Vulnerability of Subaerial and Submarine Landscapes: The Sand Falls in Cabo San Lucas, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements, Sampling Techniques, and Data Analysis
3. Results
3.1. Hydrodynamics: Waves and Currents
3.2. Storms and ENSO Events
3.3. Sediments, Beach Profiles, and Coastline Changes
- Pacific coastline. The average grain size is D50 = 0.803 ± 0.243 mm, with a mean value of 0.939 mm for the breaker/submerged zones, decreasing gradually to the swash zone (0.825 mm) and the beach face dunes (0.699 mm). The finest sediment (0.335 mm) is found on the dunes west of Cape Falso. The coarsest sand is found near Cerro Prieto (1.615 mm), particularly in the swash zone. Pocket beaches have homogeneous grain size distribution with coarser values observed near the headlands.
- Submarine sand falls. The sand falls are inside San Lucas Bay, close to the arch of Cabo San Lucas. Most of the sediment is submerged and has a grain size of D50 = 0.796 ± 0.325 mm (i.e., smaller than that of the breaker/submerged zones on the Pacific and San Lucas Bay shorelines). The finest grain sizes (0.342–0.389 mm) belong to sand samples taken from depths > 18.3 m.
- San Lucas Bay coastline. On average, the sediment on this coastline is the coarsest in the study area, D50 = 0.884 ± 0.353 mm. Around the Salto Seco stream and Cape Bello, the grain sizes are up to 1.995 mm. At the east end of the bay, coral fragments were found. Sediment deposition from the Salto Seco stream normally occurs after intense and intermittent rainfall, further transported along the coastline. The finest sediments are found close to the submarine sand falls and the port (0.428 mm), as well as on the dunes (0.794 mm). Like the Pacific coastline, there is a gradual decrease in sediment size from the breaker to the beach face and dunes zones.
3.4. Coastal Scenery Classification and Vulnerability
4. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dal Cin, R.; Simeoni, U. A Model for Determining the Classification, Vulnerability and Risk in the Southern Coastal Zone of the Marche (Italy). J. Coast. Res. 1994, 10, 18–29. [Google Scholar]
- Vulnerability of the East Coast, U.S.A. to Future Sea Level Rise. Available online: http://www.jstor.org/stable/44868636 (accessed on 12 October 2020).
- Ramieri, E.; Hartley, A.; Barbantini, A.S.; Ilipe Duarte Gomes, A.; Hilden, M.; Laihonen, P.; Marinova, N.; Santini, M. Methods for assessing coastal vulnerability to climate change. In ETC CCA Technical Paper 1/2011; European Topic Centre on Climate Change Impacts, Vulnerability and Adaptation: Bologna, Italy, 2011; p. 93. [Google Scholar]
- Simeoni, U.; Tessari, U.; Gabbianeli, G.; Schiavi, C. Sea storm risk assessment in the Ravenna littoral (Adriatic Sea, Northern Italy). In Proceedings of the 6th International Conference on the Mediterranean Coastal Environment MEDCOAST 03, Ravenna, Italy, 7–11 October 2003; pp. 2223–2234. [Google Scholar]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Davies, W.T.R. Applying a Coastal Vulnerability Index (CVI) to the Westfjords, Iceland: A Preliminary Assessment. Master’s Thesis, University of Akureyri, Akureyri, Iceland, 2012. [Google Scholar]
- Füssel, H.-M. Vulnerability: A generally applicable conceptual framework for climate change research. Glob. Environ. Chang. 2007, 17, 155–167. [Google Scholar] [CrossRef]
- Nelson, R.; Kokic, P.; Crimp, S.; Meinke, H.; Howden, S.M. The vulnerability of Australian rural communities to climate variability and change: Part I—Conceptualising and measuring vulnerability. Environ. Sci. Policy 2010, 13, 8–17. [Google Scholar] [CrossRef]
- McLaughlin, S.; Cooper, J.A.G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazards 2010, 9, 233–248. [Google Scholar] [CrossRef]
- Gornitz, V. Global coastal hazards from future sea level rise. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 89, 379–398. [Google Scholar] [CrossRef]
- Abuodha, P.A.; Woodroffe, C.D. Vulnerability assessment. In Coastal Zone Management; Thomas Telford Ltd.: London, UK, 2010; pp. 262–290. [Google Scholar]
- Szlafsztein, C.; Sterr, H. A GIS-based vulnerability assessment of coastal natural hazards, state of Pará, Brazil. J. Coast. Conserv. 2007, 11, 53–66. [Google Scholar] [CrossRef]
- Burzel, A.; Dassanayake, D.R.; Naulin, M.; Kortenhaus, A.; Oumeraci, H.; Wahl, T.; Mudersbach, C.; Jensen, J.; Gönnert, G.; Sossidi, K.; et al. Integrated flood risk analysis for extreme storm surges (XtremRisk). Coast. Eng. Proc. 2011, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- De Pippo, T.; Donadio, C.; Pennetta, M.; Petrosino, C.; Terlizzi, F.; Valente, A. Coastal hazard assessment and mapping in Northern Campania, Italy. Geomorphology 2008, 97, 451–466. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Posada-Posada, B.O. Determination of the vulnerability and the coastal risk by the application of GIS tools and multicriteria methods. Rev. Intrópica 2013, 8, 29–42. [Google Scholar]
- Özyurt, G.; Ergin, A. Application of Sea Level Rise Vulnerability Assessment Model to Selected Coastal Areas of Turkey. J. Coast. Res. 2009, 248–251. [Google Scholar]
- Özyurt, G.; Ergin, A. Improving coastal vulnerability assessments to sea-level rise: A new indicator-based methodology for decision makers. J. Coast. Res. 2010, 262, 265–273. [Google Scholar] [CrossRef]
- Ergin, A.; Karaesmen, E.; Uar, B. A quantitative study for evaluation of coastal scenery. J. Coast. Res. 2011, 27, 1065–1075. [Google Scholar] [CrossRef]
- IPCC. Cambio Climático 2001. Impactos, Adaptación y Vulnerabilidad; Grupo Intergubernamental de Expertos sobre el Cambio Climático-Organización Mundial Meteorológica, OMM-PNUMA: New York, NY, USA, 2001; p. 101. [Google Scholar]
- Denner, K.; Phillips, M.R.; Jenkins, R.E.; Thomas, T. A coastal vulnerability and environmental risk assessment of Loughor Estuary, South Wales. Ocean Coast. Manag. 2015, 116, 478–490. [Google Scholar] [CrossRef]
- Musekiwa, C.; Cawthra, H.; Unterner, M.; Van Zyl, F. An assessment of coastal vulnerability for the South African coast. S. Afr. J. Geomat. 2015, 4, 123. [Google Scholar] [CrossRef] [Green Version]
- Kantamaneni, K.; Phillips, M.; Thomas, T.; Jenkins, R. Assessing coastal vulnerability: Development of a combined physical and economic index. Ocean Coast. Manag. 2018, 158, 164–175. [Google Scholar] [CrossRef]
- CIMSMyC. Política Nacional de Mares y Costas de México. Gestión Integral de las Regiones más Dinámicas del Territorio Nacional; Comisión Intersecretarial para el Manejo Sustentable de Mares y Costas-SEMARNAT: Mexico City, Mexico, 2012; p. 97. [Google Scholar]
- SECTUR. Agendas de Competitividad de los Destinos Turísticos de México 2013–2018. Los Cabos, Baja California Sur; Secretaría de Turismo: Mexico City, Mexico, 2014; p. 687. [Google Scholar]
- Guido-Aldana, P.; Ramírez-Camperos, A.; Godínez-Orta, L.; Cruz-León, S.; Juárez-León, A. Estudio de la erosión costera en Cancún y la Riviera Maya, México. Av. Recur. Hidrául. 2009, 20, 41–55. [Google Scholar]
- Valderrama-Landeros, L.H.; Martell-Dubois, R.; Ressl, R.; Silva-Casarín, R.; Cruz-Ramírez, C.J.; Muñoz-Pérez, J.J. Dynamics of coastline changes in Mexico. J. Geogr. Sci. 2019, 29, 1637–1654. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Lozano, J.O. Caracterización Sedimentológica y Geomorfológica de los Ambientes Costeros en la Bahía San Lucas, Baja California Sur, México. Master’s Thesis, Centro Interdisciplinario de Ciencias Marinas, La Paz, Mexico, 2006. [Google Scholar]
- Hesp, P.A.; Walker, I.J. Coastal Dunes. In Treatise on Geomorphology; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 328–355. ISBN 9780080885223. [Google Scholar]
- Yañez-Arancibia, A.; Day, J.W. La zona costera frente al cambio climático- vulnerabilidad de un sistema biocomplejo e implicaciones en manejo costero. In Impactos del Cambio Climático Sobre la Zona Costera; Yañez-Arancibia, A., Ed.; INECOL-INE-SEMARNAT: Xalapa, México, 2010; pp. 13–35. [Google Scholar]
- Mazzoni, E. Unidades de paisaje como base para la organización y gestión territorial. Rev. Geogr. 2014, 2, 51–81. [Google Scholar]
- Rangel-Buitrago, N.; Gracia, C.A.; Anfuso, G.; Ergin, A.; Williams, A. Evaluation of Landscape Feature by Mathematical Logic in the Central Area of the Caribbean Colombian Coast. Études Caribéennes 2016. [Google Scholar] [CrossRef]
- UNESCO. Islands and Protected Areas of the Gulf of California. Available online: https://whc.unesco.org/en/list/1182 (accessed on 5 August 2020).
- Limbaugh, C.; North, W.; Steward, J. Rivers of Sand (Underwater Motion-Picture Report of Submarine Sand Movement); Scientific Diving Consultants-Scripps Institution of Oceanography: La Jolla, CA, USA, 1959. [Google Scholar]
- Dill, R.F. Features in the Heads of Submarine Canyons Narrative of Underwater Film. In Deltaic and Shallow Marine Deposits; Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1964; pp. 101–104. [Google Scholar]
- Cousteau, J.M.; Cousteau, J.Y.; Olmos, E.J.; Wilson, G. Cousteau’s Rediscovery of the World I. Sea of Cortez: Legacy of Cortez; TBS Productions Inc., The Costeau Group: Atlanta, GA, USA, 1987. [Google Scholar]
- Alcérreca-Huerta, J.C.; Montiel-Hernández, J.R.; Hernández-Avilés, D.A.; Silva-Casarín, R.; Coastkeeper, L.C.; Divers y más, A. Estudios Para el Monitoreo, Conservación y Manejo de los Recursos Naturales de las Cascadas de Arena Submarinas de Cabo San Lucas. Seguimiento y Continuación de Estudios; II-UNAM: Mexico City, Mexico, 2016. [Google Scholar]
- Silva, R.; Alcérreca-Huerta, J.C.; Hernández-Avilés, D.A.; Coastkeeper, L.C.; Divers y más, A. Estudios Para el Monitoreo, Conservación y Manejo de los Recursos Naturales de las Cascadas de Arena Submarinas de Cabo San Lucas; II-UNAM: Mexico City, Mexico, 2015. [Google Scholar]
- Schaaf, P.; Böhnel, H.; Pérez-Venzor, J. Pre-Miocene palaeogeography of the Los Cabos Block, Baja California Sur: Geochronological and palaeomagnetic constraints. Tectonophysics 2000, 318, 53–69. [Google Scholar] [CrossRef]
- Servicio Geológico Mexicano. Carta Geológico-Minera Cabo San Lucas F12-B54, Baja California Sur, 1:50000; Servicio Geológico Mexicano-Coordinación General de Minería-Secretaría de Economía: Mexico City, Mexico, 2008. [Google Scholar]
- UNESCO. List of World Heritage in Danger. Available online: http://whc.unesco.org/en/danger/ (accessed on 20 August 2020).
- Dávila López, A. Centros integralmente planeados (CIPS) en México: Las piezas del proyecto turístico de FONATUR. In Proceedings of the VI International Seminar on Urbanism Research Barcelona-Bogotá, Universitat Politècnica de Catalunya, Barcelona, Spain, 12 June 2014. [Google Scholar]
- Ganster, P.; Arizpe-Covarrubias, Ó.A.; Ivanova, A. Los Cabos: Prospective for a Natural and Tourism Paradise; San Diego State University, Institute for Regional Studies of the Californias: San Diego, CA, USA, 2012; ISBN 978-1-938537-00-4. [Google Scholar]
- García-Villa, A. La Planificación de Centros Turísticos de México; Editorial Limusa-Grupo Noriega Editores: Mexico City, Mexico, 1992; ISBN 968-18-4227-8. [Google Scholar]
- SETUESBCS. Los Cabos. Información Estratégica 2020; Gobierno del Estado de Baja California Sur-Secretaría de Turismo, Economía y Sustentabilidad (Dirección de Informática y Estadística): La Paz, Mexico, 2020. [Google Scholar]
- Bojorquez-Luque, J. Cabo San Lucas: Historia de su Urbanización, 1970–2011. Ph.D. Thesis, Universidad Autónoma de Sinaloa, Culiacán, Mexico, 2019. [Google Scholar]
- Ruiz-Martínez, G.; Silva, R.; Pérez-Romero, D.M.; Posada-Vanegas, G.; Buatista-Godínez, E.G. Modelo híbrido para la caracterización del oleaje. Ing. Hidrául. México 2009, XXIV, 5–22. [Google Scholar]
- Silva, R.; Ruiz-Martínez, G.; Posada-Vanegas, G.; Pérez-Romero, D.M.; Rivillas, G.; Espinal, J.; Mendoza, E. Atlas de Clima Marítimo de la vertiente Pacífica Mexicana; Instituto de Ingeniería, Universidad Nacional Autónoma de México: Mexico City, Mexico, 2008. [Google Scholar]
- Boccotti, P. Wave Mecahnics for Ocean Engineering; Elsevier Science B.V.: Amsterdam, The Netherlands, 2000; ISBN 0444 50380 3. [Google Scholar]
- Silva, R.; Borthwick, A.G.L.; Taylor, R.E. Numerical implementation of the harmonic modified mild-slope equation. Coast. Eng. 2005, 52, 391–407. [Google Scholar] [CrossRef]
- Silva, R.; Baquerizo, A.; Losada, M.Á.; Mendoza, E. Hydrodynamics of a headland-bay beach—Nearshore current circulation. Coast. Eng. 2010, 57, 160–175. [Google Scholar] [CrossRef]
- NOAA-NWS. Historical El Niño/La Niña Episodes (1950-Present). Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 15 August 2020).
- Krumbein, W.C. Measurement and geological significance of shape and roundness of sedimentary particles. SEPM J. Sediment. Res. 1941, 11. [Google Scholar] [CrossRef]
- Ergin, A.; Karaesmen, E.; Micallef, A.; Williams, A.T. A new methodology for evaluating coastal scenery: Fuzzy logic systems. Area 2004, 36, 367–386. [Google Scholar] [CrossRef]
- Ergin, A.; Karakaya, T.; Micallef, A.; Radic, M.; Williams, A.T. Coastal scenic evaluation: A study of some Dalmatian (Croatia) areas. J. Coast. Res. 2006, SI 39, 898–902. [Google Scholar]
- Rangel-Buitrago, N.; Correa, I.D.; Anfuso, G.; Ergin, A.; Williams, A.T. Assessing and managing scenery of the Caribbean Coast of Colombia. Tour. Manag. 2013, 35, 41–58. [Google Scholar] [CrossRef]
- Anfuso, G.; Williams, A.T.; Cabrera Hernández, J.A.; Pranzini, E. Coastal scenic assessment and tourism management in western Cuba. Tour. Manag. 2014, 42, 307–320. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N. Coastal Scenery; Coastal Research Library; Springer International Publishing: Cham, Switzerland, 2019; Volume 26, ISBN 978-3-319-78877-7. [Google Scholar]
- Pantusa, D.; D’Alessandro, F.; Riefolo, L.; Principato, F.; Tomasicchio, G. Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy. Water 2018, 10, 1218. [Google Scholar] [CrossRef] [Green Version]
- Montiel-Hernández, J.R. Vulnerabilidad del Paisaje litoral de Cabo San Lucas, Baja California Sur. Master’s Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2019. [Google Scholar]
- Cogswell, A.; Greenan, B.J.W.; Greyson, P. Evaluation of two common vulnerability index calculation methods. Ocean Coast. Manag. 2018, 160, 46–51. [Google Scholar] [CrossRef]
- Karymbalis, E.; Chalkias, C.; Chalkias, G.; Grigoropoulou, E.; Manthos, G.; Ferentinou, M. Assessment of the sensitivity of the southern coast of the Gulf of Corinth (Peloponnese, Greece) to sea-level rise. Open Geosci. 2012, 4. [Google Scholar] [CrossRef]
- INEGI. Modelo Digital de Elevación Tipo Superficie con 5m de Resolución Derivado de Datos de Sensores Remotos Satelitales y Aerotransportados. F12B54xx [Projection UTM, Datum ITRF08, 1:10000]; INEGI: Mexico City, Mexico, 2014. [Google Scholar]
- NOAA. NOAA Historical Hurricane Tracks. Available online: https://oceanservice.noaa.gov/news/historical-hurricanes/ (accessed on 5 August 2020).
- Murillo-Jiménez, J.M.; Full, W.; Nava-Sánchez, E.H.; Camacho-Valdéz, V.; León-Manilla, A. Sediment sources of beach sand from the southern coast of the Baja California peninsula, México -Fourier grain shape analysis-. In Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry; Arribas, J., Critelli, S., Johnsson, M.J., Eds.; Geological Society of America: Boulder, CO, USA, 2007; pp. 297–318. [Google Scholar]
- Rizzo, A.; Aucelli, P.P.C.; Gracia, F.J.; Anfuso, G. A novelty coastal susceptibility assessment method: Application to Valdelagrana area (SW Spain). J. Coast. Conserv. 2018, 22, 973–987. [Google Scholar] [CrossRef]
- Camacho-Valdéz, V.; Murillo-Jiménez, J.M.; Nava-Sánchez, E.H.; Turrent-Thompson, C. Dune and Beach Morphodynamics at Cabo Falso, Baja California Sur, Mexico: Response to Natural, Hurricane Juliette (2001) and Anthropogenic Influence. J. Coast. Res. 2008, 243, 553–560. [Google Scholar] [CrossRef]
- Nava-Sánchez, E.H.; Martínez-Flores, G.; Murillo-Jiménez, J.M. Factores que provocan la erosión de playas en Baja California Sur, México. Rev. Comuni. Cient. Tecnol 2018, 4, 305–316. [Google Scholar]
- Martínez-Gutiérrez, G.; Mayer, L. Huracanes en Baja California, México, y sus implicaciones en la sedimentación en el Golfo de California. GEOS 2004, 24, 57–64. [Google Scholar]
- Odériz, I.; Silva, R.; Mortlock, T.R.; Mori, N. ENSO Impacts on Global Wave Climate and Potential Coastal Hazards. J. Geophys. Res. Ocean. 2020. [Google Scholar] [CrossRef]
- Pavia, E.G.; Graef, F.; Reyes, J. PDO–ENSO Effects in the Climate of Mexico. J. Clim. 2006, 19, 6433–6438. [Google Scholar] [CrossRef]
- Ohman, M.D.; Mantua, N.; Keister, J.; García-Reyes, M.; McClatchie, S. ENSO impacts on ecosystem indicators in the California Current System. US CLIVAR Var. 2017, 15, 8–15. [Google Scholar]
- Rojas-Mendez, J.A.; Robinson-Mendoza, C.J. Effects of ENSO 1997 1998 on the distribution of small pelagic fish off the west coast of Baja California. Int. J. Environ. Health 2008, 2, 45. [Google Scholar] [CrossRef]
- Hernández-Carmona, G.; Riosmena-Rodríguez, R.; Serviere-Zaragoza, E.; Ponce-Díaz, G. Effect of nutrient availability on understory algae during El Niño Southern Oscillation (ENSO) conditions in Central Pacific Baja California. J. Appl. Phycol. 2011, 23, 635–642. [Google Scholar] [CrossRef]
- Wilbanks, T.; Fernandez, S. Climate Change and Infrastructure, Urban Systems, and Vulnerabilities; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Vallejo, L.; Mullan, M. Climate-resilient infrastructure: Getting the policies right. In OECD Environment Working Papers; OECD Publishing: Paris, France, 2017; Volume 121, p. 74. [Google Scholar] [CrossRef]
- Gamez, A.; Angeles, M. Borders within. Tourism growth, migration and regional polarization in Baja California Sur (Mexico). J. Borderl. Stud. 2010, 25, 1–18. [Google Scholar] [CrossRef]
- Davenport, J.; Davenport, J.L. The impact of tourism and personal leisure transport on coastal environments: A review. Estuar. Coast. Shelf Sci. 2006, 67, 280–292. [Google Scholar] [CrossRef]
- Moscardo, G. Peripheral Tourism Development: Challenges, Issues and Success Factors. Tour. Recreat. Res. 2005, 30, 27–43. [Google Scholar] [CrossRef]
- Kelly, P.M.; Adger, W.N. Theory and Practice in Assessing Vulnerability to Climate Change and Facilitating Adaptation. Clim. Chang. 2000, 47, 325–352. [Google Scholar] [CrossRef]
- Koroglu, A.; Ranasinghe, R.; Jiménez, J.A.; Dastgheib, A. Comparison of Coastal Vulnerability Index applications for Barcelona Province. Ocean Coast. Manag. 2019, 178, 104799. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
Coastal Scenic Classification | |
Class I | Extremely attractive natural site with a high landscape value and Evaluation Index D ≥ 0.85. |
Class II | Attractive natural sites with Evaluation Index 0.65 ≤ D < 0.85. |
Class III | Natural sites with limited landscape features and Evaluation Index 0.40 ≤ D < 0.65. |
Class IV | Urbanized landscape with low landscape value and Evaluation Index 0.00 ≤ D < 0.40. |
Class V | Intense human development related to very unattractive urbanized landscapes and Evaluation Index D < 0.00. |
Landscape Components Considered | |
Physical | Cliff (-height, -slope, -features); beach face (-type, -width, -color); rocky shore (-extent, -roughness); dunes; valley; skyline landforms; tides; coastal landscape features; views; water color and clarity; natural vegetation cover; vegetation debris. |
Human | Noise disturbance; litter; sewage discharge evidence; non-built environment; built environment; type of access to the coast; skyline; utilities (power lines, pipelines, structures). |
Type of Indicator | Score | |||||
---|---|---|---|---|---|---|
Very Low (1) | Low (2) | Moderate (3) | High (4) | |||
GI | a1 | Coastal slope a [%] | >75 (rocky cliffs) | 50–75 | 25–50 | <25 (beaches) |
a2 | Beach width [m] | >100 | 50–100 | 25–50 | <25 | |
a3 | Dune width [m] | >200 | 150–200 | 100–150 | <25 | |
HI | a4 | Wave height, HS (regular conditions) [m] | 0.0–0.5 | 0.5–1.5 | 1.5–2.0 | 2.0–2.5 |
a5 | Wave height, HS (extreme events) [m] | 4.0–6.0 | 6.0–8.0 | 8.0–10.0 | >10.0 | |
a6 | Historical extreme events ratio b [-] | Absent | 0.0–0.15 | 0.15–0.30 | >0.30 | |
SI | a7 | Protection status [-] | National & International | International | National | Absent |
a8 | Land use pattern [-] | Dunes/Cliffs/Vegetation | Beach/Dunes | Agriculture/Recreational | Urban/Industrial | |
a9 | Direct human–environment interaction c [Boolean: presence/absence] | Absent | Present |
Type of Indicator | COASTAL ZONE | ||
---|---|---|---|
Pacific Ocean | San Lucas Bay | CSL | |
Coastal slope [%] | 9.7 | 12.6 | 10.1 |
Beach width [m] | 72.0 | 50.2 | 68.7 |
Dune width [m] | 142.5 | 38.7 | 127.3 |
Wave height, regular events (HS) [m] | 1.5–2.0 | 0.5–1.5 | 1.5–2.0 |
Wave height, extreme events (HS,max) [m] | 8.0–10 | 6.0–8.0 | 6.0–10 |
Historical extreme events ratio [-] | 0.15 | 0.1 | 0.1 |
Protection status [-] | --- | National & International | |
Land use pattern [-] | Beach/Dunes/Recreation | Urban & Recreation | Urban & Recreation |
Direct human–environment interaction [Absent–Present] | Present | Present | Present |
CVI | 3.0 | 2.5 | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcérreca-Huerta, J.C.; Montiel-Hernández, J.R.; Callejas-Jiménez, M.E.; Hernández-Avilés, D.A.; Anfuso, G.; Silva, R. Vulnerability of Subaerial and Submarine Landscapes: The Sand Falls in Cabo San Lucas, Mexico. Land 2021, 10, 27. https://doi.org/10.3390/land10010027
Alcérreca-Huerta JC, Montiel-Hernández JR, Callejas-Jiménez ME, Hernández-Avilés DA, Anfuso G, Silva R. Vulnerability of Subaerial and Submarine Landscapes: The Sand Falls in Cabo San Lucas, Mexico. Land. 2021; 10(1):27. https://doi.org/10.3390/land10010027
Chicago/Turabian StyleAlcérreca-Huerta, Juan Carlos, Jorge R. Montiel-Hernández, Mariana E. Callejas-Jiménez, Dulce A. Hernández-Avilés, Giorgio Anfuso, and Rodolfo Silva. 2021. "Vulnerability of Subaerial and Submarine Landscapes: The Sand Falls in Cabo San Lucas, Mexico" Land 10, no. 1: 27. https://doi.org/10.3390/land10010027
APA StyleAlcérreca-Huerta, J. C., Montiel-Hernández, J. R., Callejas-Jiménez, M. E., Hernández-Avilés, D. A., Anfuso, G., & Silva, R. (2021). Vulnerability of Subaerial and Submarine Landscapes: The Sand Falls in Cabo San Lucas, Mexico. Land, 10(1), 27. https://doi.org/10.3390/land10010027