Impacts of Soil Properties, Topography, and Environmental Features on Soil Water Holding Capacities (SWHCs) and Their Interrelationships
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Forest Stand and Soil Properties
2.3. Environmental Covariates
2.4. Random Forest Model
2.5. Variable Importance Measurements
2.6. Linear Relationship
2.7. Developed Models
2.8. Sensitivity Analysis
3. Results
3.1. Variable Importance for Predicting SWHCs
3.2. Correlation between Highly Effective Variables and SWHCs
3.3. Sensitivity Analysis for Identifying Non-Linear Relationship
4. Discussion
4.1. Influential Soil Physical and Chemical Properties on SWHCs Prediction
4.2. Interrelationship between Topography, Soil Properties, and Vegetation
4.3. Limitations and Recommendations for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Götzinger, J.; Bárdossy, A. Comparison of four regionalisation methods for a distributed hydrological model. J. Hydrol. 2007, 333, 374–384. [Google Scholar] [CrossRef]
- Han, E.; Merwade, V.; Heathman, G.C. Implementation of Surface Soil Moisture Data Assimilation with Watershed Scale Distributed Hydrological Model. J. Hydrol. 2012, 416, 98–117. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, G.; Li, X.; Han, X.; Wang, L.; Li, H.; Chang, X.; Flerchinger, G. Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed. Hydrol. Process. 2013, 27, 3762–3776. [Google Scholar] [CrossRef]
- Vereecken, H.; Weynants, M.; Javaux, M.; Pachepsky, Y.; Schaap, M.G.; van Genuchten, M. Using Pedotransfer Functions to Estimate the van Genuchten-Mualem Soil Hydraulic Properties: A Review. Vadose Zone J. 2010, 9, 795–820. [Google Scholar] [CrossRef]
- Cianfrani, C.; Buri, A.; Vittoz, P.; Grand, S.; Zingg, B.; Verrecchia, E.; Guisan, A. Spatial modelling of soil water holding capacity improves models of plant distributions in mountain landscapes. Plant Soil 2019, 438, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, K. New diagrams to evaluate soil pore radius distribution and saturated hydraulic conductivity of forest soil. J. For. Res. 1997, 2, 95–101. [Google Scholar] [CrossRef]
- Hewelke, P.; Gnatowski, T.; Elp Tyszka, J.; Zakowicz, S. Analysis of Water Retention Capacity for Select Forest Soils in Poland. Pol. J. Environ. Stud. 2015, 24, 1013–1019. [Google Scholar] [CrossRef]
- Glp Duijnisveld, W.H.M.; Trinks, S. Hydro-Pedotransfer Functions (HPTFs) for Predicting Annual Percolation Rate on a Regional Scale. J. Hydrol. 2008, 356, 17–27. [Google Scholar]
- Zhang, Y.; Schaap, M.G.; Zha, Y. A High-Resolution Global Map of Soil Hydraulic Properties Produced by a Hierarchical Parameterization of a Physically Based Water Retention Model. Water Resour. Res. 2018, 54, 9774–9790. [Google Scholar] [CrossRef] [Green Version]
- Puckett, W.E.; Dane, J.H.; Hajek, B.F. Physical and Mineralogical Data to Determine Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 1985, 49, 831–836. [Google Scholar] [CrossRef]
- Rawls, W.J.; Brakensiek, D. Estimating Soil Water Retention from Soil Properties. J. Irrig. Drain. Div. 1982, 108, 166–171. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Neural Network Analysis for Hierarchical Prediction of Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 1998, 62, 847–855. [Google Scholar] [CrossRef]
- Twarakavi, N.K.; Šimůnek, J.; Schaap, M.G. Development of Pedotransfer Functions for Estimation of Soil Hydraulic Parameters Using Support Vector Machines. Soil Sci. Soc. Am. J. 2009, 73, 1443–1452. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Zeng, J.; Chen, N.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote. Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Saurette, D.; Biswas, A. Effect of Multi-Temporal Satellite Images on Soil Moisture Prediction Using a Digital Soil Mapping Approach. Geoderma 2021, 385, 114901. [Google Scholar] [CrossRef]
- Gooley, L.; Huang, J.; Page, D.; Triantafilis, J. Digital soil mapping of available water content using proximal and remotely sensed data. Soil Use Manag. 2014, 30, 139–151. [Google Scholar] [CrossRef]
- Jeihouni, M.; Alavipanah, S.K.; Toomanian, A.; Jafarzadeh, A.A. Digital mapping of soil moisture retention properties using solely satellite-based data and data mining techniques. J. Hydrol. 2020, 585, 124786. [Google Scholar] [CrossRef]
- Akpa, S.I.C.; Odeh, I.O.A.; Bishop, T.; Hartemink, A. Digital Mapping of Soil Particle-Size Fractions for Nigeria. Soil Sci. Soc. Am. J. 2014, 78, 1953–1966. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudabadi, E.; Karimi, A.; Haghnia, G.H.; Sepehr, A. Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environ. Monit. Assess. 2017, 189, 500. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: Boca Raton, FL, USA, 1984; p. 368. [Google Scholar]
- Araya, S.N.; Ghezzehei, T.A. Using Machine Learning for Prediction of Saturated Hydraulic Conductivity and Its Sensitivity to Soil Structural Perturbations. Water Resour. Res. 2019, 55, 5715–5737. [Google Scholar] [CrossRef]
- Latshaw, K.; Fitzgerald, J.; Sutton, R. Analysis of Green Roof Growing Media Porosity. RURALS 2009, 4, 2. [Google Scholar]
- Qiao, J.; Zhu, Y.; Jia, X.; Huang, L.; Shao, M. Pedotransfer functions for estimating the field capacity and permanent wilting point in the critical zone of the Loess Plateau, China. J. Soils Sediments 2019, 19, 140–147. [Google Scholar] [CrossRef]
- Adhikary, P.P.; Chakraborty, D.; Kalra, N.; Sachdev, C.B.; Patra, A.K.; Kumar, S.; Tomar, R.K.; Chandna, P.; Raghav, D.; Agrawal, K.; et al. Pedotransfer functions for predicting the hydraulic properties of Indian soils. Soil Res. 2008, 46, 476–484. [Google Scholar] [CrossRef]
- Ekwue, E.; Stone, R. Effect of Peat on the Compactibility of Some Trinidadian Soils. J. Agric. Eng. Res. 1994, 57, 129–136. [Google Scholar] [CrossRef]
- Li, X.-G.; Li, F.-M.; Zed, R.; Zhan, Z.-Y.; Singh, B. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma 2007, 139, 98–105. [Google Scholar] [CrossRef]
- Ohu, J.O.; Raghavan, G.S.V.; McKyes, E. Peatmoss Effect on the Physical and Hydraulic Characteristics of Compacted Soils. Trans. ASAE 1985, 28, 420–424. [Google Scholar] [CrossRef]
- Wagner, L.E.; Ambe, N.M.; Ding, D. Estimating a Proctor Density Curve from Intrinsic Soil Properties. Trans. ASAE 1994, 37, 1121–1125. [Google Scholar] [CrossRef]
- Zhang, H.; Hartge, K.H.; Ringe, H. Effectiveness of Organic Matter Incorporation in Reducing Soil Compactibility. Soil Sci. Soc. Am. J. 1997, 61, 239–245. [Google Scholar] [CrossRef]
- Gardner, W.; Broersma, K.; Naeth, M.A.; Chanasyk, D.; Jobson, A. Influence of biosolids and fertilizer amendments on physical, chemical and microbiological properties of copper mine tailings. Can. J. Soil Sci. 2010, 90, 571–583. [Google Scholar] [CrossRef]
- Leu, J.M.; Traore, S.; Wang, Y.M.; Kan, C.E. The Effect of Organic Matter Amendment on Soil Water Holding Capacity Change for Irrigation Water Saving: Case Study in Sahelian Environment of Africa. Sci. Res. Essays 2010, 5, 3564–3571. [Google Scholar]
- Rawls, W.; Pachepsky, Y.; Ritchie, J.; Sobecki, T.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter and water retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Jin, X.; Wang, S.; Yu, N.; Zou, H.; An, J.; Zhang, Y.; Wang, J. Spatial predictions of the permanent wilting point in arid and semi-arid regions of Northeast China. J. Hydrol. 2018, 564, 367–375. [Google Scholar] [CrossRef]
- Obi, J.; Ogban, P.; Ituen, U.; Udoh, B. Development of Pedotransfer Functions for Coastal Plain Soils Using Terrain Attributes. Catena 2014, 123, 252–262. [Google Scholar] [CrossRef]
- Lim, H.; Yang, H.; Chun, K.W.; Choi, H.T. Development of Pedo-Transfer Functions for the Saturated Hydraulic Conductivity of Forest Soil in South Korea Considering Forest Stand and Site Characteristics. Water 2020, 12, 2217. [Google Scholar] [CrossRef]
- Plaster, R.W.; Sherwood, W.C. Bedrock Weathering and Residual Soil Formation in Central Virginia. GSA Bull. 1971, 82, 2813–2826. [Google Scholar] [CrossRef]
- Hanna, A.Y.; Harlan, P.W.; Lewis, D.T. Soil Available Water as Influenced by Landscape Position and Aspect 1. Agron. J. 1982, 74, 999–1004. [Google Scholar] [CrossRef]
- Molina, A.; Vanacker, V.; Corre, M.D.; Veldkamp, E. Patterns in Soil Chemical Weathering Related to Topographic Gradients and Vegetation Structure in a High Andean Tropical Ecosystem. J. Geophys. Res. Earth Surf. 2019, 124, 666–685. [Google Scholar] [CrossRef]
- Rech, J.A.; Reeves, R.W.; Hendricks, D.M. The influence of slope aspect on soil weathering processes in the Springerville volcanic field, Arizona. Catena 2001, 43, 49–62. [Google Scholar] [CrossRef]
- Walker, J.; Thompson, C.H.; Jehne, W. Soil Weathering Stage, Vegetation Succession, and Canopy Dieback. Pac. Sci. 1983, 37, 471–481. [Google Scholar]
- Deprez, M.; De Kock, T.; De Schutter, G.; Cnudde, V. A review on freeze-thaw action and weathering of rocks. Earth-Sci. Rev. 2020, 203, 103143. [Google Scholar] [CrossRef]
- Matsuoka, N.; Murton, J. Frost weathering: Recent advances and future directions. Permafr. Periglac. Process. 2008, 19, 195–210. [Google Scholar] [CrossRef]
- Cierjacks, A.; Kleinschmit, B.; Kowarik, I.; Graf, M.; Lang, F. Organic matter distribution in floodplains can be predicted using spatial and vegetation structure data. River Res. Appl. 2011, 27, 1048–1057. [Google Scholar] [CrossRef]
Forest Stand and Soil Physical and Chemical Properties | Abb. | Unit | At 10 cm Soil Depth (n = 953) | At 30 cm Soil Depth (n = 971) |
---|---|---|---|---|
Saturated SWC | % | 7.9 | 7.5 | |
SWC at pF1.8 | % | 6.8 | 7.2 | |
SWC at pF2.7 | % | 5.8 | 6.5 | |
Bulk density | g cm−3 | 0.2 | 0.2 | |
Organic matter | OM | % | 1.88 | 1.52 |
Hydraulic conductivity | cm s−1 | 0.013 | 0.010 | |
Sand fraction | Sand | % | 16.3 | 17.2 |
Silt fraction | Silt | % | 15.7 | 16.7 |
Clay fraction | Clay | % | 10.3 | 11.8 |
Dominant tree height | DTH | m | 3.5 | 3.4 |
Dominant tree DBH | DTD | cm | 10.2 | 9.9 |
Average DBH | AD | cm | 7.5 | 7.4 |
Tree density | TD | trees ha−1 | 285 | 283 |
Model ID | Explanatory Variables | Soil Sample Layer | Matric Suction of Response Variable |
---|---|---|---|
PTF-10-pF0 | Forest stand and soil physical and chemical properties | 10 cm depth | pF0 (saturated) |
PTF-10-pF1.8 | pF1.8 | ||
PTF-10-pF2.7 | pF2.7 | ||
PTF-30-pF0 | 30 cm depth | pF0 (saturated) | |
PTF-30-pF1.8 | pF1.8 | ||
PTF-30-pF2.7 | pF2.7 | ||
DSM-10-pF0 | Environmental covariates | 10 cm depth | pF0 (saturated) |
DSM-10-pF1.8 | pF1.8 | ||
DSM-10-pF2.7 | pF2.7 | ||
DSM-30-pF0 | 30 cm depth | pF0 (saturated) | |
DSM-30-pF1.8 | pF1.8 | ||
DSM-30-pF2.7 | pF2.7 |
Model ID | First Important Variable | Second Important Variable | Third Important Variable | Fourth Important Variable |
---|---|---|---|---|
PTF-10-pF0 | OM | Sand | ||
PTF-10-pF1.8 | Sand | OM | DTH | |
PTF-10-pF2.7 | Sand | OM | Clay | |
PTF-30-pF0 | OM | Sand | Clay | |
PTF-30-pF1.8 | Sand | OM | DTH | |
PTF-30-pF2.7 | Sand | OM | Clay | |
DSM-10-pF0 | Elevation | Aspect | STC | TSD |
DSM-10-pF1.8 | STC | Elevation | TPI | Bedrock |
DSM-10-pF2.7 | STC | Elevation | TPI | Aspect |
DSM-30-pF0 | Elevation | STC | Aspect | TPI |
DSM-30-pF1.8 | STC | Elevation | TPI | Bedrock |
DSM-30-pF2.7 | STC | Elevation | Bedrock | TPI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Yoo, H.; Lim, H.; Kim, J.; Choi, H.T. Impacts of Soil Properties, Topography, and Environmental Features on Soil Water Holding Capacities (SWHCs) and Their Interrelationships. Land 2021, 10, 1290. https://doi.org/10.3390/land10121290
Yang H, Yoo H, Lim H, Kim J, Choi HT. Impacts of Soil Properties, Topography, and Environmental Features on Soil Water Holding Capacities (SWHCs) and Their Interrelationships. Land. 2021; 10(12):1290. https://doi.org/10.3390/land10121290
Chicago/Turabian StyleYang, Hyunje, Hyeonju Yoo, Honggeun Lim, Jaehoon Kim, and Hyung Tae Choi. 2021. "Impacts of Soil Properties, Topography, and Environmental Features on Soil Water Holding Capacities (SWHCs) and Their Interrelationships" Land 10, no. 12: 1290. https://doi.org/10.3390/land10121290
APA StyleYang, H., Yoo, H., Lim, H., Kim, J., & Choi, H. T. (2021). Impacts of Soil Properties, Topography, and Environmental Features on Soil Water Holding Capacities (SWHCs) and Their Interrelationships. Land, 10(12), 1290. https://doi.org/10.3390/land10121290