Science to Commerce: A Commercial-Scale Protocol for Carbon Trading Applied to a 28-Year Record of Forest Carbon Monitoring at the Harvard Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eddy Covariance and Net Ecosystem Exchange
2.2. Data
2.3. Soil Carbon Data
2.4. Carbon Isotopocules and isoNEE
2.5. Carbon Pricing
2.6. Ton-Year Accounting
2.7. Study Limitations
3. Results
3.1. The Full Harvard Forest NEE Record
3.2. Box Plots of Project Time Interval and Area Extrapolations
3.3. Ton-Year Accounting Applied to the Harvard Forest Record
3.4. CO2 Isotopocule as Tradable Forest Carbon Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Physical Carbon | Financial Carbon * | ||||||
---|---|---|---|---|---|---|---|
Extrapolated to Prospect Hill Area (300 ha; 741 ac) | Extrapolated to 40,468 ha (100,000 ac) | ||||||
gCO2 m−2 | tCO2 ha−1 | tCO2 ac−1 | $10 tCO2 /$50 t13CO2 | $30 tCO2/$150 t13CO2 | $10 tCO2/$50 t13CO2 | $30 tCO2 /$150 t13CO2 | |
No Exit Projects (28-Years) | |||||||
Total | −27,101 | −271 | −109 | 813,042 | 2,439,126 | 109,722,306 | 329,166,918 |
Yearly Mean | −978 | −9.78 | −3.96 | 29,358 | 88,074 | 3,961,984 | 11,885,953 |
Yearly Std | 553 | 5.53 | 2.24 | 17,827 | 53,482 | 2,242,524 | 6,727,602 |
Min (2010) | −4.21 | −0.04 | −0.02 | 126 | 379 | 17,075 | 51,226 |
Max (2008) | −2199 | 22 | −8.91 | 65,997 | 197,990 | 8,906,434 | 26,719,302 |
Exit after 5 years | |||||||
Yearly Mean | −986 | −9.86 | −3.99 | 1901 | 5705 | 256,522 | 769,657 |
Yearly Std | 325 | 3.25 | 1.32 | 696 | 2088 | 93,918 | 281,754 |
Exit after 20 years | |||||||
Yearly Mean | −1015 | −10.2 | −4.11 | 6610 | 19,832 | 891,776 | 2,675,328 |
Yearly Std | 65 | 0.65 | 0.26 | 731 | 2193 | 98,642 | 295,928 |
CO2 Isotopocules (13CO2 or 18O12C16O) | |||||||
2011 | 30.0 | 0.30 | 0.12 | 4502 | 13,506 | 607,620 | 1,822,861 |
2012 | 33.4 | 0.33 | 0.14 | 5013 | 15,039 | 676,535 | 2,029,605 |
2013 | 44.6 | 0.45 | 0.18 | 2591 | 7772 | 349,660 | 1,048,980 |
Mean | 36 | 0.36 | 0.15 | 4035 | 12,105 | 544,605 | 1,633,815 |
Total | 108 | 1.08 | 0.44 | 12,106 | 36,317 | 1,633,815 | 4,901,447 |
% Area (0.92 Billion Hectares) | Project Length (Years) | Project Area (Millions Hectares) | Average Project Net CO2 Sequestration (Millions) (3 tCO2 ha−1 year−1) | Annual Revenue (Billions) Carbon Price $10 tCO2 year−1 | Project Interval Value (Billions) | Tonne-Year Accounting Exit (Billions) | Project Size (Hectares) | # Projects |
---|---|---|---|---|---|---|---|---|
25% | 5 | 230 | 690 | 69 | 34.50 | 2.25 | 10,000 | 23,000 |
25% | 10 | 230 | 690 | 69 | 69.00 | 8.25 | 10,000 | 23,000 |
25% | 15 | 230 | 690 | 69 | 103.50 | 18.00 | 50,000 | 4,600 |
25% | 20 | 230 | 690 | 69 | 138.00 | 31.50 | 50,000 | 4,600 |
100% | - | 920 | 27,600 | 27.60 | 345.00 | 60.00 | - | 55,200 |
References
- Wofsy, S.C.; Goulden, M.L.; Munger, J.W.; Fan, S.-M.; Bakwin, P.S.; Daube, B.C.; Bassow, S.L.; Bazzaz, F.A. Net Exchange of CO2 in a Mid-Latitude Forest. Science 1993, 260, 1314–1317. [Google Scholar] [CrossRef] [Green Version]
- Barford, C.C.; Wofsy, S.C.; Goulden, M.L.; Munger, J.V.; Hammond Pyle, E.; Urbanski, S.P.; Hutyra, L.; Saleska, S.R.; Fitzjarrald, D.; Moore, K. Factors Controlling Long- and Short-Term Sequestration of Atmospheric CO2 in a Mid-Latitude Forest. Science 2001, 294, 1688–1691. [Google Scholar] [CrossRef] [Green Version]
- Urbanski, S.; Barford, C.; Wofsy, S.; Kucharik, C.; Pyle, E.; Budney, J.; McKain, K.; Fitzjarrald, D.; Czikowsky, M.; Munger, J.W. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res. Biogeosci. 2007, 112, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Marino, B.D.V.; Mincheva, M.; Doucett, A. California air resources board protocol invalidates offsets. PeerJ 2019, 7, e7606. [Google Scholar] [CrossRef]
- Marino, B.D.V.; Truong, V.; Munger, J.W.; Gyimah, R. Direct measurement forest carbon protocol: A commercial system-of-systems to incentivize forest restoration and management. PeerJ 2020, 8, e8891. [Google Scholar] [CrossRef]
- Finzi, A.C.; Giasson, M.; Plotkin, A.A.B.; Aber, J.D.; Boose, E.R.; Davidson, E.A.; Dietze, M.; Ellison, A.M.; Frey, S.D.; Goldman, E.; et al. Carbon budget of the Harvard Forest Long-Term Ecological Research site: Pattern, process, and response to global change. Ecol. Monogr. 2020, 90. [Google Scholar] [CrossRef]
- California Air Resources Board. Compliance Offset Protocol US Forest Projects. 2015. Available online: https://www.arb.ca.gov/cc/capandtrade/protocols/usforest/forestprotocol2015.pdf (accessed on 2 August 2020).
- World Bank Group. State and Trends of Carbon Pricing 2019; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Donofrio, S.; Maguire, P.; Zwick, S.; Merry, W.; Wildish, J.; Myers, K. State of the Voluntary Carbon Markets 2020. In Second Installment of the 2020 State of the Voluntary Carbon Markets: The only Constant is Change—Featuring Core Carbon & Additional Attributes Offset Prices, Volumes and Insights; Ecosystem Marketplace: Washington, DC, USA, 2020. [Google Scholar]
- Kollmuss, A.; Fussler, J. Overview of Carbon Offset Programs: Similarities and Differences; Partnership for Market Readiness (PMR) Technical Note; World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Richardson, A.D.; Hollinger, D.Y.; Shoemaker, J.K.; Hughes, H.; Savage, K.; Davidson, E.A. Six years of ecosystem-atmosphere greenhouse gas fluxes measured in a sub-boreal forest. Sci. Data 2019, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intergovernmental Panel on Climate Change. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007; p. 996. [Google Scholar]
- Chazdon, R.L.; Broadbent, E.N.; Rozendaal, D.M.A.; Bongers, F.; Zambrano, A.M.A.; Aide, T.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2016, 2, e1501639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, J.; Moola, F.; Craig, M.-K. Indigenous Peoples are critical to the success of nature-based solutions to climate change. Facets 2020, 5, 551–556. [Google Scholar] [CrossRef]
- Food and Agriculture Oraganization of the United Nations; United Nations Environment Programme. State of the World’s Forests. 2020. Available online: https://www.fao.org/3/ca8642en/CA8642EN.pdf (accessed on 27 October 2020).
- Qubaja, R.; Tatarinov, F.; Rotenberg, E.; Yakir, D. Partitioning of canopy and soil CO2 fluxes in a pine forest at the dry timberline across a 13-year observation period. Biogeosciences 2020, 17, 699–714. [Google Scholar] [CrossRef] [Green Version]
- Wehr, R.; Munger, J.W.; Nelson, D.; McManus, J.; Zahniser, M.; Wofsy, S.; Saleska, S. Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO2 in a temperate forest. Agric. For. Meteorol. 2013, 181, 69–84. [Google Scholar] [CrossRef]
- Wehr, R.; Saleska, S.R. An improved isotopic method for partitioning net ecosystem–atmosphere CO2 exchange. Agric. For. Meteorol. 2015, 214–215, 515–531. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.D.; Arneth, A.; Barr, A.; Stoy, P.; Wohlfahrt, G. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Glob. Chang. Biol. 2010, 16, 187–208. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D.D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Glob. Chang. Biol. 2020, 26, 242–260. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S.; Woodwell, G.M.; Randerson, J.T.; Rastetter, E.B.; Lovett, G.M.; Baldocchi, D.D.; Clark, D.A.; Harmon, M.E.; Schimel, D.S.; Valentini, R.; et al. Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems 2006, 9, 1041–1050. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Soussana, J.; Angers, D.; Schipper, L.A.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; Van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Chang. Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waring, B.; Sulman, B.N.; Reed, S.; Smith, A.P.; Averill, C.; Creamer, C.A.; Cusack, D.F.; Hall, S.J.; Jastrow, J.D.; Jilling, A.; et al. From pools to flow: The PROMISE framework for new insights on soil carbon cycling in a changing world. Glob. Chang. Biol. 2020, 26, 6631–6643. [Google Scholar] [CrossRef]
- Wehr, R.; Munger, J.W.; McManus, J.B.; Nelson, D.D.; Zahniser, M.S.; Davidson, E.A.; Wofsy, S.C.; Saleska, S.R. Seasonality of temperate forest photosynthesis and daytime respiration. Nat. Cell Biol. 2016, 534, 680–683. [Google Scholar] [CrossRef]
- O’Leary, M.H. Carbon Isotopes in Photosynthesis. Bioscience 1988, 38. [Google Scholar] [CrossRef]
- Paustian, K.; Larson, E.; Kent, J.; Marx, E.; Swan, A. Soil C Sequestration as a Biological Negative Emission Strategy. Front. Clim. 2019, 1, 8. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Carbon sequestration in soils: Some cautions amidst optimism. Agric. Ecosyst. Environ. 2000, 82, 121–127. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Amundson, R. Managing for soil carbon sequestration: Let’s get realistic. Glob. Chang. Biol. 2019, 25, 386–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amundson, R.; Biardeau, L. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proc. Natl. Acad. Sci. USA 2018, 115, 11652–11656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagesson, T.; Ardö, J.; Cappelaere, B.; Kergoat, L.; Abdi, A.; Horion, S.; Fensholt, R. Modelling spatial and temporal dynamics of gross primary production in the Sahel from earth-observation-based photosynthetic capacity and quantum efficiency. Biogeosciences 2017, 14, 1333–1348. [Google Scholar] [CrossRef] [Green Version]
- Keenan, T.F.; Migliavacca, M.; Papale, D.; Baldocchi, D.; Reichstein, M.; Torn, M.; Wutzler, T. Widespread inhibition of daytime ecosystem respiration. Nat. Ecol. Evol. 2019, 3, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Foken, T.; Napo, C.J. Micrometeorology; Springer: Cham, Switzerland, 2008; Volume 2. [Google Scholar]
- Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 2001, 107, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Šigut, L.; Menzer, O.; Reichstein, M. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [Google Scholar] [CrossRef] [Green Version]
- Barr, A.; Richardson, A.D.; Hollinger, D.Y.; Papale, D.; Arain, M.; Black, T.; Bohrer, G.; Dragoni, D.; Fischer, M.; Gu, L.; et al. Use of change-point detection for friction–velocity threshold evaluation in eddy-covariance studies. Agric. For. Meteorol. 2013, 171, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, J.; Taylor, J.A. On the Temperature Dependence of Soil Respiration. Funct. Ecol. 1994, 8, 315. [Google Scholar] [CrossRef]
- Goulden, M.L.; Munger, J.W.; Fan, S.-M.; Daube, B.C.; Wofsy, S.C. Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy. Glob. Chang. Biol. 1996, 2, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Giasson, M.; Ellison, A.M.; Bowden, R.D.; Crill, P.; A Davidson, E.; E Drake, J.; Frey, S.D.; Hadley, J.L.; LaVine, M.; Melillo, J.M.; et al. Soil respiration in a northeastern US temperate forest: A 22-year synthesis. Ecosphere 2013, 4, 1–28. [Google Scholar] [CrossRef]
- Best, R.; Burke, P.J.; Jotzo, F. Carbon Pricing Efficacy: Cross-Country Evidence. Environ. Resour. Econ. 2020, 77, 69–94. [Google Scholar] [CrossRef]
- Nunez, F. California Global Warming Solutions Act; California Air Resources Board: Sacramento, CA, USA, 2016. [Google Scholar]
- Papaioannou, G.; Papanikolaou, N.; Retalis, D. Relationships of photosynthetically active radiation and shortwave irradiance. Theor. Appl. Clim. 1993, 48, 23–27. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Jiang, S.; Guo, X. Predicting daily photosynthetically active radiation from global solar radiation in the Contiguous United States. Energy Convers. Manag. 2015, 89, 71–82. [Google Scholar] [CrossRef]
- Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 1957, 12, 133–149. [Google Scholar] [CrossRef]
- De Arellano, J.V.-G.; Koren, G.; Ouwersloot, H.G.; Van Der Velde, I.; Röckmann, T.; Miller, J.B. Sub-diurnal variability of the carbon dioxide and water vapor isotopologues at the field observational scale. Agric. For. Meteorol. 2019, 275, 114–135. [Google Scholar] [CrossRef]
- Guerrieri, R.; Jennings, K.; Belmecheri, S.; Asbjornsen, H.; Ollinger, S.V. Evaluating climate signal recorded in tree-ring δ13 C and δ18 O values from bulk wood and α-cellulose for six species across four sites in the northeastern US. Rapid Commun. Mass Spectrom. 2017, 31, 2081–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitoria, A.P.; Ávila-Lovera, E.; Vieira, T.D.O.; Couto-Santos, A.P.L.D.; Pereira, T.J.; Funch, L.S.; Freitas, L.; De Miranda, L.D.P.; Rodrigues, P.J.F.P.; Rezende, C.E.; et al. Isotopic composition of leaf carbon (δ13C) and nitrogen (δ15N) of deciduous and evergreen understorey trees in two tropical Brazilian Atlantic forests. J. Trop. Ecol. 2018, 34, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 1982, 9, 121–137. [Google Scholar] [CrossRef]
- Rothman, L.; Jacquemart, D.; Barbe, A.; Benner, D.C.; Birk, M.; Brown, L.; Carleer, M.; Chackerian, C.; Chance, K.; Coudert, L.; et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2005, 96, 139–204. [Google Scholar] [CrossRef] [Green Version]
- Newell, R.G.; Pizer, W.A.; Raimi, D. Carbon Markets 15 Years after Kyoto: Lessons Learned, New Challenges. J. Econ. Perspect. 2013, 27, 123–146. [Google Scholar] [CrossRef]
- Schatzki, T.; Stavins, R.N. Key Issues Facing California’s GHG Cap-and-Trade System for 2021–2030. SSRN Electron. J. 2018. [Google Scholar] [CrossRef] [Green Version]
- Kyoto Protocol. Report of the conference of the parties. United Nations Framework Convention on Climate Change (UNFCCC). Am. J. Int. Law 1997, 92, 315–331. [Google Scholar]
- Fearnside, P.M.; Lashof, D.A.; Moura-Costa, P. Accounting for time in Mitigating Global Warming through land-use change and forestry. Mitig. Adapt. Strat. Glob. Chang. 2000, 5, 239–270. [Google Scholar] [CrossRef]
- Brandão, M.; Kirschbaum, M.U.; Cowie, A.; Hjuler, S.V. Quantifying the climate change effects of bioenergy systems: Comparison of 15 impact assessment methods. GCB Bioenergy 2019, 11, 727–743. [Google Scholar] [CrossRef]
- Moura Costa, P.; Wilson, C. An equivalence factor between CO2 avoided emissions and sequestration—Description and application in forestry. Mitig. Adapt. Strateg. Glob. Chang. 2000, 5, 51–60. [Google Scholar] [CrossRef]
- Jung, M.; Schwalm, C.; Migliavacca, M.; Walther, S.; Camps-Valls, G.; Koirala, S.; Anthoni, P.; Besnard, S.; Bodesheim, P.; Carvalhais, N.; et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 2020, 17, 1343–1365. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Roman, M.; Schaaf, C.B.; Woodcock, C.E.; Strahler, A.; Yang, X.; Braswell, R.H.; Curtis, P.S.; Davis, K.J.; Dragoni, D.; Goulden, M.L. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ. 2009, 113, 2476–2498. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.; Li, X.; Sun, R.; Kljun, N.; Zhang, L.; Wang, X.; Zhu, G. Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale. Agric. For. Meteorol. 2016, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.F.M.; Hoffman, W.; Hargrove, W.; Collier, N. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements. Earth Syst. Sci. Data Discuss. 2016, 1–25. [Google Scholar]
- Xiao, J.; Zhuang, Q.; Baldocchi, D.D.; Law, B.E.; Richardson, A.D.; Chen, J.; Oren, R.; Starr, G.; Noormets, A.; Ma, S.; et al. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agric. For. Meteorol. 2008, 148, 1827–1847. [Google Scholar] [CrossRef] [Green Version]
- Fang, B.; Lei, H.; Zhang, Y.; Quan, Q.; Yang, D. Spatio-temporal patterns of evapotranspiration based on upscaling eddy covariance measurements in the dryland of the North China Plain. Agric. For. Meteorol. 2020, 281. [Google Scholar] [CrossRef]
- Peltola, O.; Vesala, T.; Gao, Y.; Räty, O.; Alekseychik, P.; Aurela, M.; Chojnicki, B.; Desai, A.R.; Dolman, A.J.; Euskirchen, E.S.; et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 2019, 11, 1263–1289. [Google Scholar] [CrossRef] [Green Version]
- Kenea, S.T.; Labzovskii, L.D.; Goo, T.-Y.; Li, S.; Oh, Y.-S.; Byun, Y.-H. Comparison of Regional Simulation of Biospheric CO2 Flux from the Updated Version of CarbonTracker Asia with FLUXCOM and Other Inversions over Asia. Remote Sens. 2020, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Hwang, T.; Schaaf, C.L.; Kljun, N.; Munger, J.W. Seasonal variation of source contributions to eddy-covariance CO2 measurements in a mixed hardwood-conifer forest. Agric. For. Meteorol. 2018, 253–254, 71–83. [Google Scholar] [CrossRef]
- Massman, W.J.; Lee, X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric. For. Meteorol. 2002, 113, 121–144. [Google Scholar] [CrossRef]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.S.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 1–27. [Google Scholar] [CrossRef]
- Reitz, O.; Graf, A.; Schmidt, M.; Ketzler, G.; Leuchner, M. Upscaling Net Ecosystem Exchange over Heterogeneous Landscapes with Machine Learning. J. Geophys. Res. Biogeosci. 2020. [Google Scholar] [CrossRef]
- Davis, K.; Andrews, A.; Berry, J.; Bolstad, P.; Chen, J.; Cook, B.; Denning, A.S.; Desai, A.; Heinsch, F.; Helliker, B.; et al. Regional Forest-Atmosphere Carbon Exchange via Atmospheric Inversions and Flux-Tower Upscaling. AGU Fall Meet. Abstr. 2005. Available online: https://ui.adsabs.harvard.edu/abs/2005AGUFM.B44B..06D/abstract (accessed on 3 February 2021).
- Kim, W.S.; Yeh, W.J.; Kim, H.J.; Kug, S.; Kwon, M. The unique 2009–2010 El Niño event: A fast phase transition of warm pool El Niño to la Niña. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Rogelj, J.; Elzen, M.D.; Höhne, N.; Fransen, T.; Fekete, N.H.H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, J.R.K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nat. Cell Biol. 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Lai, K.-H.; Wang, B.; Wang, Z. The clean development mechanism and corporate financial performance: Empirical evidence from China. Resour. Conserv. Recycl. 2018, 129, 278–289. [Google Scholar] [CrossRef]
- Macdonald, J.M. Tracking the Consolidation of U.S. Agriculture. Appl. Econ. Perspect. Policy 2020, 42, 361–379. [Google Scholar] [CrossRef]
- Kerchner, C.D.; Keeton, W.S. California’s regulatory forest carbon market: Viability for northeast landowners. For. Policy Econ. 2015, 50, 70–81. [Google Scholar] [CrossRef]
- Marland, E.; Domke, G.; Hoyle, J.; Bates, L.; Helms, A.; Jones, B.; Kowalczyk, T.; Ruseva, T.B.; Szymanski, C. Understanding and Analysis: The California Air Resources Board Forest Offset Protocol; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Climate Action Reserve. Forest Project Protocol Version 3.3. Climate Action Reserve. 2012. Available online: https://www.climateactionreserve.org/how/protocols/forest/dev/version-3-3/ (accessed on 2 August 2020).
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Watson, R.T. Land Use, Land-Use Change, and Forestry; A Special Report of the IPCC; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Baldocchi, D.; Chu, H.; Reichstein, M. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agric. For. Meteorol. 2018, 249, 520–533. [Google Scholar] [CrossRef] [Green Version]
- Cullenward, D.; Inman, M.; Mastrandrea, M. Implementing AB 398: ARB’s Initial Post-2020 Market Design and ‘Allowance Pool’ Concepts. 2018. Available online: https://wp.nearzero.org/wp-content/uploads/2018/03/Near-Zero-AB-398-Allowance-Pools-Research-Note.pdf (accessed on 2 August 2020).
- Dragicevic, A.; Lobianco, A.; Leblois, A. Forest planning and productivity-risk trade-off through the Markowitz mean-variance model. For. Policy Econ. 2016, 64, 25–34. [Google Scholar] [CrossRef]
- Williams, C.A.; Vanderhoof, M.K.; Khomik, M.; Ghimire, B. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment. Glob. Chang. Biol. 2014, 20, 992–1007. [Google Scholar] [CrossRef]
- Farquhar, G.; Richards, R. Isotopic Composition of Plant Carbon Correlates with Water-Use Efficiency of Wheat Genotypes. Funct. Plant Biol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- Sturm, P.; Eugster, W.; Knohl, A. Eddy covariance measurements of CO2 isotopologues with a quantum cascade laser absorption spectrometer. Agric. For. Meteorol. 2012, 152, 73–82. [Google Scholar] [CrossRef]
- Zhou, Z.; Ollinger, S.V.; Lepine, L. Landscape variation in canopy nitrogen and carbon assimilation in a temperate mixed forest. Oecologia 2018, 188, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Goulden, M.; Winston, G.C.; McMillan, A.M.S.; Litvak, M.E.; Read, E.L.; Rocha, A.V.; Elliot, J.R. An eddy covariance mesonet to measure the effect of forest age on land-atmosphere exchange. Glob. Chang. Biol. 2006, 12, 2146–2162. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, J.D.; O’Halloran, T.L.; Kline, M.A. An eddy covariance mesonet for measuring greenhouse gas fluxes in coastal South Carolina. Data 2020, 5, 97. [Google Scholar] [CrossRef]
- Runkle, B.R.K.; Rigby, J.R.; Reba, M.L.; Anapalli, S.S.; Bhattacharjee, J.; Krauss, K.W.; Liang, L.; Locke, M.A.; Novick, K.A.; Sui, R.; et al. Delta-Flux: An Eddy Covariance Network for a Climate-Smart Lower Mississippi Basin. Agric. Environ. Lett. 2017, 2, ael2017-01. [Google Scholar] [CrossRef]
- Fu, D.; Chen, B.; Zhang, H.; Wang, J.; Black, T.A.; Amiro, B.D.; Bohrer, G.; Bolstad, P.; Coulter, R.; Rahman, A.F.; et al. Estimating landscape net ecosystem exchange at high spatial–temporal resolution based on Landsat data, an improved upscaling model framework, and eddy covariance flux measurements. Remote Sens. Environ. 2014, 141, 90–104. [Google Scholar] [CrossRef]
- Wang, H.; Jia, G.; Zhang, A.; Miao, C. Assessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid. Remote Sens. 2016, 8, 742. [Google Scholar] [CrossRef] [Green Version]
- Hollinger, D.; Richardson, A.D. Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol. 2005, 25, 873–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldocchi, D.D.; Peñuelas, J. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Chang. Biol. 2019, 25, 1191–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bautista, N.; Marino, B.D.V.; Munger, J.W. Science to Commerce: A Commercial-Scale Protocol for Carbon Trading Applied to a 28-Year Record of Forest Carbon Monitoring at the Harvard Forest. Land 2021, 10, 163. https://doi.org/10.3390/land10020163
Bautista N, Marino BDV, Munger JW. Science to Commerce: A Commercial-Scale Protocol for Carbon Trading Applied to a 28-Year Record of Forest Carbon Monitoring at the Harvard Forest. Land. 2021; 10(2):163. https://doi.org/10.3390/land10020163
Chicago/Turabian StyleBautista, Nahuel, Bruno D. V. Marino, and J. William Munger. 2021. "Science to Commerce: A Commercial-Scale Protocol for Carbon Trading Applied to a 28-Year Record of Forest Carbon Monitoring at the Harvard Forest" Land 10, no. 2: 163. https://doi.org/10.3390/land10020163
APA StyleBautista, N., Marino, B. D. V., & Munger, J. W. (2021). Science to Commerce: A Commercial-Scale Protocol for Carbon Trading Applied to a 28-Year Record of Forest Carbon Monitoring at the Harvard Forest. Land, 10(2), 163. https://doi.org/10.3390/land10020163