Mediterranean Landscape Re-Greening at the Expense of South American Agricultural Expansion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Land Condition Trends Map
2.2. Soy Imports and Land Use Overseas
- (1)
- We focus on the study of soy because: (a) soy production is directly linked to the deforestation of South American ecosystems, as mentioned above; (b) the soybean area cultivated in Spain is only 1480 ha [58] and is therefore totally dependent on imports; (c) the main use of soybeans in Spain is to manufacture animal feed.
- (2)
- Although land use transformations are occurring worldwide, our analyses are restricted to South America because in this region natural ecosystems are being transformed into farmland to produce soy [14,45,59], while the soybeans from the United States come from a historically agrarian landscape [60].
- (3)
- Our assessment focuses on Brazil, Paraguay and Argentina as they represent more than 99% of Spain’s soy imports from South America [61].
- (4)
- European Compound Feed Manufacturers’ Federation (FEFAC) advises members on which sustainability rules to follow when producing or buying feed. However, just 22% of soya used in Europe was compliant with FEFAC’s guidelines. Only 13% was certified as deforestation-free. In the case of Spain this percentage is zero [62].
- (5)
- Soybean import data by NUTS2 for the decade 2000–2010 [61] are used, which are then aggregated to the national level. Another possibility would have been to use feed production data by species, available in national [63] and European [32] statistics. However, and given that our analyses refer to soybean, it would have been necessary to know the percentage of soybean in these feeds, which is not the same for each year or for each species, since the use of this raw material in the manufacture of feeds depends on the protein needs of each species and the price of this raw material.
- (6)
- Spanish soybean imports have been converted into soy field area (ha) by dividing the volume imported from each country (t) by the yield in that country (t ha−1) in each of the years of the study period [64].
- (7)
- We are assuming that the soybeans imported during this period come from areas that have been deforested or from rangelands [9,14,21,22,23,24,25,26]. In the latter case, the displaced cattle have forced the creation of new rangelands by occupying forest land. Therefore, in both cases soybean cultivation has implied deforestation.
- (8)
- We assume that soybeans can be grown on the same site for more than ten years. Therefore, the deforested area is not the sum of the cultivated area in each of the eleven years of the series (2000–2010), but the maximum of that series.
- (9)
3. Results and Discussion
3.1. Re-Greening and Deforestation
3.2. The Dark Side of Efficiency and Land Degradation Neutrality Paradigm
3.3. Creating More Vulnerable Landscapes: Wildfires and Monocultures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Buchan, N.R.; Grimalda, G.; Wilson, R.; Brewer, M.; Fatas, E.; Foddy, M. Globalization and human cooperation. Proc. Natl. Acad. Sci. USA 2009, 106, 4138–4142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; von Maltitz, G. World Atlas of Desertification; Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S., von Maltitz, G., Eds.; Publication Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-75350-3. [Google Scholar]
- Yu, Y.; Feng, K.; Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Chang. 2013, 23, 1178–1186. [Google Scholar] [CrossRef]
- Nyström, M.; Jouffray, J.B.; Norström, A.V.; Crona, B.; Søgaard Jørgensen, P.; Carpenter, S.R.; Bodin Galaz, V.; Folke, C. Anatomy and resilience of the global production ecosystem. Nature 2019, 575, 98–108. [Google Scholar] [CrossRef]
- Fuchs, R.; Brown, C.; Rounsevell, M. Europe’s Green Deal offshores environmental damage to other nations. Nature 2020, 586, 671–673. [Google Scholar] [CrossRef] [PubMed]
- Alexandratos, N.; Bruinsma, J.F. World Agriculture Towards 2030/2015: The 2012 Revision; Agricultural Development Economics Division Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar] [CrossRef]
- Bai, Z.; Ma, W.; Ma, L.; Velthof, G.L.; Wei, Z.; Havlík, P.; Oenema, O.; Lee, M.R.F.; Zhang, F. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 2018, 4, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boerema, A.; Peeters, A.; Swolfs, S.; Vandevenne, F. Soybean Trade: Balancing Environmental and Socio-Economic Impacts of an Intercontinental Market. PLoS ONE 2016, 11, e0155222. [Google Scholar] [CrossRef]
- D’Odorico, P.; Bhattachan, A.; Davis, K.; Ravi, S.; Runyan, C. Global desertification: Drivers and feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- European Commission EU Market: Cereals Supply & Demand. Available online: http://ec.europa.eu/agriculture/cereals/balance-sheets/cereals/overview_en.pdf (accessed on 21 April 2020).
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining agricultural yields: From tonnes to people nourished per hectare. Environ. Res. Lett. 2013, 8, 034015. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Hou, Y.; Qin, W.; Lesschen, J.P.; Zhang, F.; Oenema, O. International trade of animal feed: Its relationships with livestock density and N and P balances at country level. Nutr. Cycl. Agroecosystems 2018, 110, 197–211. [Google Scholar] [CrossRef] [Green Version]
- WWF (World Wildlife Fund). The Growth of Soy: Impacts and Solutions; WWF: Gland, Switzerland, 2014. [Google Scholar]
- Naylor, R.; Steinfeld, H.; Falcon, W.; Galloway, J.; Smil, V.; Bradford, E.; Alder, J.; Mooney, H. Losing the links between livestock and land. Science 2005, 310, 1621–1622. [Google Scholar] [CrossRef] [Green Version]
- González-Bernal, M.J.; Rubiales, D. Las leguminosas grano en la agricultura española y europea. Arbor 2016, 192, a311. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of the present. Sicence 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- West, P.C.; Gerber, J.S.; Engstrom, P.M.; Mueller, N.D.; Brauman, K.A.; Carlson, K.M.; Cassidy, E.S.; Johnston, M.; MacDonald, G.K.; Ray, D.K.; et al. Leverage points for improving global food security and the environment. Science 2014, 345, 325–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- De Visser, C.L.M.; Schreuder, R.; Stoddard, F. The EU’s dependency on soya bean import for the animal feed industry and potential for EU produced alternatives. OCL 2014, 21, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Smaling, E.M.A.; Roscoe, R.; Lesschen, J.P.; Bouwman, A.F.; Comunello, E. From forest to waste: Assessment of the Brazilian soybean chain, using nitrogen as a marker. Agric. Ecosyst. Environ. 2008, 128, 185–197. [Google Scholar] [CrossRef]
- Olsen, N.; Bishop, J. The Financial Costs of REDD: Evidence from Brazil and Indonesia; IUCN: Gland, Switzerland, 2009. [Google Scholar]
- Lathuillière, M.J.; Johnson, M.S.; Galford, G.L.; Couto, E.G. Environmental footprints show China and Europe’s evolving resource appropriation for soybean production in Mato Grosso, Brazil. Environ. Res. Lett. 2014, 9, 074001. [Google Scholar] [CrossRef]
- Vallejos, M.; Volante, J.N.; Mosciaro, M.J.; Vale, L.M.; Bustamante, M.L.; Paruelo, J.M. Transformation dynamics of the natural cover in the Dry Chaco ecoregion: A plot level geo-database from 1976 to 2012. J. Arid Environ. 2015, 123, 3–11. [Google Scholar] [CrossRef] [Green Version]
- World Resource Institute Gobal Forest Watch. Available online: https://www.globalforestwatch.org/ (accessed on 2 June 2020).
- Baumann, M.; Israel, C.; Piquer-Rodríguez, M.; Gavier-Pizarro, G.; Volante, J.N.; Kuemmerle, T. Deforestation and cattle expansion in the Paraguayan Chaco 1987–2012. Reg. Environ. Chang. 2017, 17, 1179–1191. [Google Scholar] [CrossRef]
- Crews, T.E.; Carton, W.; Olsson, L. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Emanuelli, M.S.; Jonsen, J.; Monsalve Suarez, S. Red Sugar, Green Deserts; FIAN International, FIAN Sweden: Stockholm, Sweden, 2009; ISBN 9789197718837. Available online: https://www.researchgate.net/profile/Alberto_Alonso-Fradejas/publication/308778884_The_human_right_to_food_versus_the_new_colonizers_of_agriculture_in_Guatemala_Sugarcane_and_african_palm/links/57efc15708ae886b89753070/The-human-right-to-food-versus-the-new-colonizers-of-agriculture-in-Guatemala-Sugarcane-and-african-palm.pdf (accessed on 6 September 2020).
- Soto, D.; Infante-Amate, J.; Guzmán, G.I.; Cid, A.; Aguilera, E.; García, R.; González de Molina, M. The social metabolism of biomass in Spain, 1900–2008: From food to feed-oriented changes in the agro-ecosystems. Ecol. Econ. 2016, 128, 130–138. [Google Scholar] [CrossRef]
- Hill, J.; Stellmes, M.; Udelhoven, T.; Röder, A.; Sommer, S. Mediterranean desertification and land degradation: Mapping related land use change syndromes based on satellite observations. Glob. Planet. Change 2008, 64, 146–157. [Google Scholar] [CrossRef]
- Puigdefábregas, J.; Mendizabal, T. Perspectives on desertification: Western Mediterranean. J. Arid Environ. 1998, 39, 209–224. [Google Scholar] [CrossRef]
- European Feed Manufacturers’ Federation (FEFAC). Compound Feed Production (1989–2019); FEFAC: Brussels, Belgium, 2018. [Google Scholar]
- García-Dory, M.A.; Martinez Vicente, S. La ganadería en España; Alianza Editorial: Madrid, Spain, 1988. [Google Scholar]
- Pardo Abad, C.J. Problemática de la ganadería extensiva en España. Estud. Geogr. 1996, 57, 125–149. [Google Scholar] [CrossRef] [Green Version]
- European Commission Eurostat. Animal Production. Available online: https://ec.europa.eu/eurostat/web/agriculture/data/database?p_p_id=NavTreeportletprod_WAR_NavTreeportletprod_INSTANCE_ff6jlD0oti4U&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1 (accessed on 7 September 2020).
- European Commission Eurostat. Agriculture. Farm Structure. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ef_olsaareg&lang=en (accessed on 6 September 2020).
- Greenpeace. Alimentando el Problema. La Peligrosa Intensificación de la Ganadería en Europa; Greenpeace: Madrid, Spain, 2019. [Google Scholar]
- Martínez-Valderrama, J.; Sanjuán, M.E.; del Barrio, G.; Guirado, E.; Ruiz, A.; Maestre, F.T. Data on the Re-Greening of Spain’s Landscape at the Expense of South American Agricultural Expansion. 2020. Available online: https://doi.org/10.6084/m9.figshare.13134977.v1 (accessed on 15 February 2021).
- González de Molina, M.; Soto Fernández, D.; Guzmán Casado, G.; Infante-Amate, J.; Aguilera Fernández, E.; Vila Traver, J.; García Ruiz, R. Environmental Impacts of Spanish Agriculture’s Industrialization. In The Social Metabolism of Spanish Agriculture, 1900–2008: The Mediterranean Way Towards Industrialization; González de Molina, M., Soto Fernández, D., Guzmán Casado, G., Infante-Amate, J., Aguilera Fernández, E., Vila Traver, J., García Ruiz, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-20900-1. [Google Scholar]
- Blas, A.; Garrido, A.; Unver, O.; Willaarts, B. A comparison of the Mediterranean diet and current food consumption patterns in Spain from a nutritional and water perspective. Sci. Total Environ. 2019, 664, 1020–1029. [Google Scholar] [CrossRef]
- Delgado, C.; Rosegrant, M.W.; Steinfeld, H.; Ehui, S.; Courbois, C. The Coming Livestock Revolution; Background Paper n. 6; International Food Policy Research Institute. FAO: Rome, Italy, 1999. [Google Scholar]
- Livestock in a Changing Landscape. Vol 1. Drivers, Consequences, and Responses; Steinfeld, H.; Mooney, H.A.; Schneider, F.; Neville, L.E. (Eds.) Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Greenpeace. Enganchados a la Carne; Greenpeace: Madrid, Spain, 2019. [Google Scholar]
- Lassaletta, L.; Billen, G.; Romero, E.; Garnier, J.; Aguilera, E. How changes in diet and trade patterns have shaped the N cycle at the national scale: Spain (1961–2009). Reg. Environ. Chang. 2014, 14, 785–797. [Google Scholar] [CrossRef]
- Karstensen, J.; Peters, G.; Andrew, R. Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Del Barrio, G.; Sanjuán, M.E.; Ruiz, A.; Martínez-Valderrama, J.; Puigdefábregas, J. Case study: Land condition surveillance using geospatial data (Iberian Peninsula and Maghreb). In World Atlas of Desertification; Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S., von Maltitz, G., Eds.; Publication Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-75350-3. [Google Scholar]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manage. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Taillefumier, F.; Piégay, H. Contemporary land use changes in Prealpine Mediterranean mountains: A multivariate GIS-based approach applied to two municipalities in the Southern French Prealps. Catena 2013, 267–296. [Google Scholar] [CrossRef]
- Sanjuán, M.E.; del Barrio, G.; Ruiz, A.; Rojo, L.; Puigdefábregas, J.; Martínez, A. Evaluación y Seguimiento de la Desertificación en España: Mapa de la Condición de la Tierra 2000–2010; Ministerio de Agricultura, Alimentación y Medio Ambiente (España): Madrid, Spain, 2014; ISBN 978-84-491-1395-6.
- Ministerio de Agricultura y Medio Ambiente. Programa de Acción Nacional Contra la Desertificación; Ministerio de Agricultura y Medio Ambiente: Madrid, Spain, 2008.
- Del Barrio, G.; Puigdefabregas, J.; Sanjuan, M.E.; Stellmes, M.; Ruiz, A. Assessment and monitoring of land condition in the Iberian Peninsula, 1989–2000. Remote Sens. Environ. 2010, 114, 1817–1832. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Orr, B.J.; Cowie, A.L.; Castillo Sanchez, V.M.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, A.; Erlewein, M.; Metternicht, G.I.; et al. Scientific conceptual framework for land degradation neutrality. In A Report of the Science-Policy Interface; United Nations Convention to Combat Desertification (UNCCD): Bonn, Germany, 2017. [Google Scholar]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Ruiz, A.; Sanjuan, M.E.; del Barrio, G.; Puigdefabregas, J. r2dRue: 2d Rain Use Efficience Library. R Package Version 1.04. Comprehensive R Archive Network. 2011. Available online: https://cran.r-project.org/web/packages/r2dRue/r2dRue.pdf (accessed on 22 April 2020).
- Rodríguez, M.; Luque, R.; Hervás, C.; Moreno, C.; Gaona, C.; Rodríguez-Estévez, V. Estudio de los Pastos en Andalucía y Castilla-La Mancha y su Aprovechamiento Racional con Ganado Ecológico; Junta de Andalucía: Sevilla, Spain, 2014; ISBN 978-84-606-5836-8. [Google Scholar]
- European Environment Agency (EEA). Corine Land Cover 2006 (CLC2006) Seamless Vector Database. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2006 (accessed on 16 April 2020).
- Ministerio de Agricultura Pesca y Alimentación. Anuario de Estadística 2019. Available online: https://www.mapa.gob.es/estadistica/pags/anuario/2019/CAPITULOSPDF/CAPITULO07/pdfc07_4.11.1.pdf (accessed on 1 February 2021).
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; Haan, C. Livestock’s long shadow. Environmental Issues and Options; FAO: Rome, Italy, 2006; Volume 5. [Google Scholar]
- American Soybean Association. Soystats. A Reference Guide to Important Soybean Facts and Figures. Available online: http://soystats.com/ (accessed on 16 December 2020).
- Instituto de Comercio Exterior (ICEX) Estadísticas Españolas de Comercio Español (ESTACOM). Available online: https://www.icex.es/icex/es/navegacion-principal/todos-nuestros-servicios/informacion-de-mercados/estadisticas/index.html (accessed on 7 September 2020).
- Kuepper, B.; Riemersma, M. European Soy Monitor; IDH, IUCN NL & Profundo: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Ministerio de Agricultura Pesca y Alimentación. Producción de Piensos y Comercio Exterior. Available online: https://www.mapa.gob.es/es/ganaderia/temas/alimentacion-animal/acceso-publico/produccion_de_piensos_y_comercio_exterior.aspx (accessed on 29 January 2021).
- FAO (Food and Agriculture Organization of the United Nations). FAOSTAT Statistical Database. Available online: fao.org/faostat/en/ (accessed on 25 October 2019).
- Martínez-Valderrama, J.; Ibáñez, J.; Ibáñez, M.A.; Alcalá, F.J.; Sanjuán, M.E.; Ruiz, A.; del Barrio, G. Assessing the sensitivity of a Mediterranean commercial rangeland to droughts under climate change scenarios by means of a multidisciplinary integrated model. Agric. Syst. 2021, 187, 103021. [Google Scholar] [CrossRef]
- Arima, E.; Richards, P.; Walker, R.; Caldas, M. Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ. Res. Lett. 2011, 6, 024010. [Google Scholar] [CrossRef]
- Lapola, D.M.; Schaldach, R.; Alcamo, J.; Bondeau, A.; Koch, J.; Koelking, C.; Priess, J.A. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl. Acad. Sci. USA 2010, 107, 3388–3393. [Google Scholar] [CrossRef] [Green Version]
- Macedo, M.N.; DeFries, R.S.; Morton, D.C.; Stickler, C.M.; Galford, G.L.; Shimabukuro, Y.E. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. USA 2012, 109, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- Hecht, S. Soybeans, Development and Conservation on the Amazon Frontier. Dev. Chang. 2005, 36, 375–404. [Google Scholar] [CrossRef]
- Stevenson, P.J. Industrial Livestock Production: The Twin Myths of Efficiency and Necessity; Compassion in World Farming: Surrey, UK, 2015. [Google Scholar]
- Trostle, R. Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices; Diane Publishing: Collingdale, PA, USA, 2010. [Google Scholar]
- Garcés Navarro, C. Aves de Carne. Bases Zootécnicas para el Cálculo del Balance Alimentario de Nitrógeno y de Fósforo; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente: Madrid, Spain, 2017.
- Tejedor, J.M. Economía en la explotación porcina. Ganadería 2006, 43, 26–30. [Google Scholar]
- Alberti, P.; Lahoz, F.; Sañudo, C.; Olleta, J.L. Chequeo al bovino español. Surcos de Aragón 1999, 61, 24–27. [Google Scholar]
- Westhoek, H.; Rood, T.; van den Berg, M.; Janse, J.; Nijdam, D.; Reudink, M.; Stehfest, E. The Protein Puzzle. The Consumption and Production of Meat, Dairy and Fish in the European Union; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2011. [Google Scholar]
- UNEP (United Nations Environmental Programme). The Environmental Food Crisis—The Environment’s Role in Averting Future Food Crises; Nelleman, C., Macdevette, M., Manders, T., Eickhout, B., Svihus, B., Gerdien Prins, A., Kaltenborn, B.P., Eds.; UNEP (United Nations Environmental Programme): Nairobi, Kenya, 2009; ISBN 978-82-7701-054-0. [Google Scholar]
- Smil, V. Feeding the World: A Challenge for the Twenty-First Century; The MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Cowie, A.L.; Orr, B.J.; Castillo Sanchez, V.M.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht, G.I.; Minelli, S.; et al. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35. [Google Scholar] [CrossRef]
- Safriel, U. Land degradation neutrality (LDN) in drylands and beyond – where has it come from and where does it go. Silva Fenn. 2017, 51, 1–19. [Google Scholar] [CrossRef] [Green Version]
- United Nations. United Nations Working Group on the Issue of Human Rights and Transnational Corporations and Other Business Enterprises; Note A/73/163 by the Secretary General United Nations General Assembly; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850. [Google Scholar] [CrossRef] [Green Version]
- Chasek, P.; Akhtar-Schuster, M.; Orr, B.J.; Luise, A.; Rakoto Ratsimba, H.; Safriel, U. Land degradation neutrality: The science-policy interface from the UNCCD to national implementation. Environ. Sci. Policy 2019, 92, 182–190. [Google Scholar] [CrossRef]
- Sims, N.C.; England, J.R.; Newnham, G.J.; Alexander, S.; Green, C.; Minelli, S.; Held, A. Developing good practice guidance for estimating land degradation in the context of the United Nations Sustainable Development Goals. Environ. Sci. Policy 2019, 92, 349–355. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1995, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Pueyo, Y.; Beguería, S. Modelling the rate of secondary succession after farmland abandonment in a Mediterranean mountain area. Landsc. Urban Plan. 2007, 83, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Martínez, J.; Gómez-Villar, A.; Lasanta, T. The Use of Goats Grazing to Restore Pastures Invaded by Shrubs and Avoid Desertification: A Preliminary Case Study in the Spanish Cantabrian Mountains. L. Degrad. Dev. 2016, 27, 3–13. [Google Scholar] [CrossRef]
- Ruiz-Mirazo, J.; Robles, A.B.; González-Rebollar, J.L. Two-year evaluation of fuelbreaks grazed by livestock in the wildfire prevention program in Andalusia (Spain). Agric. Ecosyst. Environ. 2011, 141, 13–22. [Google Scholar] [CrossRef]
- Moreira, F.; Rego, F.C.; Ferreira, P.G. Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: Implications for fire occurrence. Landsc. Ecol. 2001, 16, 557–567. [Google Scholar] [CrossRef]
- Puigdefábregas, J. Erosión y desertificación en España. Campo 1995, 132, 63–83. [Google Scholar]
- Martínez-Valderrama, J.; Ibáñez, J.; Del Barrio, G.; Sanjuán, M.E.; Alcalá, F.J.; Martínez-Vicente, S.; Ruiz, A.; Puigdefábregas, J. Present and future of desertification in Spain: Implementation of a surveillance system to prevent land degradation. Sci. Total Environ. 2016, 563, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G. Changes in Fire and Climate in the Eastern Iberian Peninsula (Mediterranean Basin). Clim. Change 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Syphard, A.; Radeloff, V.; Hawbaker, T.; Stewart, S. Conservation Threats Due to Human-Caused Increases in Fire Frequency in Mediterranean-Climate Ecosystems. Conserv. Biol. 2009, 23, 758–769. [Google Scholar] [CrossRef]
- Zedler, P.H.; Gautier, C.R.; McMaster, G.S. Vegetation Change in Response to Extreme Events: The Effect of a Short Interval between Fires in California Chaparral and Coastal Scrub. Ecology 1983, 64, 809–818. [Google Scholar] [CrossRef]
- Canadell, J.; López-Soria, L. Lignotuber Reserves Support Regrowth Following Clipping of Two Mediterranean Shrubs. Func. Ecol. 1998, 12, 31–38. [Google Scholar] [CrossRef]
- Arianoutsou, M.; Vilà, M. Fire and invasive plant species in the mediterranean Basin. Isr. J. Ecol. Evol. 2012, 58, 195–203. [Google Scholar] [CrossRef]
- Santana, V.M.; Baeza, M.J.; Marrs, R.H.; Vallejo, V.R. Old-field secondary succession in SE Spain: Can fire divert it? Plant Ecol. 2010, 211, 337–349. [Google Scholar] [CrossRef]
- Hernández, L. El Planeta en Llamas. Propuesta Ibérica de WWF para la Prevención de Incendios; WWF: Madrid, Spain, 2020. [Google Scholar]
- Alló, M.; Loureiro, M.L. Assessing preferences for wildfire prevention policies in Spain. For. Policy Econ. 2020, 115, 102145. [Google Scholar] [CrossRef]
- Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.; Marx, A. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Chang. 2018, 8, 421–426. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- MedECC. Risks Associated to Climate and Environmental Changes in the Mediterranean Region; MedECC: Marseille, France, 2019. [Google Scholar]
- Ruffault, J.; Moron, V.; Trigo, R.M.; Curt, T. Objective identification of multiple large fire climatologies: An application to a Mediterranean ecosystem. Environ. Res. Lett. 2016, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Llasat, M.C.; von Hardenberg, J.; Provenzale, A. Climate change impacts on wildfires in a Mediterranean environment. Clim. Chang. 2014, 125, 369–380. [Google Scholar] [CrossRef]
- Loepfe, L.; Martinez Vilalta, J.; Oliveres, J.; Piñol, J.; Lloret, F. Feedbacks between Fuel Reduction and Landscape Homogenisation Determine Fire Regimes in Three Mediterranean Areas. For. Ecol. Manag. 2010, 259, 2366–2374. [Google Scholar] [CrossRef]
- Varela, E.; Górriz-Mifsud, E.; Ruiz-Mirazo, J.; López-i-Gelats, F. Payment for targeted grazing: Integrating local shepherds intowildfire prevention. Forests 2018, 9, 464. [Google Scholar] [CrossRef] [Green Version]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global Pyrogeography: The Current and Future Distribution of Wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef]
- Oxfam Smallholders at Risk. Monoculture Expansion, Land, Food and Livelihoods in Latin America. Oxfam Briefing Paper, 23 April 2014.
- Himics, M.; Van Doorslaer, B.; Ciaian, P.; Shrestha, S. Increasing volatility of input costs in the EU agriculture. In Proceedings of the 123rd Seminar. European Association of Agricultural Economists, Dublin, Ireland, 23–24 February 2012. [Google Scholar]
- Cochrane, W. Farm Prices: Myth and Reality; University of Minnesota Press: Minneapolis, MN, USA, 1958. [Google Scholar]
- Sassenrath, G.F.; Heilman, P.; Luschei, E.; Bennett, G.L.; Fitzgerald, G.; Klesius, P.; Tracy, W.; Williford, J.R.; Zimba, P.V. Technology, complexity and change in agricultural production systems. Renew. Agric. Food Syst. 2008, 23, 285–295. [Google Scholar] [CrossRef]
- The Observatory of Economic Complexity Product Trade Exporters and Importers. Soybeans. Available online: https://oec.world/en/profile/hs92/soybeans#top (accessed on 29 January 2021).
CORINE Land Class | Name | Description |
---|---|---|
2.3.1 | Pasture | Permanent grassland characterized by agricultural use or strong human disturbance. Floral composition dominated by graminacea and influenced by human activity. Typically used for grazing-pastures, or mechanical harvesting of grass–meadows. |
2.4.4 | Agro-forestry areas | Annual crops or grazing land under the wooded cover of forestry species. |
3.1.1 | Broad-leaved forest | Vegetation formation composed principally of trees, including shrub and bush understorey, where broad-leaved species predominate. |
3.1.3 | Mixed forest | Vegetation formation composed principally of trees, including shrub and bush understorey, where neither broad-leaved nor coniferous species predominate. |
3.2.1 | Natural grassland | Grasslands under no or moderate human influence. Low productivity grasslands. Often situated in areas of rough, uneven ground, steep slopes; frequently including rocky areas or patches of other (semi-)natural vegetation. |
3.2.3 | Sclerophyllous vegetation | Bushy sclerophyllous vegetation in a climax stage of development, including maquis, matorral and garrigue. |
3.2.4 | Transitional woodland/shrub | Transitional bushy and herbaceous vegetation with occasional scattered trees. Can represent woodland degradation, forest regeneration / recolonization or natural succession. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Valderrama, J.; Sanjuán, M.E.; del Barrio, G.; Guirado, E.; Ruiz, A.; Maestre, F.T. Mediterranean Landscape Re-Greening at the Expense of South American Agricultural Expansion. Land 2021, 10, 204. https://doi.org/10.3390/land10020204
Martínez-Valderrama J, Sanjuán ME, del Barrio G, Guirado E, Ruiz A, Maestre FT. Mediterranean Landscape Re-Greening at the Expense of South American Agricultural Expansion. Land. 2021; 10(2):204. https://doi.org/10.3390/land10020204
Chicago/Turabian StyleMartínez-Valderrama, Jaime, María E. Sanjuán, Gabriel del Barrio, Emilio Guirado, Alberto Ruiz, and Fernando T. Maestre. 2021. "Mediterranean Landscape Re-Greening at the Expense of South American Agricultural Expansion" Land 10, no. 2: 204. https://doi.org/10.3390/land10020204
APA StyleMartínez-Valderrama, J., Sanjuán, M. E., del Barrio, G., Guirado, E., Ruiz, A., & Maestre, F. T. (2021). Mediterranean Landscape Re-Greening at the Expense of South American Agricultural Expansion. Land, 10(2), 204. https://doi.org/10.3390/land10020204