Factors on Spatial Heterogeneity of the Grain Production Capacity in the Major Grain Sales Area in Southeast China: Evidence from 530 Counties in Guangdong Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Analysis
2.1.1. Effect of Land Endowment on Regional Grain Output and Its Heterogeneity
2.1.2. Effect of Labor Endowment on Regional Grain Output and Its Heterogeneity
2.1.3. Effect of Technology Endowment on Regional Grain Output and Its Heterogeneity
2.2. Regression Model, Data, and Sample Range
2.2.1. Regression Model
2.2.2. Data Collection
2.2.3. Geographical Range of the Study
3. Results
3.1. Comparative Analysis of the Performances of OLS and GWR Models
3.2. OLS Regression Results
3.3. GWR Results
3.4. Comparative Analysis of the Spatial Heterogeneity of Grain Production in Guangdong Province
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, C.; Feng, Y.; Tong, X.; Lei, Z.; Chen, S.; Zhai, S. Modeling urban growth using spatially heterogeneous cellular automata models: Comparison of spatial lag, spatial error and GWR. Comput. Environ. Urban Syst. 2020, 81, 101459. [Google Scholar] [CrossRef]
- Ulm, F.; Avelar, D.; Hobson, P.; Penha-Lopes, G.; Dias, T.; Maguas, C.; Cruz, C. Sustainable urban agriculture using compost and an open-pollinated maize variety. J. Clean. Prod. 2019, 212, 622–629. [Google Scholar] [CrossRef]
- Knorr, D.; Khoo, C.S.H.; Augustin, M.A. Food for an urban planet: Challenges and research opportunities. Front. Nutr. 2018, 4, 73. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Thomas, R. Mechanization outsourcing clusters and division of labor in Chinese agriculture. China Econ. Rev. 2017, 43, 184–195. [Google Scholar] [CrossRef]
- Deng, J. Global agricultural aggregation: Trend, factors and mechanisms. Agric. Econ. Issues 2010, 9, 17–25. [Google Scholar]
- Wei, H. The Non-agricultural and the Non-grain Oriented Risk and It’s Circumventions in Agricultural Land Transfer. Contemp. Econ. Manag. 2014. [Google Scholar]
- He, G.; Zhao, Y.; Wang, L.; Jiang, S.; Zhu, Y. China′s food security challenge: Effects of food habit changes on requirements for arable land and water. J. Clean. Prod. 2019, 229, 739–750. [Google Scholar] [CrossRef]
- McKenzie, K.; Metcalf, D.; Saliba, A. Validation of the Food Technology Neophobia Scale in a Chinese sample using exploratory and confirmatory factor analysis. Food Qual. Prefer. 2021, 89, 104148. [Google Scholar] [CrossRef]
- Handford, C.E.; Dean, M.; Henchion, M.; Spence, M.; Elliott, C.T.; Campbell, K. Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends Food Sci. Technol. 2014, 40, 226–241. [Google Scholar] [CrossRef]
- Cui, K.; Shoemaker, K.P. Public perception of genetically-modified (GM) food: A nationwide Chinese consumer study. Njp Sci. Food 2018, 2, 1–8. [Google Scholar] [CrossRef]
- Lan, T.; Shao, G.; Xu, Z.; Tang, L.; Sun, L. Measuring urban compactness based on functional characterization and human activity intensity by integrating multiple geospatial data sources. Ecol. Indic. 2021, 121, 107177. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, L.; Tang, L.; Shi, L.; Su, X.; Wan, H.; Song, Y.; Shao, G. Effects of spatial form on urban commute for major cities in China. Int. J. Sustain. Dev. World Ecol. 2014, 21, 361–368. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Land use change and driving factors in rural China during the period 1995–2015. Land Use Policy 2020, 99, 105048. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Flacke, J.; Schwarz, N. Does Urban planning affect urban growth pattern? A case study of Shenzhen, China. Land Use Policy 2020, 101, 105100. [Google Scholar] [CrossRef]
- Huang, J.; Xue, D. Study on Temporal and Spatial Variation Characteristics and Influencing Factors of Land Use Efficiency in Xi’an, China. Sustainability 2019, 11, 6649. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Li, Y.; Zhou, Y. Study on the abandonment of sloping farmland in Fengjie County, Three Gorges Reservoir Area, a mountainous area in China. Land Use Policy 2020, 97, 104760. [Google Scholar] [CrossRef]
- Echevarria, C. A three-factor agricultural production function: The case of Canada. Int. Econ. J. 1998, 12, 63–75. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, S.; Wu, S. Analysis of temporal and spatial changes and influencing factors of grain production in Jiangsu Province. J. Nat. Resour. 2011, 2, 145–153. [Google Scholar]
- Zheng, X.; Xu, Z.; Ying, R. Regional Heterogeneity in the Changes of Grain Production in the Context of Urbanization and Structural Adjustment in China. China Soft Sci. 2014, 11, 71–86. [Google Scholar]
- Feng, Y.; Tong, X. Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules. Giscience Remote Sens. 2018, 55, 678–698. [Google Scholar] [CrossRef]
- Yi, Y.; Kimball, J.S.; Chen, R.; Moghaddam, M.; Reichle, R.H.; Mishra, U.; Oechel, W.C. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska. Cryosphere 2018, 12, 145–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debonne, N.; van Vliet, J.; Heinimann, A.; Verburg, P. Representing large-scale land acquisitions in land use change scenarios for the Lao PDR. Reg. Environ. Chang. 2018, 18, 1857–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Wei, Y.D.; Li, H. Firm Suburbanization in the Context of Urban Sprawl: Neighborhood Effect and Sectoral Difference. Prof. Geogr. 2020, 4, 598–617. [Google Scholar] [CrossRef]
- Kim, D.; Song, I. Predicting Model Improvement by Accounting for Spatial Autocorrelation: A Socioeconomic Perspective. Prof. Geogr. 2021, 73, 131–149. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Kong, X. Spatio-temporal evolution and influencing factors of grain output in China’s counties. Econ. Geogr. 2018, 5, 142–151. [Google Scholar]
- Tao, W.; Zhang, X.; Sun, Z. Spatio-temporal patterns of the grain yield and quality of agricultural soil resources in the irrigated area of the Yellow River in the North China Plain. J. Nat. Resour. 2019, 34, 829–838. [Google Scholar]
- Wang, Y.; Li, G. Agricultural Productive Services, Increasing Grain Production and Farmers’ Income: An Empirical Analysis Based on CHIP Data. Financ. Econ. 2019, 3, 92–104. [Google Scholar]
- Wan, G.; Cheng, E. Scale Economy, Land Fragmentation and my country’s Food Production. China Rural Surv. 1996, 3, 32–37. [Google Scholar]
- Lyu, G.; Bertolini, L.; Pfeffer, K. Is Labour Productivity Higher in Transit Oriented Development Areas? A Study of Beijing. Tijdschr. Voor Econ. En Soc. Geogr. 2020, 111, 652–720. [Google Scholar] [CrossRef]
- Lu, Z.; Luo, B. How Can Small Farmers Be Incorporated into Modern Agricultural. Econ. Res. J. 2018, 53, 144–160. [Google Scholar]
- Zhu, J.; Jin, L. Agricultural Infrastructure, Food Production Cost and International Competitiveness: Based on the Empirical Test of Total Factor Productivity. J. Agrotech. Econ. 2017, 10, 14–24. [Google Scholar]
- Zhang, J.; Qin, Y. The spatial heterogeneity of grain yield and its production input factors in counties: A case study of Henan Province. J. Nat. Resour. 2011, 26, 373–381. [Google Scholar]
- Zhao, W.; Jiao, B.; Han, Y. Estimation and Prediction of China’s Agricultural Surplus Labor Stock in 1984-2050. Popul. Res. 2018, 42, 54–69. [Google Scholar]
- Luo, B.; Chou, T. Adjustment of China’s Agricultural Planting Structure: “Non-grainization” or “Grain-oriented”. Soc. Sci. Front 2018. No.272, 2+46-58. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models. J. Am. Stat. Assoc. 1988, 85, 905–907. [Google Scholar]
- Mirbagheri, B.; Alimohammadi, A. Improving urban cellular automata performance by integrating global and geographically weighted logistic regression models. Trans. Gis 2017, 21, 1280–1297. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, Q.; Hong, Z.; Cui, L. Modelling coastal land use change by incorporating spatial autocorrelation into cellular automata models. Geocarto Int. 2018, 33, 470–488. [Google Scholar] [CrossRef]
- Amitha, P.; Binu, V.S.; Seena, B. Estimation of missing values in aggregate level spatial data. Clin. Epidemiol. Glob. Health 2021, 9, 304–309. [Google Scholar] [CrossRef]
- Han, R.; Feng, C.-C.; Xu, N.; Guo, L. Spatial heterogeneous relationship between ecosystem services and human disturbances: A case study in Chuandong, China. Sci. Total Environ. 2020, 721, 137818. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, J. Spatial-temporal Pattern and Its Driving Forces of Per Capital Grain Possession in China. Resour. Environ. Yangtze Basin 2017, 26, 410–418. [Google Scholar]
- Zhang, J.; Zhu, Y.; Zhao, F.; Qian, Y. Spatial-temporal Evolution of Chinese Grain Production Pattern and Arable Land Production Capacity. Chin. J. Agric. Resour. Reg. Plan. 2017, 38, 35. [Google Scholar]
- Zhang, Q.; Zhang, F.; Wu, G.; Mai, Q. Spatial spillover effects of grain production efficiency in China: Measurement and scope. J. Clean. Prod. 2021, 278, 121062. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H.; Li, T.; Tu, S. Land use transitions and their effects on water environment in Huang-Huai-Hai Plain, China. Land Use Policy 2015, 47, 293–301. [Google Scholar] [CrossRef]
- Salvatore, D.F.; Marcella, V.; Mahmud, Y. Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar]
- Gao, F. Regional changes in my country’s food production: 1978–2003. Manag. World 2005, 9, 70–78. [Google Scholar]
- Yang, W.; Chen, W. Analysis of Changes and Influencing Factors of China’s Rice Production Space Distribution. Econ. Geogr. 2011, 31, 2086–2093. [Google Scholar]
- Xu, M.; Zhan, J. Analysis on the Changes of China’s Rice Production Regional Distribution: Based on the Research of Partial Adjustment Model. Acta Agric. Jiangxi 2010, 22, 204–206. [Google Scholar]
- Hu, H.; Wang, J.; Wang, Y. Spatial-temporal Pattern and Influencing Factors of Grain Production and Food Security at County Level in the Yangtze River Basin from 1990 to 2015. Resour. Environ. Yangtze Basin 2019, 28, 359–367. [Google Scholar]
- Liu, M.; Wen, G.; Hu, X. Spatial Patterns and Influencing Factors of Rice Spatial Patterns and Influencing Factors of Rice. Sci. Technol. Manag. Res. 2019, 39, 77–84. [Google Scholar]
- Smith, P.; Gregory, P.J. Climate change and sustainable food production. Proc. Nutr. Soc. 2013, 72, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitter, P.; Zwart, S.J.; Danvi, A.; Gbaguidi, F. Contributions of lateral flow and groundwater to the spatio-temporal variation of irrigated rice yields and water productivity in a West-African inland valley. Agric. Water Manag. 2015, 152, 286–298. [Google Scholar] [CrossRef]
- Zhu, W.; Jia, S.; Devineni, N.; Lv, A.; Lall, U. Evaluating China’s water security for food production: The role of rainfall and irrigation. Geophys. Res. Lett. 2019, 46, 11155–11166. [Google Scholar] [CrossRef]
- Tao, W.; Zhang, X.; Sun, Z.; Li, S.; Liu, X.; Zhang, C.; Cheng, S. Temporal and spatial distribution characteristics of grain yield and agricultural soil resource quality in the Yellow River Irrigation District of North China. J. Nat. Resour. 2019, 34, 829–838. [Google Scholar]
- Watson, M. Agricultural infrastructure development imperative for sustainable food production: A Zimbabwean perspective. Russ. J. Agric. Socio-Econ. Sci. 2013, 24, 13–21. [Google Scholar]
- Wang, Y.; Yao, X.; Zhou, M. Rural labor migration, regional differences and food production. Manag. World 2013, 11, 67–76. [Google Scholar]
- Cheng, M.; Huang, T.; Liu, Y. Food Consumption Evolution Path in Urbanization: China’s Experience. China Rural Surv. 2015, 6, 15–21. [Google Scholar]
- Hou, M.; Yao, S. Spatial spillover effects and threshold characteristics of the impact of rural labor transfer in China on agricultural ecological efficiency. Resour. Sci. 2018, 40, 2475–2486. [Google Scholar]
- Yang, Y.; Lin, W.; Zhang, L. Agricultural Technology Progress, Technical Efficiency and Food Production: Empirical Analysis from China’s Provincial Panel Data. J. Agrotech. Econ. 2017, 5, 46–56. [Google Scholar]
- Zheng, X.; Xu, Z. Endowment Restriction Factor Substitution and Induced Technological Innovation: A Case Research on the Grain Producing Mechanization in China. China Econ. Q. 2017, 16, 45–66. [Google Scholar]
- Wu, F.; Yan, Z. Labor Endowment Change: Factor Substitution or Production Exit. J. Agrotech. Econ. 2018, 12, 30–40. [Google Scholar]
- Jin, Y.; Wu, B.; Jin, S. The Impact of Agricultural Mechanization on Structure Adjustment of Grain in China. Chin. Rural Econ. 2018, 3, 89–104. [Google Scholar]
First-Degree Indices | Second-Degree Indices | Third-Degree Indices | Code |
---|---|---|---|
Grain production level | Total grain output | Total grain output (10,000 tons) | Yi |
Land endowment | Degree of land standardization | Irrigated arable land area (thousand hectares)/total arable land area (thousand hectares) | Ldi |
Total area of arable land | Arable land area (thousand hectares) | Lei | |
Labor endowment | Agricultural labor force | Number of workers in the primary industry (10,000 people)/total population (10,000 people) | Api |
Degree of nongrainization of labor | Number of workers in the vegetable and fruit plantation, forestry, animal husbandry, and fishery sectors (10,000 people) | Dpi | |
Technology endowment | Area of facility agriculture | Area of facility agriculture (thousand hectares) | Ngi |
Level of agricultural informatization | Number of people with telephone ownership (10,000 people)/total local population (10,000 people) | Aci |
Second-Degree Indices | Unit | Code | Max | Min | Mean | Std. Dev. |
---|---|---|---|---|---|---|
Total grain output | 10,000 tons | Yi | 62.44 | 0 | 11.01 | 11.88 |
Degree of land standardization | N/A | Ldi | 0.66 | 0 | 0.08 | 0.09 |
Total area of arable land | 1000 hectares | Lei | 2.37 | 0 | 0.51 | 0.58 |
Agricultural labor force | N/A | Api | 0.92 | 0 | 0.69 | 0.19 |
Degree of nongrainization of labor | 10,000 people | Dpi | 155 | 0 | 17 | 23 |
Area of facility agriculture | 1000 hectares | Ngi | 0.38 | 0 | 0.67 | 0.14 |
Level of agricultural informatization | N/A | Aci | 80 | 0 | 31 | 40 |
Scale | R | S | M | L |
---|---|---|---|---|
OLS | (1) | (2) | (3) | (4) |
R2 | 0.52 | 0.49 | 0.43 | 0.36 |
Adj R2 | 0.50 | 0.47 | 0.41 | 0.35 |
AIC | −903.68 | −903.68 | −1376.31 | −2133.99 |
Significant variables | Ap, Ng, Ac | Ld, Ap, Ac | Ap, Ac | Ld, Le, Ap, Ng, Ac |
GWR | (5) | (6) | (7) | (8) |
R2 | 0.66 | 0.63 | 0.61 | 0.55 |
Adj R2 | 0.61 | 0.60 | 0.58 | 0.51 |
AIC | −160.90 | −952.70 | −1473.02 | −2269.33 |
Residual std. error | 1.500 | 0.057 | 0.123 | 0.382 |
No. of obs. | 123 | 187 | 306 | 530 |
Scale | (1) R | (2) S | (3) M | (4) L | |
---|---|---|---|---|---|
Ld | Coefficient | 0.14 | 0.12 ** | 0.19 *** | 2.27 *** |
Std. err. | (0.123) | (0.050) | (0.072) | (1.209) | |
VIF | 1.82 | 1.13 | 1.09 | 1.07 | |
Le | Coefficient | −0.12 | −0.75 | 1.19 | 5.87 *** |
Std. err. | (0.102) | (1.241) | (1.329) | (1.113) | |
VIF | 4.23 | 4.62 | 5.75 | 5.38 | |
Ap | Coefficient | 0.18 *** | 0.03 ** | 0.006 | –0.13 ** |
Std. err. | (0.068) | (0.011) | (0.011) | (0.019) | |
VIF | 1.74 | 1.36 | 1.34 | 1.23 | |
Dp | Coefficient | 0.05 | −0.003 | −0.04 | −0.40 |
Std. err. | (0.117) | (0.225) | (0.225) | (0.244) | |
VIF | 1.97 | 2.48 | 2.47 | 2.99 | |
Ng | Coefficient | 0.11 ** | 0.02 | 0.006 | 0.02 |
Std. err. | (0.059) | (0.012) | (0.122) | (2.476) | |
VIF | 2.61 | 2.28 | 1.95 | 1.67 | |
Ac | Coefficient | −0.27 *** | −19.80 *** | −22.70 *** | −34.13 *** |
Std. err. | (0.048) | (2.830) | (2.843) | (10.248) | |
VIF | 3.54 | 3.52 | 4.21 | 3.20 |
Scale | (5) R | (6) S | (7) M | (8) L | |
---|---|---|---|---|---|
Ld | Mean value | / | 0.61 | 0.12 | 0.88 |
Std. err. | / | (0.714) | (4.121) | (1.236) | |
Min | / | 2.874 | 0.081 | 0.084 | |
Max | / | 0.061 | 3.492 | 8.172 | |
Le | Mean value | / | / | / | 5.13 |
Std. err. | / | / | / | (5.187) | |
Min | / | / | / | −1.363 | |
Max | / | / | / | 31.473 | |
Ap | Mean value | 0.14 | 0.02 | / | −0.03 |
Std. err. | (0.078) | (0.015) | / | (0.035) | |
Min | −0.244 | −0.04 | / | −0.121 | |
Max | 0.329 | 0.032 | / | 0.054 | |
Ng | Mean value | 0.08 | / | / | / |
Std. err. | (0.107) | / | / | / | |
Min | −0.113 | / | / | / | |
Max | 0.343 | / | / | / | |
Ac | Mean value | −0.30 *** | −16.80 *** | −20.43 *** | −30.68 *** |
Std. err. | (0.066) | (2.566) | (10.440) | (11.325) | |
Min | −0.441 | −25.179 | −133.435 | −78.974 | |
Max | −0.222 | −14.334 | −11.925 | −13.689 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, W.; Huang, H.; Yang, B.; Hu, Q. Factors on Spatial Heterogeneity of the Grain Production Capacity in the Major Grain Sales Area in Southeast China: Evidence from 530 Counties in Guangdong Province. Land 2021, 10, 206. https://doi.org/10.3390/land10020206
Fang W, Huang H, Yang B, Hu Q. Factors on Spatial Heterogeneity of the Grain Production Capacity in the Major Grain Sales Area in Southeast China: Evidence from 530 Counties in Guangdong Province. Land. 2021; 10(2):206. https://doi.org/10.3390/land10020206
Chicago/Turabian StyleFang, Wei, Heliang Huang, Boxi Yang, and Qiang Hu. 2021. "Factors on Spatial Heterogeneity of the Grain Production Capacity in the Major Grain Sales Area in Southeast China: Evidence from 530 Counties in Guangdong Province" Land 10, no. 2: 206. https://doi.org/10.3390/land10020206
APA StyleFang, W., Huang, H., Yang, B., & Hu, Q. (2021). Factors on Spatial Heterogeneity of the Grain Production Capacity in the Major Grain Sales Area in Southeast China: Evidence from 530 Counties in Guangdong Province. Land, 10(2), 206. https://doi.org/10.3390/land10020206