Spatial–Temporal Characteristics of Precipitation and Its Relationship with Land Use/Cover Change on the Qinghai-Tibet Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Resources and Processing
2.3. Methodology
2.3.1. Spatial Interpolation Method
2.3.2. Trend and Variation Analysis
2.3.3. Wavelet Analysis
2.3.4. Correlation Analysis
3. Results
3.1. Characteristics of Precipitation on the QTP
3.1.1. Analysis of Temporal Variation Trend of Precipitation
3.1.2. Periodicity Analysis of Precipitation Series
3.1.3. Analysis of Spatial Variation Trend of Precipitation
3.2. Characteristics of LUCC on the QTP
3.3. Relationship between Precipitation Change and LUCC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, B.; Zhang, J.; Meng, X.; Xu, T.; Song, Y. Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Keblouti, M.; Ouerdachi, L.; Boutaghane, H. Spatial Interpolation of Annual Precipitation in Annaba-Algeria—Comparison and Evaluation of Methods. Energy Proc. 2012, 18, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Pallardy, S.G.; Hosman, K.P.; Sun, Y. Impacts of precipitation variability on plant species and community water stress in a temperate deciduous forest in the central US. Agric. For. Meteorol. 2016, 217, 120–136. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Yu, D.; Georgescu, M.; Han, Z.; Wu, J. Impacts of land use and land cover change on regional climate: A case study in the agro-pastoral transitional zone of China. Environ. Res. Lett. 2015, 10, 124025. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Liu, Y.; Zhao, X.; Rui, Y.; Zhang, J. Spatial-temporal characteristics of precipitation from 1960 to 2015 in the Three Rivers’ Headstream Region, Qinghai, China. Acta Geogr. Sin. 2019, 74, 1803–1820. [Google Scholar] [CrossRef]
- Zhao, D.; Gao, X.; Wu, S. Nonuniform variations of precipitation and temperature across China over the period 1960–2015. Int. J. Climatol. 2020. [Google Scholar] [CrossRef]
- Wu, S.Y.; Wu, Y.; Wen, J. Changing Characteristics of Precipitation in China during 1960–2012. In Proceedings of the Agu Fall Meeting, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Zhang, Q.; Ni, X.; Zhang, F. Decreasing trend in severe weather occurrence over China during the past 50 years. Sci. Rep. 2017, 7, 42310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Donat, M.; Alexander, L.; Sun, Y. Multi-dataset comparison of gridded observed temperature and precipitation extremes over China. Int. J. Climatol. 2014, 35. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, P.; Chen, X. Water resources in China from 1956 to 2000: Changing properties, causes and implications. Sci. Geogr. Sin. 2011, 31, 1430–1436. [Google Scholar]
- Liu, B.; Xu, M.; Henderson, M.; Qi, Y. Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Bhowmik, A.K.; Qi, W.; Deng, X. Comparison of spatial interpolation techniques to generate high-resolution climate surfaces for Nigeria. Int. J. Climatol. 2017, 37, 179–192. [Google Scholar] [CrossRef]
- Taesombat, W.; Sriwongsitanon, N. Areal rainfall estimation using spatial interpolation techniques. Sci. Asia 2009, 35, 268–275. [Google Scholar] [CrossRef]
- Zhang, X.; Cong, Z. Trends of precipitation intensity and frequency in hydrological regions of China from 1956 to 2005. Glob. Planet. Chang. 2014, 117. [Google Scholar] [CrossRef]
- Song, Y.; Achberger, C.; Linderholm, H.W. Rain-season trends in precipitation and their effect in different climate regions of China during 1961–2008. Environ. Res. Lett. 2011, 6, 034025. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; He, X.; Liu, Z.; Sun, W.; Dong, H.; Chu, Y. Analysis of regional economic development based on land use and land cover change information derived from Landsat imagery. Sci. Rep. 2020, 10, 12721. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chen, J. Characteristics of climate change and its relationship with land use/cover change in Yunnan Province, China. Int. J. Climatol. 2018, 38, 2520–2537. [Google Scholar] [CrossRef]
- Zheng, W.; Shen, G.; Sun, B. Spatial Analysis of the Land Use Mechanism in Urban Renewal Areas: A Case Study in Hong Kong. In Proceedings of the 2014 International Conference on Construction and Real Estate Management (ICCREM 2014), Kunming, China, 27–28 September 2014; pp. 1584–1596. [Google Scholar] [CrossRef]
- Zhang, J.; Pham, T.-T.-H.; Kalacska, M.; Turner, S. Using Landsat Thematic Mapper records to map land cover change and the impacts of reforestation programmes in the borderlands of southeast Yunnan, China: 1990–2010. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 25–36. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The Importance of Land-Cover Change in Simulating Future Climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.; Defries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.; Chapin, F.; Coe, M.; Daily, G.; Gibbs, H. Global consequences of land use. Science 2005, 309, 570. [Google Scholar] [CrossRef] [Green Version]
- Brovkin, V.; Sitch, S.; Von Bloh, W.; Claussen, M.; Bauer, E.; Cramer, W. Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Glob. Change Biol. 2004, 10, 1253–1266. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, M.; Lobell, D.B.; Field, C.B. Direct climate effects of perennial bioenergy crops in the United States. Proc. Natl. Acad. Sci. USA 2011, 108, 4307–4312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pielke, R.A.; Niyogi, D. The Role of Landscape Processes within the Climate System. Lect. Notes Earth Sci. 1970, 115, 67–85. [Google Scholar]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; An, S.; Inouye, D.W.; Schwartz, M.D. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob. Change Biol. 2015, 21, 3635–3646. [Google Scholar] [CrossRef]
- Su, Z.; Wen, J.; Dente, L.; Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.G.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Luo, T.; Xu, B.; Yang, X.; Joswiak, D.R.; Wang, W.; et al. Third Pole Environment (TPE). Environ. Dev. 2012, 3, 52–64. [Google Scholar] [CrossRef]
- Wang, T.; Yang, M.; Yan, S.; Geng, G.; Li, Q.; Wang, F. Temporal and Spatial Vegetation Index Variability and Response to Temperature and Precipitation in the Qinghai-Tibet Plateau Using GIMMS NDVI. Pol. J. Environ. Stud. 2020, 29, 4385–4395. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Y.; Wang, H.; Cao, Y. Spatial and temporal changes of vegetation index and their response to temperature and precipitation in the Tibetan Plateau based on GIMMS NDVI. J. Glaciol. Geocryol. 2020, 42, 641–652. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Shen, Y.; Jia, W.; Li, J. Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. CATENA 2016, 147, 789–796. [Google Scholar] [CrossRef]
- Feng, W.; Lu, H.; Yao, T.; Yu, Q. Drought characteristics and its elevation dependence in the Qinghai–Tibet plateau during the last half-century. Sci. Rep. 2020, 10, 14323. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China multi-period land use and land cover remote sensing monitoring dataset (CNLUCC). Data Registration and Publishing System of Resource and Environmental Science Data Center, Chinese Academy of Sciences: 2018. Available online: http://www.resdc.cn/DOI/DOI.aspx?DOIid=54 (accessed on 5 October 2020). (In Chinese).
- Xu, X. China’s annual Normalized Difference Vegetation Index (NDVI) spatial distribution dataset. 2018. Available online: http://www.resdc.cn/DOI/DOI.aspx?DOIid=49 (accessed on 5 October 2020). (In Chinese).
- Zhao, H.; Gong, L.; Qu, H.; Zhu, H.; Li, X.; Zhao, F. The climate change variations in the northern Greater Khingan Mountains during the past centuries. J. Geogr. Sci. 2016, 26, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Chen, Y.; Li, W.; Ji, M.; Dong, S.; Hong, Y. Wavelet analysis and nonparametric test for climate change in Tarim River Basin of Xinjiang during 1959–2006. Chin. Geogr. Sci. 2009, 19, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Wu, Q.; Zhang, Z.; Xu, X. Impact of climatic factors on permafrost of the Qinghai–Xizang Plateau in the time-frequency domain. Quat. Int. 2015, 374, 110–117. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K. Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos. Res. 2014, 137, 183–194. [Google Scholar] [CrossRef]
- Ronald Eastman, J.; Sangermano, F.; Ghimire, B.; Zhu, H.; Chen, H.; Neeti, N.; Cai, Y.; Machado, E.A.; Crema, S.C. Seasonal trend analysis of image time series. Int. J. Remote Sens. 2009, 30, 2721–2726. [Google Scholar] [CrossRef]
- Neeti, N.; Eastman, J.R. A Contextual Mann-Kendall Approach for the Assessment of Trend Significance in Image Time Series. Trans. Gis 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Change 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Renard, F.; Comby, J. Evaluation of rainfall spatial interpolation methods in urban area for a better management of extreme rainy events: The case of the urban area of Greater Lyon. Le Houile Blanche 2006, 6, 75–78. [Google Scholar]
- Chow, V.T. Handbook of applied hydrology; a compendium of water-resources technology. Americanentist 1964, 53, A369. [Google Scholar]
- Thiessen, A.H. Precipitation Averages for Large Areas. Mon. Weather Rev. 1911, 39, 1082–1084. [Google Scholar] [CrossRef]
- Philip, G.M.; Watson, D.F. A Precise method for determining countoured surfaces. APPEA J. 1982, 22, 205–212. [Google Scholar] [CrossRef]
- Akbari, M.; Haghighi, A.T.; Aghayi, M.M.; Javadian, M.; Tajrishy, M.; Kløve, B. Assimilation of Satellite-Based Data for Hydrological Mapping of Precipitation and Direct Runoff Coefficient for the Lake Urmia Basin in Iran. Water 2019, 11, 1624. [Google Scholar] [CrossRef] [Green Version]
- Ly, S.; Charles, C.; Degre, A. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: A review. Biotechnologie Agronomie Société Et Environnement 2013, 17, 392–406. [Google Scholar]
- Hutchinson, M.F. The Application of Thin Plate Smoothing Splines to Continent-Wide Data Assimilation. Bur. Meteorol. Res. Rep. 1991, 27, 104–113. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 14. [Google Scholar] [CrossRef]
- Cuervo-Robayo, A.; Téllez-Valdés, O.; Gómez Albores, M.; Venegas-Barrera, C.; Manjarrez, J.; Martínez-Meyer, E. An update of high-resolution monthly climate surfaces for Mexico. Int. J. Climatol. 2014, 34, 2427–2437. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yin, H.; Li, Z.; Wang, Y.; Cai, F. Assessment of Desertification Using Time Series Analysis of Hyper-temporal Vegetation Indicator in Inner Mongolia. Acta Geogr. Sin. 2011, 66, 653–661. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, J.; Wang, X. Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau. PLoS ONE 2020, 15, e0234848. [Google Scholar] [CrossRef] [PubMed]
- Weron, R. Estimating long-range dependence: Finite sample properties and confidence intervals. Phys. A Stat. Mech. Appl. 2002, 312, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Hurst, H. Long Term Storage Capacity of Reservoirs. Trans. ASCE 1951, 116, 776–808. [Google Scholar]
- Qian, B.; Rasheed, K. Hurst exponent and financial market predictability. In Proceedings of the 2nd IASTED International Conference on Financial Engineering and Applications (FEA 2004), Cambridge, MA, USA, 8–10 November 2004. [Google Scholar]
- Gao, S.; Wu, Q.; Zhang, Z.; Hou, Y.; Wang, Q. Multiple time scale characteristics of permafrost temperature variations along the Qinghai–Xizang Highway. Quat. Int. 2014, 349, 178–186. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Guerschman, J.; Paruelo, J.; Burke, I. Land use impacts on the Normalized Difference Vegetation Index in temperate Argentina. Ecol. Appl. 2003, 13, 616–628. [Google Scholar] [CrossRef]
- Jung, M.; Chang, E. NDVI-based land-cover change detection using harmonic analysis. Int. J. Remote Sens. 2015, 36. [Google Scholar] [CrossRef]
- Xu, L.; Li, B.; Yuan, Y.; Gao, X.; Zhang, T.; Qingling, S. Detecting different types of directional land cover changes Using MODIS NDVI time series dataset. Remote Sens. 2016, 8, 495. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhu, J.; Xu, Y. Establishment and assessment of the grid precipitation datasets in China for recent 50 years. J. Meteor. Sci. 2014, 34, 414–420. [Google Scholar]
- Jia, H.; Pan, D. Drought Risk Assessment in Yunnan Province of China Based on Wavelet Analysis. Adv. Meteorol. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Sun, W.; Zhang, Y. Wavelet Analysis and Mann-Kendall Test of Mean Air Temperature and Annual Precipitation in Linzhi, Tibet, China from 1960 to 2012. J. Desert Res. 2018, 38, 190–196. [Google Scholar] [CrossRef]
- He, B.; Sheng, Y.; Cao, W.; Wu, J. Characteristics of Climate Change in Northern Xinjiang in 1961–2017, China. Chin. Geogr. Sci. 2020, 30, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Sun, Y.; Christidis, N.; Stott, P.A. Contribution of Global Warming and Atmospheric Circulation to the Hottest Spring in Eastern China in 2018. Adv. Atmos. Sci. 2020, 37, 1285–1294. [Google Scholar] [CrossRef]
- Budyko, M.I. The effect of solar radiation variations on the climate of the Earth. Tellus 1969, 21, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Gray, L.J.; Beer, J.; Geller, M.; Haigh, J.D.; Lockwood, M.; Matthes, K.; Cubasch, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar influences on climate. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Nikolov, T.; Petrov, N. Main factors influencing climate change: A review. Comptes Rendus de L’Academie Bulgare des Sciences 2014, 67, 1455–1476. [Google Scholar]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Xue, X.; You, Q.; Peng, F.; Dong, S.; Duan, H. Experimental Warming Aggravates Degradation-Induced Topsoil Drought in Alpine Meadows of the Qinghai–Tibetan Plateau. Land Degrad. Dev. 2017, 28, 2343–2353. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Chen, B.; Shi, P.; Zhang, J.; Shen, Z.; Tao, J.; Wu, J. Causes and Restoration of Degraded Alpine Grassland in Northern Tibet. J. Resour. Ecol. 2013, 4, 43–49. [Google Scholar] [CrossRef]
- Xu, H.-J.; Wang, X.-P.; Zhang, X.-X. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecol. Eng. 2016, 92, 251–259. [Google Scholar] [CrossRef]
- Gao, Q.-Z.; Wan, Y.-F.; Xu, H.-M.; Li, Y.; Jiangcun, W.-Z.; Borjigidai, A. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quat. Int. 2010, 226, 143–150. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Li, Y.; Cheng, H. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai–Tibet Plateau, China. CATENA 2007, 70, 506–514. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Chen, J.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai-Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Cong, N.; Shen, M.; Yang, W.; Yang, Z.; Zhang, G.; Piao, S. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. Int. J. Biometeorol. 2017, 61, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Y.; Liu, L.; Wu, J.; Wang, Z.; Li, S.; Zhang, H.; Zu, J.; Ding, M.; Paudel, B. Spatiotemporal Patterns of Vegetation Greenness Change and Associated Climatic and Anthropogenic Drivers on the Tibetan Plateau during 2000–2015. Remote Sens. 2018, 10, 1525. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, X.; Wang, Q.; Wang, C.; Zhan, Z.; Chen, L.; Yan, J.; Qu, R. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 2013, 444, 356–362. [Google Scholar] [CrossRef] [PubMed]
1967–2016 | 1967–1969 | 1970–1979 | 1980–1989 | 1990–1999 | 2000–2010 | 2010–2016 | |
---|---|---|---|---|---|---|---|
Annual | 413.4 | 397.5 | 400.9 | 405.2 | 388.0 | 436.9 | 447.0 |
Spring | 69.3 | 60.2 | 66.4 | 66.9 | 58.5 | 77.9 | 83.8 |
Summer | 250.9 | 247.8 | 240.7 | 245.3 | 242.7 | 261.3 | 271.8 |
Autumn | 81.1 | 79.1 | 82.2 | 81.5 | 76.2 | 84.7 | 81.8 |
Winter | 12.1 | 11.1 | 11.2 | 11.8 | 10.7 | 15.2 | 12.2 |
Oscillation Period (Years) | Precipitation Change Node | Infer the Change Node and Duration | ||
---|---|---|---|---|
From Abundant to Dry | From Dry to Abundant | |||
Annual | 22 | 1984, 2006 | 1973, 1995 | 2017 from dry to abundant, 2017–2028 |
12 | 1973, 1985, 1997, 2009 | 1968, 1979, 1991, 2003, 2016 | 2016–2021 | |
Spring | 22 | 1983, 2006 | 1972, 1994 | 2017 from dry to abundant, 2017–2028 |
12 | 1975, 1986, 1999, 2012 | 1969, 1980, 1992, 2006 | 2017 from dry to abundant, 2017–2022 | |
Summer | 24 | 1985, 2008 | 1973, 1996 | 2019 from dry to abundant, 2019–2030 |
10 | 1974, 1985, 1996, 2006 | 1969, 1980, 1991, 2001, 2016 | 2016–2021 | |
Autumn | 24 | 1985, 2008 | 1973, 1996 | 2019 from dry to abundant, 2019–2030 |
12 | 1974, 1985, 1997, 2008 | 1969, 1979, 1991, 2003, 2016 | 2016–2021 | |
Winter | 20 | 1981, 2001 | 1972, 1991, 2011 | 2021 from abundant to dry, 2021–2031 |
12 | 1970, 1981, 1995, 2007 | 1975, 1989, 2001, 2011 | 2017 from abundant to dry, 2017–2022 |
Code | Land-Use Type | Area Ratio/% | 1980–2018 Change | |
---|---|---|---|---|
1980 | 2018 | |||
1 | Cultivated land | 0.89 | 1.03 | 0.14% |
2 | Woodland | 10.42 | 12.04 | 1.62% |
3 | Grassland | 58.16 | 48.69 | −9.47% |
4 | Waters | 4.62 | 5.03 | 0.41% |
5 | Urban and rural, industrial, mining, residential land | 0.05 | 0.10 | 0.05% |
6 | Unused land | 25.86 | 33.11 | 7.25% |
2018 | ||||||||
---|---|---|---|---|---|---|---|---|
Land-Use Type Code | 1 | 2 | 3 | 4 | 5 | 6 | Proportion Total | |
1980 | 1 | 0.35 | 0.15 | 0.31 | 0.03 | 0.03 | 0.02 | 0.89 |
2 | 0.18 | 6.75 | 3.16 | 0.07 | 0.01 | 0.25 | 10.42 | |
3 | 0.43 | 4.30 | 36.64 | 1.57 | 0.04 | 15.18 | 58.16 | |
4 | 0.02 | 0.12 | 0.95 | 2.44 | 0.00 | 1.09 | 4.62 | |
5 | 0.02 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 | 0.05 | |
6 | 0.03 | 0.72 | 7.61 | 0.92 | 0.01 | 16.57 | 25.86 | |
Proportion total | 1.03 | 12.04 | 48.69 | 5.03 | 0.10 | 33.11 | 100.00 |
NDVI Value Classification | Proportion | NDVI Change Trend | Proportion |
---|---|---|---|
[0,0.15) | 32.06% | Slightly reduced | 2.99% |
[0.15,0.3) | 24.81% | Significantly reduced | 6.74% |
[0.3,0.5) | 12.57% | stable | 40.10% |
[0.5,0.7) | 14.06% | Slight increase | 5.02% |
[0.7,0.90] | 16.50% | Significantly increased | 45.15% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Zhou, W. Spatial–Temporal Characteristics of Precipitation and Its Relationship with Land Use/Cover Change on the Qinghai-Tibet Plateau, China. Land 2021, 10, 269. https://doi.org/10.3390/land10030269
Zhang B, Zhou W. Spatial–Temporal Characteristics of Precipitation and Its Relationship with Land Use/Cover Change on the Qinghai-Tibet Plateau, China. Land. 2021; 10(3):269. https://doi.org/10.3390/land10030269
Chicago/Turabian StyleZhang, Bo, and Wei Zhou. 2021. "Spatial–Temporal Characteristics of Precipitation and Its Relationship with Land Use/Cover Change on the Qinghai-Tibet Plateau, China" Land 10, no. 3: 269. https://doi.org/10.3390/land10030269