 11,079.9679 | 32,266.6956 | 34.3387 |
Alicante | 5689.0772 | 31,891.6983 | 17.8387 |
Europe | 166,721.2055 | 348,906.1669 | 47.7840 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Fernández, A.J.; Martínez-Hernández, F.; Salmerón-Sánchez, E.; Pérez-García, F.J.; Teruel, B.; Merlo, M.E.; Mota, J.F. The Relict Ecosystem of Maytenus senegalensis subsp. europaea in an Agricultural Landscape: Past, Present and Future Scenarios. Land 2021, 10, 1. https://doi.org/10.3390/land10010001
Mendoza-Fernández AJ, Martínez-Hernández F, Salmerón-Sánchez E, Pérez-García FJ, Teruel B, Merlo ME, Mota JF. The Relict Ecosystem of Maytenus senegalensis subsp. europaea in an Agricultural Landscape: Past, Present and Future Scenarios. Land. 2021; 10(1):1. https://doi.org/10.3390/land10010001
Chicago/Turabian StyleMendoza-Fernández, Antonio J., Fabián Martínez-Hernández, Esteban Salmerón-Sánchez, Francisco J. Pérez-García, Blas Teruel, María E. Merlo, and Juan F. Mota. 2021. "The Relict Ecosystem of Maytenus senegalensis subsp. europaea in an Agricultural Landscape: Past, Present and Future Scenarios" Land 10, no. 1: 1. https://doi.org/10.3390/land10010001
APA StyleMendoza-Fernández, A. J., Martínez-Hernández, F., Salmerón-Sánchez, E., Pérez-García, F. J., Teruel, B., Merlo, M. E., & Mota, J. F. (2021). The Relict Ecosystem of Maytenus senegalensis subsp. europaea in an Agricultural Landscape: Past, Present and Future Scenarios. Land, 10(1), 1. https://doi.org/10.3390/land10010001