Modelling the Impacts of Habitat Changes on the Population Density of Eurasian Skylark (Alauda arvensis) Based on Its Landscape Preferences
Abstract
:1. Introduction
- identify skylark land-cover preferences on the basis of the local-scale LULC map;
- analyze the impact of landscape patterns of preferred and nonpreferred land-cover classes (habitats), and estimate the impact of all LULC-related variables (proportions, shape, and size characteristics of patches, heterogeneity) on skylark abundance; and
- estimate, based on our findings, the skylark population density inside the Natura 2000 Special Protection Area (SPA) of Hungary based on the HEB land cover categories.
2. Materials and Methods
2.1. Study Area
2.2. Databases
2.2.1. Skylark-Abundance Data
2.2.2. Land-Cover Database—Hungarian Ecosystem Basemap
2.3. Landscape Metrics
2.4. Statistical Analyses
2.5. Model Validation
2.6. Prediction of Skylark Population in Natura 2000 SPAs
3. Results
3.1. Relationship between Land-Cover Proportions and Skylark Abundance
3.2. Relationship between Landscape Structure (Compositon) and Skylark Abundance
3.3. Impact of Preferred Land-Cover Categories and Their Landscape Metrics
3.4. Model Validation
3.5. Prediction of Skylark Population of Natura 2000 Special Protection Areas of Hungary
4. Discussion
4.1. Impact of Proportions of LULC Categories on Skylark Abundance
4.2. Impact of Land-Cover Categories and Their Landscape Metrics
4.3. Predicted Population Inside the Natura 2000 SPAs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
HEB LULC Categories | The Investigated LULC Categories | |||
---|---|---|---|---|
Level 1 | Level 2 Code | Level 2 (~EUNIS 2) | Level 2 Code | Level 2 |
Urban | 11 | Buildings | 10 | Built-up |
12 | Roads and railways | |||
13 | Other paved or non-paved artificial areas | |||
14 | Green urban areas | 14 | Green urban areas | |
Croplands | 21 | Arable land | 21 | Arable land |
22 | Permanent crops | 22 | Permanent crops | |
23 | Complex cultivation pattern | 23 | Complex cultivation pattern | |
Grasslands and other herbaceous vegetations | 31 | Open sand steppes | 31 | Open sand steppes |
32 | Salt steppes and meadows | 32 | Salt steppes and meadows | |
33 | Open rocky grasslands | 33 | Open rocky grasslands | |
34 | Closed grasslands in hills and mountains or on cohesive soil | 34 | Closed grasslands in hills and mountains or on cohesive soil | |
35 | Other herbaceous vegetation | 35 | Other herbaceous vegetation | |
Forests and woodlands | 41 | Forests without excess water | 40 | Forest |
42 | Natural riverine (gallery) forests | |||
43 | Other forests with excess water | |||
44 | Plantations | |||
45 | Non-wooded areas registered as forest, or areas under reforestation | |||
46 | Other ligneous vegetation, woodlands | |||
Wetlands | 51 | Herbaceous-dominated wetlands | 50 | Wetlands and water surfaces |
52 | Woodland-dominated wetlands (uncertain translation) | |||
Rivers and lakes | 61 | Water bodies | ||
62 | Water courses |
Predictors | Estimate | Standard deviation | Conf. Int (95%) | p-Value | Relative importance (%) |
---|---|---|---|---|---|
(Intercept) | −3.2352 *** | 0.3579 | −3.9005–−2.5772 | <0.001 | |
MPS of arable lands | 1.2850 *** | 0.3588 | 0.6528–1.9195 | <0.001 | 100 |
MPS of Grasslands | 0.9689 *** | 0.2755 | 0.4145–1.5358 | <0.001 | 100 |
MFRACT of arable lands | −0.1719 | 0.2928 | −0.7136–0.3745 | 0.557 | 31 |
MFRACT of grasslands | 0.6255 ** | 0.2409 | 0.1657–1.0845 | 0.009 | 100 |
Total area of arable lands | 1.6482 *** | 0.1916 | 1.2788–2.0202 | <0.001 | 100 |
Total area of grasslands | 2.4023 *** | 0.2731 | 1.8781–2.9262 | <0.001 | 100 |
Variables | df | logLik | AICc | Delta | Weight |
---|---|---|---|---|---|
1/2/4/6/7/8/9/10/11 | 11 | −4658.47 | 9339.02 | 0 | 0.38 |
1/2/3/4/6/7/8/9/10/11 | 12 | −4657.9 | 9339.91 | 0.89 | 0.24 |
1/2/4/5/6/7/8/9/10/11 | 12 | −4658.14 | 9340.39 | 1.37 | 0.19 |
1/2/4/6/7/8/10/11 | 10 | −4660.2 | 9340.48 | 1.46 | 0.18 |
References
- FAO. World Reference Base for Soil Resources 2014 International Soil Classification system for Naming Soils and Creating Legends for Soil Maps; Update 2015; World Soil Resources Reports; FAO: Rome, Italy, 2014. [Google Scholar]
- Morelli, F.; Benedetti, Y.; Callaghan, C.T. Ecological specialization and population trends in European breeding birds. Glob. Ecol. Conserv. 2020, 22, e00996. [Google Scholar] [CrossRef]
- Toth, G.; Huzui-Stoiculescu, A.; Toth, A.-I.; Stoiculescu, R. How Do Natura 2000 Areas Intersect with Peoples’ Livelihood Strategies in High Nature Value Farmlands in Southern Transylvania? Land 2020, 9, 484. [Google Scholar] [CrossRef]
- Guerrero, I.; Morales, M.B.; Oñate, J.J.; Geiger, F.; Berendse, F.; de Snoo, G.; Eggers, S.; Pärt, T.; Bengtsson, J.; Clement, L.W.; et al. Response of ground-nesting farmland birds to agricultural intensification across Europe: Landscape and field level management factors. Biol. Conserv. 2012, 152, 74–80. [Google Scholar] [CrossRef]
- Verhulst, J.; Báldi, A.; Kleijn, D. Relationship between land-use intensity and species richness and abundance of birds in Hungary. Agric. Ecosyst. Environ. 2004, 104, 465–473. [Google Scholar] [CrossRef]
- Gottschalk, T.K.; Dittrich, R.; Diekötter, T.; Sheridan, P.; Wolters, V.; Ekschmitt, K. Modelling land-use sustainability using farmland birds as indicators. Ecol. Indic. 2010, 10, 15–23. [Google Scholar] [CrossRef]
- Moreira, F.; Beja, P.; Morgado, R.; Reino, L.; Gordinho, L.; Delgado, A.; Borralho, R. Effects of field management and landscape context on grassland wintering birds in Southern Portugal. Agric. Ecosyst. Environ. 2005, 109, 59–74. [Google Scholar] [CrossRef]
- Piha, M.; Pakkala, T.; Tiainen, J. Habitat preferences of the Skylark Alauda Arvensis in southern Finland. Ornis Fenn. 2003, 80, 97–110. [Google Scholar]
- Gil-Tena, A.; De Cáceres, M.; Ernoult, A.; Butet, A.; Brotons, L.; Burel, F. Agricultural landscape composition as a driver of farmland bird diversity in Brittany (NW France). Agric. Ecosyst. Environ. 2015, 205, 79–89. [Google Scholar] [CrossRef]
- Szilassi, P.; Csikos, N.; Galle, R.; Szep, T. Recent and Predicted Changes in Habitat of the Eurasian Skylark Alauda arvensis Based on the Link between the Land Cover and the Field Survey Based Abundance Data. Acta Ornithol. 2019, 54, 59. [Google Scholar] [CrossRef]
- Csikós, N.; Szilassi, P. Impact of Energy Landscapes on the Abundance of Eurasian Skylark (Alauda arvensis), an Example from North Germany. Sustainability 2020, 12, 664. [Google Scholar] [CrossRef] [Green Version]
- Link, P.M.; Schleupner, C. Agricultural land use changes in Eiderstedt: Historic developments and future plans. Coastline Rep. 2007, 9, 928–2734. [Google Scholar]
- Borges, F.; Glemnitz, M.; Schultz, A.; Stachow, U. Assessing the habitat suitability of agricultural landscapes for characteristic breeding bird guilds using landscape metrics. Environ. Monit. Assess. 2017, 189, 166. [Google Scholar] [CrossRef] [Green Version]
- Moser, D.; Zechmeister, H.G.; Plutzar, C.; Sauberer, N.; Wrbka, T.; Grabherr, G. Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landsc. Ecol. 2002, 17, 657–669. [Google Scholar] [CrossRef]
- Schindler, S.; von Wehrden, H.; Poirazidis, K.; Wrbka, T.; Kati, V. Multiscale performance of landscape metrics as indicators of species richness of plants, insects and vertebrates. Ecol. Indic. 2013, 31, 41–48. [Google Scholar] [CrossRef]
- Berg, Å.; Wretenberg, J.; Zmihorski, M.; Hiron, M.; Pärt, T. Linking occurrence and changes in local abundance of farmland bird species to landscape composition and land-use changes. Agric. Ecosyst. Environ. 2015, 204, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Redlich, S.; Martin, E.A.; Wende, B.; Steffan-Dewenter, I. Landscape heterogeneity rather than crop diversity mediates bird diversity in agricultural landscapes. PLoS ONE 2018, 13, e0200438. [Google Scholar] [CrossRef] [Green Version]
- Praus, L.; Weidinger, K. Breeding Biology of Skylarks Alauda arvensis in Maize and Other Crop Fields. Acta Ornithol. 2015, 50, 59–68. [Google Scholar] [CrossRef]
- Hoffmann, J.; Wittchen, U.; Berger, G.; Stachow, U. Moving window growth—A method to characterize the dynamic growth of crops in the context of bird abundance dynamics with the example of Skylark (Alauda arvensis). Ecol. Evol. 2018, 8, 8880–8893. [Google Scholar] [CrossRef] [Green Version]
- Loretto, M.C.; Schöll, E.M.; Hille, S. Occurrence of Eurasian Skylark Alauda arvensis territories in relation to urban area and heterogeneous farmland. Bird Study 2019, 66, 273–278. [Google Scholar] [CrossRef]
- The Birds Directive—Environment—European Commission. Available online: https://ec.europa.eu/environment/nature/legislation/birdsdirective/index_en.htm (accessed on 15 February 2021).
- Csörgo, T.; Karcza, Z.; Halmos, G.; Magyar, G.; Gyurácz, J.; Szép, T.; Bankovics, A.; Schmidt, A.; Schmidt, E. Hungarian Bird Migration Atlas; Kossuth Kiadó: Budapest, Hungary, 2009; ISBN 978-963-09-5865-3. [Google Scholar]
- Cramp, S. The Birds of the Western Palearctic; Oxford University Press: Oxford, UK, 1988. [Google Scholar]
- Campbell, R.W.; Van Damme, L.M.; Johnson, S.R.; Donald, P.; Garcia, E. Eurasian Skylark (Alauda arvensis). In Birds of the World; Cornell Lab of Ornithology: Ithaca, NY, USA, 2020. [Google Scholar]
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, Ü. Landscape Metrics and Indices: An Overview of Their Use in Landscape Research. Living Rev. Landsc. Res. 2009, 3, 28. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Szilassi, P.; Bata, T.; Szabó, S.; Czúcz, B.; Molnár, Z.; Mezősi, G. The link between landscape pattern and vegetation naturalness on a regional scale. Ecol. Indic. 2017, 81, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Walz, U. Landscape structure, landscape metrics and biodiversity. Living Rev. Landsc. Res. 2011, 5, 3. [Google Scholar] [CrossRef]
- Schlager, P.; Ruppert-Winkel, C.; Schmieder, K. Assessing the potential impacts of bioenergy cropping on a population of the ground-breeding bird Alauda arvensis: A case study from southern Germany. Landsc. Res. 2020, 45, 1000–1017. [Google Scholar] [CrossRef]
- Vögeli, M.; Serrano, D.; Pacios, F.; Tella, J.L. The relative importance of patch habitat quality and landscape attributes on a declining steppe-bird metapopulation. Biol. Conserv. 2010, 143, 1057–1067. [Google Scholar] [CrossRef] [Green Version]
- Farkas, J.Z.; Lennert, J. Modelling and predicting of the land use change in Hungary. In Climate Change—Society—Economy: Long-Term Processes and Trends in Hungary; Czirfusz, M., Hoyk, E., Suvák, A., Eds.; Publikon: Pécs, Hungary, 2015; pp. 193–221. ISBN 978-615-5457-62-3. [Google Scholar]
- Tryjanowski, P.; Hartel, T.; Bldi, A.; Szymański, P.; Tobolka, M.; Herzon, I.; Goławski, A.; Konvička, M.; Hromada, M.; Jerzak, L.; et al. Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe. Acta Ornithol. 2011, 46, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Báldi, A.; Faragó, S. Long-term changes of farmland game populations in a post-socialist country (Hungary). Agric. Ecosyst. Environ. 2007, 118, 307–311. [Google Scholar] [CrossRef]
- Szép, T.; Gibbson, D. Monitoring of common breeding birds in Hungary using a randomised sampling design. RING 2000, 22, 45–55. [Google Scholar]
- Szép, T.; Nagy, K. The GIS UTM Quadrants based Hungarian Bird Monitoring database of the BirdLife Hungary. Természetvédelmi Közlemények 2001, 9, 31–37. [Google Scholar]
- Szép, T.; Nagy, K.; Nagy, Z.; Halmos, G. Population trends of common breeding and wintering birds in hungary, decline of long-distance migrant and farmland birds during 1999–2012. Ornis Hungarica 2012, 20, 13–63. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Huth, A.; Frank, K. Bioenergy production and Skylark (Alauda arvensis) population abundance—a modelling approach for the analysis of land-use change impacts and conservation options. GCB Bioenergy 2012, 4, 713–727. [Google Scholar] [CrossRef]
- Miguet, P.; Gaucherel, C.; Bretagnolle, V. Breeding habitat selection of Skylarks varies with crop heterogeneity, time and spatial scale, and reveals spatial and temporal crop complementation. Ecol. Modell. 2013, 266, 10–18. [Google Scholar] [CrossRef]
- NÖSZTÉP. Available online: http://alapterkep.termeszetem.hu/ (accessed on 15 February 2021).
- STADAT–4.1.21. Harvested Area, Total Production and Average Yield of Main Field Crops (1990–). Available online: https://www.ksh.hu/docs/eng/xstadat/xstadat_annual/i_omn007a.html (accessed on 15 February 2021).
- Lang, S.; Tiede, D. vLATE Extension for ArcGIS 2003. Available online: https://sites.google.com/site/largvlate/gis-tools/v-late (accessed on 15 February 2021).
- Blaschke, T. The role of the spatial dimension within the framework of sustainable landscapes and natural capital. Landsc. Urban Plan. 2006, 75, 198–226. [Google Scholar] [CrossRef]
- Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995; ISBN 0521479800. [Google Scholar]
- Barton, K. Package MuMIn, Version 1.43.15; 2015. Available online: https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (accessed on 15 March 2021).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model Inference: A Practical Information—Theoretical Approach; Springer: Berlin/Heidelberg, Germany, 2002; Volume 3, pp. 2–3. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. Package ‘lmerTest.’. R Found. Stat. Comput. 2020, 3, 1. [Google Scholar]
- Lüdecke, D. ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. J. Open Source Softw. 2018, 3, 772. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, D.E.; Wilson, A.M.; Browne, S.J.; Vickery, J.A. Effects of habitat type and management on the abundance of skylarks in the breeding season. J. Appl. Ecol. 1999, 36, 856–870. [Google Scholar] [CrossRef]
- Perkins, A.J.; Whittingham, M.J.; Bradbury, R.B.; Wilson, J.D.; Morris, A.J.; Barnett, P.R. Habitat characteristics affecting use of lowland agricultural grassland by birds in winter. Biol. Conserv. 2000, 95, 279–294. [Google Scholar] [CrossRef]
- Nagy, S.; Nagy, K.; Szép, T. Potential Impact of EU Accession on Common Farmland Bird Populations in Hungary. Acta Ornithol. 2009, 44, 37–44. [Google Scholar] [CrossRef]
- Gevers, J.; Høye, T.T.; Topping, C.J.; Glemnitz, M.; Schröder, B. Biodiversity and the mitigation of climate change through bioenergy: Impacts of increased maize cultivation on farmland wildlife. GCB Bioenergy 2011, 3, 472–482. [Google Scholar] [CrossRef]
- Wretenberg, J.; Lindström, Å.; Svensson, S.; Pärt, T. Linking agricultural policies to population trends of Swedish farmland birds in different agricultural regions. J. Appl. Ecol. 2007, 44, 933–941. [Google Scholar] [CrossRef]
- Sauerbrei, R.; Ekschmitt, K.; Wolters, V.; Gottschalk, T.K. Increased energy maize production reduces farmland bird diversity. GCB Bioenergy 2014, 6, 265–274. [Google Scholar] [CrossRef]
- Hoffmann, J.; Wittchen, U.; Stachow, U.; Berger, G. Moving Window Abundance - A method to characterise the abundance dynamics of farmland birds: The example of Skylark (Alauda arvensis). Ecol. Indic. 2016, 60, 317–328. [Google Scholar] [CrossRef]
- Dietzen, C.; Edwards, P.J.; Wolf, C.; Ludwigs, J.-D.; Luttik, R. Focal species of birds in European crops for higher tier pesticide risk assessment. Integr. Environ. Assess. Manag. 2014, 10, 247–259. [Google Scholar] [CrossRef]
- Csikós, N. Impact of land cover change on the abundance of farmland birds. In Proceedings of the 26th International Symposium on Analytical and Environmental Problems; Alapi, T., Berkecz, R., Ilisz, I., Eds.; University of Szeged: Szeged, Hungary, 2020; pp. 113–117. [Google Scholar]
- Koleček, J.; Reif, J.; Weidinger, K. The abundance of a farmland specialist bird, the skylark, in three European regions with contrasting agricultural management. Agric. Ecosyst. Environ. 2015, 212, 30–37. [Google Scholar] [CrossRef]
- Hamer, T.L.; Flather, C.H.; Noon, B.R. Factors associated with grassland bird species richness: The relative roles of grassland area, landscape structure, and prey. Landsc. Ecol. 2006, 21, 569–583. [Google Scholar] [CrossRef]
- Reif, J.; Hanzelka, J. Grassland winners and arable land losers: The effects of post-totalitarian land use changes on long-term population trends of farmland birds. Agric. Ecosyst. Environ. 2016, 232, 208–217. [Google Scholar] [CrossRef]
- Báldi, A.; Batáry, P.; Erdos, S. Effects of grazing intensity on bird assemblages and populations of Hungarian grasslands. Agric. Ecosyst. Environ. 2005, 108, 251–263. [Google Scholar] [CrossRef]
- Suárez, F.; Garza, V.; Morales, M.B. The role of extensive cereal crops, dry pasture and shrub-steppe in determining skylark Alauda arvensis densities in the Iberian Peninsula. Agric. Ecosyst. Environ. 2003, 95, 551–557. [Google Scholar] [CrossRef]
- Donald, P.F.; Green, R.E.; Heath, M.F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. B Biol. Sci. 2001, 268, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.; Paul, J.-P.; Martin, J.-L.; Bretagnolle, V. The benefits of extensive agriculture to birds: The case of the little bustard. J. Appl. Ecol. 2001, 38, 963–975. [Google Scholar] [CrossRef] [Green Version]
- Brotons, L.; Wolff, A.; Paulus, G.; Martin, J.L. Effect of adjacent agricultural habitat on the distribution of passerines in natural grasslands. Biol. Conserv. 2005, 124, 407–414. [Google Scholar] [CrossRef]
- Browne, S.; Vickery, J.; Chamberlain, D. Densities and population estimates of breeding skylarks alauda arvensis in britain in 1997. Bird Study 2000, 47, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Eraud, C.; Marie Boutin, J. Density and productivity of breeding Skylarks Alauda arvensis in relation to crop type on agricultural lands in western France. Bird Study 2002, 49, 287–296. [Google Scholar] [CrossRef]
- Copland, A.S.; Crowe, O.; Wilson, M.W.; O’Halloran, J. Habitat associations of Eurasian Skylarks Alauda arvensis breeding on Irish farmland and implications for agri-environment planning. Bird Study 2012, 59, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Butler, S.J.; Freckleton, R.P.; Renwick, A.R.; Norris, K. An objective, niche-based approach to indicator species selection. Methods Ecol. Evol. 2012, 3, 317–326. [Google Scholar] [CrossRef]
- Wakeham-Dawson, A. Hares and Skylarks as Indicators of Environmentally Sensitive Farming on the South Downs, Open Research Online. Ph.D. Thesis, The Open University, Kents Hill, UK, 1995. [Google Scholar]
- Achtziger, R.; Stickroth, H.; Zieschank, R. Nachhaltigkeitsindikator für die Artenvielfalt–ein Indikator für den Zustand der Natur und Landschaft in Deutschland. Angew. Landschaftsökologie 2004, 63, 137. [Google Scholar]
- Gippoliti, S.; Battisti, C. More cool than tool: Equivoques, conceptual traps and weaknesses of ecological networks in environmental planning and conservation. Land Use Policy 2017, 68, 686–691. [Google Scholar] [CrossRef]
Structural Feature | Index | Name and Description | Calculation |
---|---|---|---|
Size and shape related metrics | MPS | Mean patch size is computed by dividing the area of the patches of the total landscape (or class) by the number of patches. | where aij represents the area of the j** patch in the i** class, ni represents the number of patches in the i** class, n represents the number of patches (>0). |
MFRACT | Mean fractal dimension index equals 2 times the logarithm of the patch perimeter (m) divided by the logarithm of patch area (m*). | where pij represents the perimeter of the j***patch in class i**, aij represents the area of the j***patch in class i**, ni represents the number of patches in the i** class, n represents the number of patches (1–2). | |
Landscape Heterogeneity | SDI | The Shannon diversity index (SDI) provides more information about area composition than simply area richness (i.e., the number of land-cover types present). | where (m) represents the number of different land-cover types, Pi = the relative abundance of different land-cover types in each BMMU quadrant or LUCAS transect. |
Variable | Estimates | Standard Deviation | Conf. Int (95%) | p-Value | Relative Importance (%) | VIF |
---|---|---|---|---|---|---|
Built-up | −0.019 * | 0.008 | −0.035–0.003 | 0.022 | 100 | 1.88 |
Green urban areas | −0.024 *** | 0.005 | −0.034–0.014 | <0.001 | 100 | 1.93 |
Permanent crops | −0.014 | 0.013 | −0.040–0.013 | 0.308 | 24 | 1.03 |
Complex cultivation pattern | −0.034 * | 0.015 | −0.064–0.005 | 0.021 | 100 | 1.05 |
Open sand steppes | −0.014 | 0.012 | −0.037–0.009 | 0.228 | 19 | 1.02 |
Salt steppes and meadows | 0.059 *** | 0.002 | 0.054–0.063 | <0.001 | 100 | 1.17 |
Open rocky grasslands | −0.045 | 0.114 | −0.269–0.180 | 0.697 | 100 | 1.06 |
Closed grasslands in hills and mountains or on cohesive soil | 0.067 *** | 0.004 | 0.058–0.076 | <0.001 | 100 | 1.03 |
Other herbaceous vegetation | −0.019 | 0.075 | −0.165–0.128 | 0.805 | 80 | 1.07 |
Forests | −0.021 *** | 0.002 | −0.025–0.016 | <0.001 | 100 | 1.11 |
Wetlands and water surfaces | −0.030 *** | 0.006 | −0.041–0.018 | <0.001 | 100 | 1.02 |
Variable | Estimates | Standard Deviation | Conf. Int (95%) | p-Value | |
---|---|---|---|---|---|
Shape and size related landscape metrics | MPS of preferred LC types | 0.4345 *** | 0.0001 | 0.2324–0.6156 | <0.001 |
MFRACT of preferred LC types | 1.1635 *** | 0.3349 | 0.5072–1.8199 | 0.001 | |
MPS of non-preferred LC types | −1.9126 *** | 0.0004 | −2.7145–1.1237 | <0.001 | |
MFRACT of non-preferred LC types | −1.1993 ** | 0.4205 | −2.0236–0.3751 | 0.004 | |
Landscape heterogeneity | Shannon Diversity Index of landscape | −1.3711 *** | 0.1639 | −1.6923–1.0500 | <0.001 |
Spearman’s Rho | Mean Absolute Error | Mean Absolute Percentage Error | Number of Data Pairs | |
---|---|---|---|---|
Land cover types + landscape metrics | 0.504 ** | 2.12 | 37.77% | 949 |
Land cover types | 0.493 ** | 2.95 | 46.56% |
Study Area | Estimated Skylark Density (Individuals/km *) | Reference |
---|---|---|
Natura 2000 SPA in Hungary | 0–6.13 | This study |
Great Britain | 1.97–7.45 | Browne et al. 2000 [67] |
Small study area in France | 3.28–3.69 | Eraud and Boutin 2002 [68] |
Spain | ~5.21 | Suárez et al. 2003 [63] |
Ireland | 1.72 | Copland et al. 2012 [69] |
Northwest Ireland | 4.87 | Copland et al. 2012 [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csikós, N.; Szilassi, P. Modelling the Impacts of Habitat Changes on the Population Density of Eurasian Skylark (Alauda arvensis) Based on Its Landscape Preferences. Land 2021, 10, 306. https://doi.org/10.3390/land10030306
Csikós N, Szilassi P. Modelling the Impacts of Habitat Changes on the Population Density of Eurasian Skylark (Alauda arvensis) Based on Its Landscape Preferences. Land. 2021; 10(3):306. https://doi.org/10.3390/land10030306
Chicago/Turabian StyleCsikós, Nándor, and Péter Szilassi. 2021. "Modelling the Impacts of Habitat Changes on the Population Density of Eurasian Skylark (Alauda arvensis) Based on Its Landscape Preferences" Land 10, no. 3: 306. https://doi.org/10.3390/land10030306
APA StyleCsikós, N., & Szilassi, P. (2021). Modelling the Impacts of Habitat Changes on the Population Density of Eurasian Skylark (Alauda arvensis) Based on Its Landscape Preferences. Land, 10(3), 306. https://doi.org/10.3390/land10030306