Influence of Urban Sprawl on Microclimate of Abbottabad, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area—Abbottabad
2.2. Urban Sprawl
2.2.1. Data Collection and Pre-Processing
2.2.2. NDWI (Normalized Difference Water Index)
2.2.3. NDVI (Normalized Difference of Vegetation Index)
2.2.4. NDBI (Normalized Built-Up Index)
2.2.5. Object Based Image Classification
- Segmentation
- b.
- Classifier
2.2.6. Overall Accuracy Assessment and Kappa Coefficient
2.3. Extraction of Land Surface Temperature (LST)
2.3.1. Data Collection and Compilation
2.3.2. Conversion of DN Values to Physical Units
2.3.3. Top of Atmosphere Reflectance
2.3.4. DN to Brightness Conversion for Kelvin Temperature
3. Results
3.1. Results of Overall Accuracy and Kappa Coefficient
3.2. Results of Land Surface Temperature (LST)
4. Discussion
- Usage of high-resolution remote sensing data which may give more accurately analysis.
- Access hydropower protentional in the region which can be access using in-suit data of perennial streams which is abundantly available. However, in future research, we will use ground water storage (GWS) monitoring system such as GRACE (Gravity Recovery and Climate Experiment) mission to access the ground water variation to access the impact of climate variability on GWS.
- Access data through machine learning techniques by developing application programming interfaces (APIs).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Climate Change. Framework for Implementation of Climate Change Policy; Ministry of Climate Change: Islamabad, Pakistan, 2014.
- Emadodin, I.; Taravat, A.; Rajaei, M. Effects of urban sprawl on local climate: A case study, north central Iran. Urban. Clim. 2016, 17, 230–247. [Google Scholar] [CrossRef]
- Yu, C.N. Spatial and temporal dynamics of urban sprawl along two urban–rural transects: A case study of Guangzhou, China. Landsc. Urban. Plan. 2007, 79, 96–109. [Google Scholar] [CrossRef]
- Shao, Z.; Sumari, N.S.; Portnov, A.; Ujoh, F.; Musakwa, W.; Mandela, P.J. Urban sprawl and its impact on sustainable urban development: A combination of remote sensing and social media data. Geo-Spat. Inf. Sci. 2020, 1–15. [Google Scholar] [CrossRef]
- Ghanghermeh, A.; Roshan, G.; Orosa, J.A.; Calvo-Rolle, J.L.; Costa, Á.M. New Climatic Indicators for Improving Urban Sprawl: A Case Study of Tehran City. Entropy 2013, 15, 999–1013. [Google Scholar] [CrossRef] [Green Version]
- Barrington-Leigh, C.P.; Millard-Ball, A. Global trends toward urban street-network sprawl. Proc. Natl. Acad. Sci. USA 2020, 117, 1941–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satterthwaite, D.; Huq, S.; Pelling, M.; Reid, H.; Lankao, P.R. Adapting to Climate Change in Urban Areas; International Institute for Environmental and Development: London, UK, 2007; Volume 58, ISBN 9781843696698. [Google Scholar]
- Tahir, A.A.; Muhammad, A.; Mahmood, Q.; Ahmad, S.S.; Ullah, Z. Impact of rapid urbanization on microclimate of urban areas of Pakistan. Air Qual. Atmos. Health 2014, 8, 299–306. [Google Scholar] [CrossRef]
- Mislan, K.; Helmuth, B. Microclimate. In Encyclopedia of Ecology; Elsevier BV: Amsterdam, The Netherlands, 2008; pp. 472–475. [Google Scholar]
- Nelson, K.C.; Palmer, M.A.; Pizzuto, J.E.; Moglen, G.E.; Angermeier, P.L.; Hilderbrand, R.H.; Dettinger, M.; Hayhoe, K. Forecasting the combined effects of urbanization and climate change on stream ecosystems: From impacts to management options. J. Appl. Ecol. 2009, 46, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Kugelman, M. Urbanisation in Pakistan: Causes and consequences; NOREF: Oslo, Norway, 2016. [Google Scholar]
- Canada: Immigration and Refugee Board of Canada. Pakistan: Impact of the 8 October 2005 Earthquake on Activities of Police, Judiciary, Hospitals, Schools, Communication Systems, Transportation Systems; Institutions Issuing Identification Documentation; the General Situation in Affected Areas. Available online: https://www.refworld.org/docid/45f1480228.html (accessed on 8 October 2005).
- Hua, L.J.; Ma, Z.G.; Guo, W.D. The impact of urbanization on air temperature across China. Theor. Appl. Climatol. 2007, 93, 179–194. [Google Scholar] [CrossRef]
- Shashua-Bar, L. Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv, Israel. Int. J Climatol. 2010, 30, 44–57. [Google Scholar] [CrossRef]
- Review, A. Reconstruction, Earthquake Authority, Rehabilitation Authority Govt of Pakistan; UNESCO Office Islamabad: Islamabad, Pakistan, 2009. [Google Scholar]
- Fichera, C.R.; Modica, G.; Pollino, M. Land Cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. Eur. J. Remote Sens. 2012, 45, 1–18. [Google Scholar] [CrossRef]
- Wang, M. Understanding the Normalized Difference Vegetation Index (NDVI); Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.; Iii, C.J.T.; Tengberg, A. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Huiping, V.Y. Regional Urban Area Extraction Using MODIS data and DMSP/OLS data. In 2013 the International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2013); Atlantis Press: Amsterdam, The Netherlands, 2013; Volume 1, pp. 292–295. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, N.; Srivastava, M.; Dutta, M. Comparative Analysis of Pixel-Based and Object-Based Classification of High Resolution Remote Sensing Images—A Review. Int. J. Eng. Trends Technol. 2016, 38, 5–11. [Google Scholar] [CrossRef]
- Wei, W.; Chen, X.; Ma, A. Object-oriented information extraction and application in high-resolution remote sensing image. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium (IGARSS ’05), Seoul, South Korea, 29–29 July 2005; Volume 6, pp. 3803–3806. [Google Scholar] [CrossRef]
- Verbyla, D.L. Practical GIS Analysis; CRC Press: New York, NY, USA, 2002; ISBN 9780203217931. [Google Scholar]
- Zhao, F.; Wu, X.; Wang, S. Object-oriented Vegetation Classification Method based on UAV and Satellite Image Fusion. Proc. Comput. Sci. 2020, 174, 609–615. [Google Scholar] [CrossRef]
- Congalton, R.G.; Mead, R.A. A quantitative method to test for consistency and correctness in photointerpretation. Photogramm. Eng. Remote Sens. 1983, 49, 69–74. [Google Scholar]
- KP-SISUG Pakistan: Provincial Strategy for Inclusive and Sustainable Urban Growth in Khyber Pakhtunkhwa Abbottabad City Developmemt Plan; Asian Development Bank: Mandaluyong, Philippines, 2019.
- Rashid, S.A. Mass Migration Affecting Abbottabad’s Demographic Balance. Int. News 2015, 16, 114. [Google Scholar]
- Gonzlez, R.C.; Bitterman, M.E. Resistance to extinction in the rat as a function of percentage and distribution of reinforcement. J. Comp. Physiol. Psychol. 1964, 58, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Stehman, S.V. Estimating the Kappa Coefficient and its Variance under Stratified Random Sampling. Photogramm. Eng. Remote Sens. 1996, 62, 401–407. [Google Scholar]
- Walawender, J.P.; Hajto, M.J.; Iwaniuk, P. A new ArcGIS toolset for automated mapping of land surface temperature with the use of LANDSAT satellite data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4371–4374. [Google Scholar]
- Carlson, T.N. Potential application of satellite temperature measurement in the analysis of land use over urban areas. Bull. Am. Meteorol. Soc. 1977, 58, 1301–1303. [Google Scholar]
- Planning Commission of Pakistan. Pakistan: Framework for Economic Growth; Planning Commission of Pakistan: Islamabad, Pakistan, 2011.
- Ministry of Climate Change. Challenges and Outlook of Pakistan Chapter 9. In Cycle; Ministry of Climate Change: Islamabad, Pakistan, 2011; Volume 1897, pp. 209–233. ISBN 9784431538592. [Google Scholar]
- Abaas, Z.R. Impact of development on Baghdad’s urban microclimate and human thermal comfort. Alex. Eng. J. 2020, 59, 275–290. [Google Scholar] [CrossRef]
- Meyer, W.B.; Guss, D.M.T. Neo-Environmental Determinism: Geographical Critiques; Palgrave Macmillan: London, UK, 2017; ISBN 9783319542324. [Google Scholar]
- Yuen, B.; Choi, S. Making Spatial Change in Pakistan Cities Growth Enhancing; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Kaloustian, N.D.Y. Effects of urbanization on the urban heat island in Beirut. Urban Clim. 2015, 14, 54–65. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Pathak, C.R. Urbanization and Regional Sustainability in South Asia; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; p. 332. [Google Scholar]
- Buyadi, S.N.A.; Mohd, W.M.N.W.; Misni, A. Vegetation’s Role on Modifying Microclimate of Urban Resident. Proc. Soc. Behav. Sci. 2015, 202, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Wang, Z.-H.; Myint, S.W.; Wang, C. The hysteresis effect on surface-air temperature relationship and its implications to urban planning: An examination in Phoenix, Arizona, USA. Landsc. Urban. Plan. 2017, 167, 198–211. [Google Scholar] [CrossRef]
- Wong, N.H.; Jusuf, S.K.; Tan, C.L. Integrated urban microclimate assessment method as a sustainable urban development and urban design tool. Landsc. Urban. Plan. 2011, 100, 386–389. [Google Scholar] [CrossRef]
- Li, W.; Batty, M.; Goodchild, M.F. Real-time GIS for smart cities. Int. J. Geogr. Inf. Sci. 2020, 34, 311–324. [Google Scholar] [CrossRef]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
Period | 1990–2000 | 2001–2013 | 2014–2016 |
---|---|---|---|
Sensors | Landsat-5 TM | Landsat-7 ETM+ | Landsat-8 (TIRS) |
Row | 36 | 36 | 36 |
Path | 150 | 150 | 150 |
Month | Jan and Jun | Jan and Jun | Jan and Jun |
Spatial Resolution | 30 m | 30 m | 30 m |
Cloud Cover | 5.02% (Jan) 0.0% (Jun) | 10% (Jan) 0.01% (Jun) | 5.02% (Jan) 4.34% (Jun) |
SunElevation | 28.1 degree (Jan) 60.2 (Jun) | 28.1 degree (Jan) 65.6 (Jun) | 29.28 degree (Jan), 68.1 (Jun) |
Sun Azimuth | 142.64 degree (Jan) 105.46 degree (Jun) | 155.62 degree (Jan) 111.07 degree (Jun) | 155.46 degree (Jan) 115.07 degree (Jun) |
Earth SunDistance | 0.9849 (Jan) 1.01 (Jun) AU (Astronomical Unit) | 0.9836 (Jan) 1.016 (Jun) AU (Astronomical Unit) | 0.9834 (Jan), 1.016 (Jun) AU (Astronomical Unit) |
Format | Geo Tiff | Geo Tiff | Geo Tiff |
Constants | Landsat 5 TM | Landsat 7 ETM+ | Landsat 8 TIRS |
---|---|---|---|
K1 | 607.76 | 666.09 | K1 (Band 10)—774.8853 K1 (Band11)—480.8883 |
K2 | 1260.56 | 1282.71 | K2 (Band 10)—1321.0789 K2 (Band11)—1201.1442 |
Name of Class | 1990 | 1995 | 2000 | 2005 | 2010 | 2016 |
---|---|---|---|---|---|---|
Built-up Area (Sq. Km) | 178.74 | 200 | 222 | 290 | 325 | 477 |
Bare Land (Sq. Km) | 494.83 | 502.06 | 487 | 580.25 | 690.99 | 742 |
Vegetation (Sq. Km) | 770.75 | 756 | 780 | 650.75 | 602.33 | 500 |
Water (Sq. Km) | 524.68 | 510.94 | 480 | 448 | 350.68 | 250 |
Total | 1969 | 1969 | 1969 | 1969 | 1969 | 1969 |
(a) | |||||
Class | Classification Fields—1990 | ||||
Water | Vegetation | Built-Up Area | Bare Land | Row Total | |
Water | 40 | 0 | 0 | 4 | 44 |
Vegetation | 5 | 35 | 0 | 0 | 40 |
Urban/BU (Built-up) Area | 0 | 0 | 37 | 3 | 40 |
Bare Land | 0 | 1 | 1 | 34 | 36 |
Total Column | 45 | 36 | 38 | 41 | 160 |
Producer’s Accuracy | 88.89% | 97.22% | 97.37% | 82.93% | |
User’s Accuracy | 90.91% | 87.5% | 92.5% | 94.44% | |
Overall Accuracy | 91.25% | ||||
Kappa Coefficient | 0.883 | ||||
(b) | |||||
Class | Classification Fields—1995 | ||||
Water | Vegetation | Built-Up Area | Bare Land | Row Total | |
Water | 38 | 0 | 0 | 7 | 45 |
Vegetation | 6 | 32 | 6 | 0 | 44 |
Urban/BU (Built-up) Area | 2 | 0 | 28 | 7 | 37 |
Bare Land | 0 | 0 | 0 | 32 | 34 |
Total Column | 40 | 35 | 34 | 51 | 160 |
Producer’s Accuracy | 79.17% | 100% | 82.35% | 69.57% | |
User’s Accuracy | 84.44% | 72.73% | 75.68% | 94.12% | |
Overall Accuracy | 81.25% | ||||
Kappa Coefficient | 0.75 | ||||
(c) | |||||
Class | Classification Fields—2000 | ||||
Water | Vegetation | Built-Up Area | Bare Land | Row Total | |
Water | 35 | 3 | 0 | 0 | 38 |
Vegetation | 3 | 42 | 0 | 4 | 49 |
Urban/BU (Built-up) Area | 0 | 0 | 50 | 0 | 50 |
Bare Land | 0 | 6 | 0 | 32 | 38 |
Total Column | 38 | 51 | 50 | 36 | 175 |
Producer’s Accuracy | 92.11% | 82.35% | 100% | 88.89% | |
User’s Accuracy | 92.11% | 85.71% | 100% | 84.21% | |
Overall Accuracy | 90.86% | ||||
Kappa Coefficient | 0.88 | ||||
(d) | |||||
Class | Classification Fields—2005 | ||||
Water | Vegetation | Built-Up Area | Bare Land | Row Total | |
Water | 30 | 0 | 0 | 0 | 30 |
Vegetation | 5 | 40 | 0 | 2 | 47 |
Urban/BU (Built-up) Area | 0 | 0 | 50 | 3 | 53 |
Bare Land | 0 | 0 | 0 | 30 | 30 |
Total Column | 35 | 40 | 50 | 35 | 160 |
Producer’s Accuracy | 85.71% | 100% | 100% | 85.71% | |
User’s Accuracy | 100% | 85.11% | 94.34% | 100% | |
Overall Accuracy | 93.75% | ||||
Kappa Coefficient | 0.92 | ||||
(e) | |||||
Class | Classification Fields—2010 | ||||
Water | Vegetation | Built-Up Area | Bare Land | Row Total | |
Water | 33 | 0 | 0 | 2 | 35 |
Vegetation | 2 | 32 | 0 | 2 | 36 |
Urban/BU (Built-up) Area | 0 | 0 | 48 | 1 | 49 |
Bare Land | 0 | 3 | 2 | 35 | 40 |
Total Column | 35 | 35 | 50 | 40 | 160 |
Producer’s Accuracy | 94.29% | 91.43% | 96% | 87.5% | |
User’s Accuracy | 94.29% | 88.89% | 97.96% | 87.5% | |
Overall Accuracy | 92.5% | ||||
Kappa Coefficient | 0.90 | ||||
(f) | |||||
Class | Classification Fields—2016 | ||||
Water | Vegetation | Built-Up Area | Bare Land | Row Total | |
Water | 29 | 2 | 1 | 0 | 32 |
Vegetation | 3 | 31 | 0 | 1 | 35 |
Urban/BU (Built-up) Area | 1 | 1 | 48 | 2 | 52 |
Bare Land | 1 | 1 | 2 | 37 | 41 |
Total Column | 34 | 35 | 51 | 40 | 160 |
Producer’s Accuracy | 85.29% | 88.57% | 84.12% | 92.5% | |
User’s Accuracy | 90.63% | 88.57% | 92.31% | 90.24% | |
Overall Accuracy | 90.63% | ||||
Kappa Coefficient | 0.873 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waseem, L.A.; Khokhar, M.A.H.; Naqvi, S.A.A.; Hussain, D.; Javed, Z.H.; Awan, H.B.H. Influence of Urban Sprawl on Microclimate of Abbottabad, Pakistan. Land 2021, 10, 95. https://doi.org/10.3390/land10020095
Waseem LA, Khokhar MAH, Naqvi SAA, Hussain D, Javed ZH, Awan HBH. Influence of Urban Sprawl on Microclimate of Abbottabad, Pakistan. Land. 2021; 10(2):95. https://doi.org/10.3390/land10020095
Chicago/Turabian StyleWaseem, Liaqat Ali, Malik Abid Hussain Khokhar, Syed Ali Asad Naqvi, Dostdar Hussain, Zahoor Hussain Javed, and Hisham Bin Hafeez Awan. 2021. "Influence of Urban Sprawl on Microclimate of Abbottabad, Pakistan" Land 10, no. 2: 95. https://doi.org/10.3390/land10020095