Mid-Infrared Spectroscopy Supports Identification of the Origin of Organic Matter in Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection
2.2. Sample Preparation and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguiar, N.O.; Novotny, E.H.; Oliveira, A.L.; Rumjanek, V.M.; Olivares, F.L.; Canellas, L.P. Prediction of humic acids bioactivity using spectroscopy and multivariate analysis. J. Geochem. Explor. 2013, 129, 95–102. [Google Scholar] [CrossRef]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Workman, J.; Shenk, J. Understanding and using the near-infrared spectrum as an analytical method. Near-Infrared Spectrosc. Agric. 2004, 44, 1–10. [Google Scholar] [CrossRef]
- Tinti, A.; Tugnoli, V.; Bonora, S.; Francioso, O. Recent applications of vibrational mid-infrared (IR) spectroscopy for studying soil components: A review. J. Cent. Eur. Agric. 2015, 16. [Google Scholar] [CrossRef]
- Javadi, S.H.; Munnaf, M.A.; Mouazen, A.M. Fusion of Vis-NIR and XRF spectra for estimation of key soil attributes. Geoderma 2020, 385. [Google Scholar] [CrossRef]
- Waruru, B.K.; Shepherd, K.D.; Ndegwa, G.M.; Sila, A.; Kamoni, P.T. Application of mid-infrared spectroscopy for rapid characterization of key soil properties for engineering land use. Soils Found. 2015, 55, 1181–1195. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, D.; Morón, A. The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics. J. Agric. Sci. 2003, 140, 65. [Google Scholar] [CrossRef]
- Barthès, B.G.; Kouakoua, E.; Coll, P.; Clairotte, M.; Moulin, P.; Saby, N.P.A.; Le Cadre, E.; Etayo, A.; Chevallier, T. Improvement in spectral library-based quantification of soil properties using representative spiking and local calibration—The case of soil inorganic carbon prediction by mid-infrared spectroscopy. Geoderma 2020, 369, 114272. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; McBratney, A.B. Soil chemical analytical accuracy and costs: Implications from precision agriculture. Aust. J. Exp. Agric. 1998, 38, 765–775. [Google Scholar] [CrossRef]
- Chodak, M.; Niklińska, M.; Beese, F. Near-infrared spectroscopy for analysis of chemical and microbiological properties of forest soil organic horizons in a heavy-metal-polluted area. Biol. Fertil. Soils 2007, 44, 171–180. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Raspolli Galletti, A.M.; D’Alessio, A.; Licursi, D.; Antonetti, C.; Valentini, G.; Galia, A.; Nassi, O.; Di Nasso, N. Midinfrared FT-IR as a tool for monitoring herbaceous biomass composition and its conversion to furfural. J. Spectrosc. 2015. [Google Scholar] [CrossRef] [Green Version]
- Calderón, F.J.; Reeves, J.B.; Collins, H.P.; Paul, E.A. Chemical differences in soil organic matter fractions determined by Diffuse-Reflectance Mid-Infrared Spectroscopy. Soil Sci. Soc. Am. J. 2011, 75, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.M.; Pejcic, B.; Esteban, L.; Piane, C.D.; Raven, M.; Mizaikoff, B. Infrared attenuated total reflectance spectroscopy: An innovative strategy for analyzing mineral components in energy relevant systems. Sci. Rep. 2014, 4, 6764. [Google Scholar] [CrossRef] [Green Version]
- Le Guillou, F.; Wetterlind, W.; Viscarra Rossel, R.A.; Hicks, W.; Grundy, M.; Tuomi, S. How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon? Soil Res. 2015, 53, 913–921. [Google Scholar] [CrossRef]
- Allo, M.; Todoroff, P.; Jameux, M.; Stern, M.; Paulin, L.; Albrecht, A. Prediction of tropical volcanic soil organic carbon stocks by visible-near- and mid-infrared spectroscopy. Catena 2020, 189, 104452. [Google Scholar] [CrossRef]
- Corradini, F.; Bartholomeus, H.; Huerta Lwanga, E.; Gertsen, H.; Geissen, V. Predicting soil microplastic concentration using vis-NIR spectroscopy. Sci. Total Environ. 2019, 650, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Ertlen, D.; Schwartz, D.; Brunet, D.; Trendel, J.M.; Adam, P.; Schaeffer, P. Qualitative near infrared spectroscopy, a new tool to recognize past vegetation signature in soil organic matter. Soil Biol. Biochem. 2015, 82, 127–134. [Google Scholar] [CrossRef]
- Vysloužilová, B.; Ertlen, D.; Šefrna, L.; Novák, T.; Virágh, K.; Rué, M.; Campaner, A.; Dreslerová, D.; Schwartz, D. Investigation of vegetation history of buried chernozem soils using near-infrared spectroscopy (NIRS). Quat. Int. 2015, 365, 203–211. [Google Scholar] [CrossRef]
- Strouhalová, B.; Ertlen, D.; Šefrna, L.; Novák, T.J.; Virágh, K.; Schwartz, D. Assessing the vegetation history of European Chernozems through qualitative near infrared spectroscopy. Quaternaire 2019, 30, 227–241. [Google Scholar] [CrossRef]
- Seybold, C.A.; Ferguson, R.; Wysocki, D.; Bailey, S.; Anderson, J.; Nester, B.; Schoeneberger, P.; Wills, S.; Libohova, Z.; Hoover, D.; et al. Application of Mid-Infrared spectroscopy in soil survey. Soil Sci. Soc. Am. J. 2019, 83, 1746–1759. [Google Scholar] [CrossRef]
- Dos Santos, U.J.; de Demattê, J.A.; Menezes, R.S.C.; Dotto, A.C.; Guimarães, C.C.B.; Alves, B.J.R.; Primo, D.C.; de Sampaio, E.V. Predicting carbon and nitrogen by visible near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy in soils of Northeast Brazil. Geoderma Reg. 2020, 23, e00333. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Montazerolghaem, M.; Padarian, J.; Ferguson, R.; Bailey, S.; McBratney, A.B. Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma 2019, 352, 251–267. [Google Scholar] [CrossRef]
- Kasielke, T.; Poch, R.M.; Wiedner, K. Chernozem relics in the Hellweg Loess Belt (Westphalia, NW Germany)—Natural or man-made? Quat. Int. 2019. [Google Scholar] [CrossRef]
- Strouhalová, B.; Gebhardt, A.; Ertlen, D.; Šefrna, L.; Flašarová, K.; Kolařík, P.; Schwartz, D. From Chernozem to Luvisol or from Luvisol to Chernozem? A discussion about the relationships and limits of the two types of soils. a case study of the soil catena of Hrušov, Czechia. Geogr. CGS 2020, 125, 473–500. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World reference base for soil resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization (FAO): Rome, Italy, 2014; ISBN 9789251083697.
- Chodorowski, J.; Bartmiński, P.; Plak, A.; Dȩbicki, R. Chernozems of Lubelszczyzna (eastern Poland). Soil Sci. Annu. 2019, 70, 258–269. [Google Scholar] [CrossRef]
- Drewnik, M.; Zyła, M. Properties and classification of heavily eroded post-chernozem soils in Proszowice Plateau (southern Poland). Soil Sci. Annu. 2019, 70, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Łabaz, B.; Kabała, C.; Dudek, M.; Waroszewski, J. Morphological diversity of chernozemic soils in south-western Poland. Soil Sci. Annu. 2019, 70, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Kabała, C.; Przybył, A.; Krupski, M.; Łabaz, B.; Waroszewski, J. Origin, age and transformation of Chernozems in northern Central Europe—New data from Neolithic earthen barrows in SW Poland. Catena 2019, 180, 83–102. [Google Scholar] [CrossRef]
- Krupski, M.; Mackiewicz, M.; Kabała, C.; Ehlert, M.; Cendrowska, M. Earthen mounds in the Głubczyce Forest (SW Poland)—Are they prehistoric long barrows? Geoarcheology of the Silesian soil record and human-environment interplay in the Holocene. Praehist. Z. 2021, in press. [Google Scholar] [CrossRef]
- Przybył, A. Newly Recorded Neolithic Earthen Long Barrows in South-Western Poland: Unexpected Discoveries, Expanded Perspectives, New Interpretations. In Fonctions, Utilisations et Représentations de L’espace Dans les Sépultures Monumentales du Néolithique Européen. Préhistoires Méditerr. Colloque. 2014. Available online: http://journals.openedition.org/pm/996 (accessed on 21 February 2021).
- Ertlen, D.; Schwartz, D.; Trautmann, M.; Webster, R.; Brunet, D. Discriminating between organic matter in soil from grass and forest by near-infrared spectroscopy. Eur. J. Soil Sci. 2010, 61, 207–216. [Google Scholar] [CrossRef]
- De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L. The Mahalanobis Distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Webster, R. Discrimination of Australian soil horizons and classes from their visible-near infrared spectra. Eur. J. Soil Sci. 2011, 62, 637–647. [Google Scholar] [CrossRef]
- Chmielewski, T.J.; Furmanek, M.; Patay, R.; Sady, A. Needle Grass (Stipa sp.) in the Neolitic and Eneolithic Periods in Central Europe. Contribution to the Discussion on the Phenomenon; Arheovest, JatePress Kiado: Szeged, Hungary, 2014; pp. 109–133. [Google Scholar]
- Deák, J.; Gebhardt, A.; Lewis, H.; Usai, M.R.; Lee, H. Soils disturbed by vegetation clearance and tillage. In Archaeological Soil and Sediment Micromorphology; Nicosia, C., Stoops, G., Eds.; John Wiley & Sons Ltd.: Oxford, UK, 2017; pp. 233–264. [Google Scholar]
- Hejcman, M.; Součková, K.; Krištuf, P.; Peška, J. What questions can be answered by chemical analysis of recent and paleosols from the Bell Beaker barrow (2500-2200BC), Central Moravia, Czech Republic? Quat. Int. 2013, 316, 179–189. [Google Scholar] [CrossRef]
- Von Suchodoletz, H.; Tinapp, C.; Lauer, T.; Glaser, B.; Stäuble, H.; Kühn, P.; Zielhofer, C. Distribution of Chernozems and Phaeozems in Central Germany during the Neolithic period. Quat. Int. 2019, 511, 166–184. [Google Scholar] [CrossRef]
- Goydaragh, M.G.; Jafarzadeh, A.A.; Shahbazi, F.; Oustan, S.; Taghizadeh-Mehrjardi, R.; Lado, M. Estimation of elemental composition of agricultural soils from West Azerbaijan, Iran, using mid-infrared spectral models. Rev. Bras. Eng. Agric. Ambient. 2019, 23, 460–466. [Google Scholar] [CrossRef]
- Alexandrovskiy, A.L. Holocene development of soils in response to environmental changes: The Novosvobodnaya archaeological site, North Caucasus. Catena 2000, 41, 237–248. [Google Scholar] [CrossRef]
- Chendev, Y.G.; Aleksandrovskii, A.L.; Khokhlova, O.S.; Dergacheva, M.I.; Petin, A.N.; Golotvin, A.N.; Sarapulkin, V.A.; Zemtsov, G.L.; Uvarkin, S.V. Evolution of forest pedogenesis in the south of the forest-steppe of the Central Russian Upland in the Late Holocene. Eurasian Soil Sci. 2017, 50, 1–13. [Google Scholar] [CrossRef]
- Gałka, B.; Łabaz, B. Properties of humic acids in humus horizons in forest soils of the Stołowe Mountains. Sylwan 2013, 157, 780–785. [Google Scholar]
- Pietrzykowski, M.; Chodak, M. Near infrared spectroscopy—A tool for chemical properties and organic matter assessment of afforested mine soils. Ecol. Eng. 2014, 62, 115–122. [Google Scholar] [CrossRef]
- Wang, X.; Butterly, C.R.; Baldock, J.A.; Tang, C. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH. Sci. Total Environ. 2017, 587, 502–509. [Google Scholar] [CrossRef]
- Cañasveras Sánchez, J.C.; Barrón, V.; Del Campillo, M.C.; Viscarra Rossel, R.A. Reflectance spectroscopy: A tool for predicting soil properties related to the incidence of Fe chlorosis. Span. J. Agric. Res. 2012, 10, 1133–1142. [Google Scholar] [CrossRef] [Green Version]
- Knox, N.M.; Grunwald, S.; McDowell, M.L.; Bruland, G.L.; Myers, D.B.; Harris, W.G. Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy. Geoderma 2015, 239, 229–239. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Chodak, M.; Ludwig, B.; Khanna, P.; Beese, F. Use of near infrared spectroscopy to determine biological and chemical characteristics of organic layers under spruce and beech stands. J. Plant. Nutr. Soil Sci. 2002, 165, 27–33. [Google Scholar] [CrossRef]
- Chodak, M. Application of near infrared spectroscopy for analysis of Soils, litter and plant materials. Pol. J. Environ. Stud. 2008, 17, 631–642. [Google Scholar]
- Gholizadeh, A.; Viscarra Rossel, R.A.; Saberioon, M.; Borůvka, L.; Kratina, J.; Pavlů, L. National-scale spectroscopic assessment of soil organic carbon in forests of the Czech Republic. Geoderma 2020, 385. [Google Scholar] [CrossRef]
Factor 1 | Factor 2 | |
---|---|---|
Soil groups | ||
Arable—grassland | 25.7 | 23.1 |
Arable—forest | 20.6 | 1.96 |
Forest—grassland | 5.1 | 25.1 |
Soil types | ||
Chernozem—Phaeozem | 12.0 | 12.3 |
Chernozem—Luvisol | 19.1 | 10.2 |
Luvisol—Phaeozem | 14.3 | 5.3 |
Forest stands | ||
Oak—beech | 7.1 | 12.4 |
Oak—HML | 24.0 | 2.7 |
HML—beech | 12.2 | 15.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudek, M.; Kabała, C.; Łabaz, B.; Mituła, P.; Bednik, M.; Medyńska-Juraszek, A. Mid-Infrared Spectroscopy Supports Identification of the Origin of Organic Matter in Soils. Land 2021, 10, 215. https://doi.org/10.3390/land10020215
Dudek M, Kabała C, Łabaz B, Mituła P, Bednik M, Medyńska-Juraszek A. Mid-Infrared Spectroscopy Supports Identification of the Origin of Organic Matter in Soils. Land. 2021; 10(2):215. https://doi.org/10.3390/land10020215
Chicago/Turabian StyleDudek, Michał, Cezary Kabała, Beata Łabaz, Paweł Mituła, Magdalena Bednik, and Agnieszka Medyńska-Juraszek. 2021. "Mid-Infrared Spectroscopy Supports Identification of the Origin of Organic Matter in Soils" Land 10, no. 2: 215. https://doi.org/10.3390/land10020215
APA StyleDudek, M., Kabała, C., Łabaz, B., Mituła, P., Bednik, M., & Medyńska-Juraszek, A. (2021). Mid-Infrared Spectroscopy Supports Identification of the Origin of Organic Matter in Soils. Land, 10(2), 215. https://doi.org/10.3390/land10020215