Comparison of Compaction Alleviation Methods on Soil Health and Greenhouse Gas Emissions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil compaction effects on soil health and crop productivity: An overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef]
- Environment Agency; Chief Scientist’s Group. The State of the Environment: Soil; Environment Agency: London, UK, 2019.
- DEFRA. Environmental Standards for Farming—Consultation on Proposed Changes to Standards in Cross Compliance Good Agricultural and Environmental Condition (GAEC) and Related Measures in England; Department for Environment Food & Rural Affairs: London, UK, 2009.
- Jones, A.; Panagos, P.; Barcelo, S.; Bouraoui, F.; Bosco, C.; Dewitte, O.; Gardi, C.; Hervás, J.; Hiederer, R.; Jeffery, S.; et al. The State of Soil in Europe: A contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report—SOER 2010; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Batey, T. Soil compaction and soil management—A review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Akker, J.V.D.; Arvidsson, J.; Horn, R. Introduction to the special issue on experiences with the impact and prevention of subsoil compaction in the European Union. Soil Tillage Res. 2003, 73, 1–8. [Google Scholar] [CrossRef]
- Gregory, A.S.; Ritz, K.; McGrath, S.; Quinton, J.; Goulding, K.; Jones, R.J.A.; Harris, J.; Bol, R.; Wallace, P.; Pilgrim, E.S.; et al. A review of the impacts of degradation threats on soil properties in the UK. Soil Use Manag. 2015, 31, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Obour, P.B.; Ugarte, C.M. A meta-analysis of the impact of traffic-induced compaction on soil physical properties and grain yield. Soil Tillage Res. 2021, 211, 105019. [Google Scholar] [CrossRef]
- Chamen, W.T.; Moxey, A.P.; Towers, W.; Balana, B.; Hallett, P. Mitigating arable soil compaction: A review and analysis of available cost and benefit data. Soil Tillage Res. 2015, 146, 10–25. [Google Scholar] [CrossRef]
- Lowe, J.A.; Howard, T.P.; Pardaens, A.; Tinker, J.; Holt, J.; Wakelin, S.; Milne, G.; Leake, J.; Wolf, J.; Horsburgh, K.; et al. UK Climate Projections Science Report: Marine and Coastal Projections; Met Office Hadley Centre: Exeter, UK, 2009.
- Chamen, W.; Cavalli, R. The effect of soil compaction on mole plough draught. Soil Tillage Res. 1994, 32, 303–311. [Google Scholar] [CrossRef]
- Arvidsson, J.; Håkansson, I. Do effects of soil compaction persist after ploughing? Results from 21 long-term field experiments in Sweden. Soil Tillage Res. 1996, 39, 175–197. [Google Scholar] [CrossRef]
- Crotty, F.V. Soil Organisms Within Arable Habitats. In The Changing Status of Arable Habitats in Europe; Hurford, C., Wilson, P., Storkey, J., Eds.; Springer: Cambridge, UK, 2020; pp. 123–138. [Google Scholar]
- Whalley, R.; Dumitru, E.; Dexter, A. Biological effects of soil compaction. Soil Tillage Res. 1995, 35, 53–68. [Google Scholar] [CrossRef]
- Ball, B.C. Soil structure and greenhouse gas emissions: A synthesis of 20 years of experimentation. Eur. J. Soil Sci. 2013, 64, 357–373. [Google Scholar] [CrossRef]
- Reicosky, D.; Dugas, W.; Torbert, H. Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Tillage Res. 1997, 41, 105–118. [Google Scholar] [CrossRef]
- Højberg, O.; Revsbech, N.P.; Tiedje, J.M. Denitrification in Soil Aggregates Analyzed with Microsensors for Nitrous Oxide and Oxygen. Soil Sci. Soc. Am. J. 1994, 58, 1691–1698. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Liu, X.; Herbert, S.; Hashemi, A.; Zhang, X.; Ding, G. Effects of agricultural management on soil organic matter and carbon transformation—A review. Plant Soil Environ. 2011, 52, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Briones, M.J.; Schmidt, O. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob. Chang. Biol. 2017, 23, 4396–4419. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Colombi, T.; Keller, T. Developing strategies to recover crop productivity after soil compaction—A plant eco-physiological perspective. Soil Tillage Res. 2019, 191, 156–161. [Google Scholar] [CrossRef]
- Elzenga, J.T.M.; van Veen, H. Waterlogging and plant nutrient uptake. In Waterlogging Signaling and Tolerance in Plants; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–35. [Google Scholar]
- Wu, Q.-S.; Zou, Y.-N.; Huang, Y.-M. The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecol. 2013, 6, 37–43. [Google Scholar] [CrossRef]
- VSN International. Genstat for Windows 18th Edition; VSN International: Hemel Hempstead, UK, 2015; Available online: Genstat.co.uk (accessed on 29 January 2020).
- Bennie, A.T.P.; Burger, R.D.T. Root characteristics of different crops as affected by mechanical resistance in fine sandy soils. In Tenth National Congress of the Soil Science Society of Southern Africa; SSSA: Lusakav, Zambia, 1983; pp. 29–32. [Google Scholar]
- Nosalewicz, A.; Lipiec, J. The effect of compacted soil layers on vertical root distribution and water uptake by wheat. Plant Soil 2013, 375, 229–240. [Google Scholar] [CrossRef]
- Sadras, V.O.; O’Leary, G.J.; Roget, D.K. Crop responses to compacted soil: Capture and efficiency in the use of water and radiation. Field Crop. Res. 2005, 91, 131–148. [Google Scholar] [CrossRef]
- Bernier, H.; Bostock, G.; Raghavan, G.S.V.; Broughton, R.S. Subsoiling Effects on Moisture Content and Bulk Density in the Soil Profile. Appl. Eng. Agric. 1989, 5, 24–28. [Google Scholar] [CrossRef]
- Andriuzzi, W.S.; Pulleman, M.M.; Schmidt, O.; Faber, J.H.; Brussaard, L. Anecic earthworms (Lumbricus terrestris) alleviate negative effects of extreme rainfall events on soil and plants in field mesocosms. Plant Soil 2015, 397, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Kemper, W.D.; Schneider, N.N.; Sinclair, T.R. No-till can increase earthworm populations and rooting depths. J. Soil Water Conserv. 2010, 66, 13A–17A. [Google Scholar] [CrossRef]
- van Groenigen, J.W.; Lubbers, I.M.; Vos, H.M.; Brown, G.G.; De Deyn, G.B.; van Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 6365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroud, J.L. Soil health pilot study in England: Outcomes from an on-farm earthworm survey. PLoS ONE 2019, 14, e0203909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, K. An overview of some tillage impacts on earthworm population abundance and diversity—Implications for functioning in soils. Soil Tillage Res. 2001, 57, 179–191. [Google Scholar] [CrossRef]
- Söchtig, W.; Larink, O. Effect of soil compaction on activity and biomass of endogeic lumbricids in arable soils. Soil Biol. Biochem. 1992, 24, 1595–1599. [Google Scholar] [CrossRef]
- Singh, J.; Schädler, M.; Demetrio, W.; Brown, G.G.; Eisenhauer, N. Climate change effects on earthworms—A review. Soil Org. 2020, 91, 114–138. [Google Scholar]
- Cooper, H.V.; Sjögersten, S.; Lark, R.M.; Girkin, N.T.; Vane, C.H.; Calonego, J.C.; Rosolem, C.; Mooney, S.J. To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environ. Res. Lett. 2021, 16, 054022. [Google Scholar] [CrossRef]
- Rabot, E.; Cousin, I.; Hénault, C. A modeling approach of the relationship between nitrous oxide fluxes from soils and the water-filled pore space. Biodegradation 2014, 122, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Gregorich, E.; McLaughlin, N.; Lapen, D.; Ma, B.; Rochette, P. Soil Compaction, Both an Environmental and Agronomic Culprit: Increased Nitrous Oxide Emissions and Reduced Plant Nitrogen Uptake. Soil Sci. Soc. Am. J. 2014, 78, 1913–1923. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bussell, J.; Crotty, F.; Stoate, C. Comparison of Compaction Alleviation Methods on Soil Health and Greenhouse Gas Emissions. Land 2021, 10, 1397. https://doi.org/10.3390/land10121397
Bussell J, Crotty F, Stoate C. Comparison of Compaction Alleviation Methods on Soil Health and Greenhouse Gas Emissions. Land. 2021; 10(12):1397. https://doi.org/10.3390/land10121397
Chicago/Turabian StyleBussell, Jennifer, Felicity Crotty, and Chris Stoate. 2021. "Comparison of Compaction Alleviation Methods on Soil Health and Greenhouse Gas Emissions" Land 10, no. 12: 1397. https://doi.org/10.3390/land10121397
APA StyleBussell, J., Crotty, F., & Stoate, C. (2021). Comparison of Compaction Alleviation Methods on Soil Health and Greenhouse Gas Emissions. Land, 10(12), 1397. https://doi.org/10.3390/land10121397