Urbanization Significantly Affects Pan-Evaporation Trends in Large River Basins of China Mainland
Abstract
:1. Introduction
2. Data and Methods
2.1. Date Sources
2.2. Regions (Basins) and Periods
2.3. Reference Stations
2.4. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, H.; Liu, X.; Liu, C.; Dai, X.; Zhu, R. Assessing contributions to panevaporation trends in Haihe River Basin, China. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Lister, D.H.; Osborn, T.J.; Harpham, C.; Salmon, M.; Morice, C.P. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. 2012. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Ren, G.; Xu, W.; Li, Q.; Ren, Y. Global land-surface air temperature change based on the new CMA GLSAT data set. Sci. Bull. 2017, 62, 236–238. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Ren, G.; Qin, Y.; Zhai, Y.; Sun, X. Urbanization Effects on Estimates of Global Trends in Mean and Extreme Air Temperature. J. Clim. 2021, 34, 1923–1945. [Google Scholar] [CrossRef]
- Osborn, T.J.; Jones, P.D.; Lister, D.H.; Morice, C.P.; Harris, I.C. Land Surface Air Temperature Variations Across the Globe Updated to 2019: The CRUTEM5 Data Set. J. Geophys. Res. Atmos. 2021, 126. [Google Scholar] [CrossRef]
- Golubev, V.S.; Lawrimore, J.H.; Groisman, P.Y.; Speranskaya, N.A.; Zhuravin, S.A.; Menne, M.J.; Peterson, T.C.; Malone, R.W. Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett. 2001, 28, 2665–2668. [Google Scholar] [CrossRef]
- Liu, C.; Zeng, Y. Changes of Pan Evaporation in the Recent 40 Years in the Yellow River Basin. Water Int. 2004, 29, 510–516. [Google Scholar] [CrossRef]
- Peterson, T.C.; Golubev, V.S.; Groisman, P.Y. Evaporation losing its strength. Nature 1995, 377, 687–688. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Bidegain, M.; Tomas-Burguera, M.; Dominguez-Castro, F.; El Kenawy, A.; McVicar, T.R.; Azorin-Molina, C.; López-Moreno, J.I.; Nieto, R.; Gimeno, L. A comparison of temporal variability of observed and model-based pan evaporation over Uruguay (1973–2014). Int. J. Climatol. 2018, 38, 337–350. [Google Scholar] [CrossRef]
- Cong, Z.T.; Ni, G.H.; Yang, D.W.; Lei, Z.D. Evaporation paradox in China. Adv. Water Sci. 2008, 19, 147–152. [Google Scholar] [CrossRef]
- Ren, G.; Guo, J. Change in Pan Evaporation and the Influential Factors over China: 1956–2000. J. Nat. Resour. 2006, 21, 31–44. [Google Scholar] [CrossRef]
- Ren, G.; Guo, J.; Xu, M.; Chu, Z.; Li, Q. Climate changes of china’s mainland over the past half century. Acta Meteorol. Sin. 2005, 63, 942–956. [Google Scholar]
- Brutsaert, W.; Parlange, M.B. Hydrologic cycle explains the evaporation paradox. Nature 1998, 396, 30. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. The Cause of Decreased Pan Evaporation over the Past 50 Years. Science 2002, 298, 1410–1411. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Hao, L.; Sun, L.; Liu, Y.; Sun, G. Climatic controls on watershed reference evapotranspiration varied during 1961–2012 in southern China. Jawra J. Am. Water Resour. Assoc. 2019, 55, 189–208. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Xu, M.; Henderson, M.; Gong, W. A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res. 2004, 109, 1. [Google Scholar] [CrossRef] [Green Version]
- Tysa, S.K.; Ren, G.; Qin, Y.; Zhang, P.; Ren, Y.; Jia, W.; Wen, K. Urbanization effect in regional temperature series based on a remote sensing classification scheme of stations. J. Geophys. Res. Atmos. 2019, 124, 10646–10661. [Google Scholar] [CrossRef]
- Bian, T.; Ren, G.; Zhang, L. Significant urbanization effect on decline of near-surface wind speed at Shijiazhuang station. Clim. Chang. Res. 2018, 14, 21–30. [Google Scholar] [CrossRef]
- Ren, G. Urbanization as a major driver of urban climate change. Adv. Clim. Chang. Res. 2017, 6, 1–6. [Google Scholar] [CrossRef]
- Ryu, Y.H.; Baik, J.J. Quantitative Analysis of Factors Contributing to Urban Heat Island Intensity. J. Appl. Meteorol. Climatol. 2011, 51, 842–854. [Google Scholar] [CrossRef]
- Wang, X.Q.; Gong, Y.B. The impact of an urban dry island on the summer heat wave and sultry weather in Beijing City. Sci. Bull. 2010, 55, 1657–1661. [Google Scholar] [CrossRef]
- Yang, P.; Ren, G.; Yan, P.; Deng, J. Tempospatial Pattern of Surface Wind Speed and the “Urban Stilling Island” in Beijing City. J. Meteorol. Res. 2020, 34, 986. [Google Scholar] [CrossRef]
- Ren, G.Y.; Chu, Z.Y.; Chen, Z.H.; Ren, Y.Y. Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophys. Res. Lett. 2007, 34, 89–103. [Google Scholar] [CrossRef]
- Ren, G.; Li, J.; Ren, Y.; Chu, Z.; Zhang, A.; Zhou, Y.; Zhang, L.; Zhang, Y.; Bian, T. An Integrated Procedure to Determine a Reference Station Network for Evaluating and Adjusting Urban Bias in Surface Air Temperature Data. J. Appl. Meteorol. Climatol. 2015, 54. [Google Scholar] [CrossRef]
- Xiong, A.-Y.; Liao, J.; Xu, B. Reconstruction of a daily large-pan evaporation dataset over China. J. Appl. Meteorol. Climatol. 2012, 51, 1265–1275. [Google Scholar] [CrossRef]
- Wang, X.L. Accounting for Autocorrelation in Detecting Mean Shifts in Climate Data Series Using the Penalized Maximal t or F Test. J. Appl. Meteorol. Climatol. 2008, 47, 2423–2444. [Google Scholar] [CrossRef]
- Wang, X.L. Penalized Maximal F Test for Detecting Undocumented Mean Shift without Trend Change. J. Atmos. Ocean. Technol. 2008, 25, 368–384. [Google Scholar] [CrossRef]
- Jiang, T.; Su, B.; Hartmann, H. Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961–2000. Geomorphology 2007, 85, 143–154. [Google Scholar] [CrossRef]
- Ren, Y.; Ren, G. A remote-sensing method of selecting reference stations for evaluating urbanization effect on surface air temperature trends. J. Clim. 2011, 24, 3179–3189. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Hou, Y.; Chen, B. Observed surface warming induced by urbanization in east China. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, Y.; Chu, Z.; Zhou, J.; Zhang, A.; Guo, J.; Liu, X. Urbanization Effects on Observed Surface Air Temperature Trends in North China. J. Clim. 2008, 21, 1333–1348. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, X.; Ren, G.; Zwiers, F.W.; Hu, T. Contribution of urbanization to warming in China. Nat. Clim. Chang. 2016, 6, 706–709. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, D.; Liu, X.; Zhao, C. Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960–2007). J. Geogr. Sci. 2012, 22, 3–14. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, Y. Urbanization effect on trends of extreme temperature indices of national stations over mainland China, 1961–2008. J. Clim. 2014, 27, 2340–2360. [Google Scholar] [CrossRef]
- Fu, C.; Yu, J.; Zhang, Y.; Hu, S.; Ouyang, R.; Liu, W. Temporal variation of wind speed in China for 1961–2007. Theor. Appl. Climatol. 2011, 104, 313–324. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Sun, F.; Liu, W. Pan evaporation paradox and evaporative demand from the past to the future over China: A review. Wiley Interdiscip. Rev. Water 2017, 4, e1207. [Google Scholar] [CrossRef]
- Gao, G.; Chen, D.; Ren, G.; Chen, Y.; Liao, Y. Trend of potential evapotranspiration over China during 1956 to 2000. Geogr. Res. 2006, 25, 378–387. [Google Scholar] [CrossRef]
- Ren, G.; Ding, Y.; Zhao, Z.; Zheng, J.; Wu, T.; Tang, G.; Xu, Y. Recent progress in studies of climate change in China. Adv. Atmos. Sci. 2012, 29, 958–977. [Google Scholar] [CrossRef]
- Zhang, A.Y.; Ren, G.Y.; Zhou, J.X.; Chu, Z.Y.; Tang, G.L. On the urbanization effect on surface air temperature trends over China. Acta Meteorol. Sin. 2010, 68, 957–966. [Google Scholar]
- Zhou, Y.; Ren, G. Change in extreme temperature event frequency over mainland China, 1961–2008. Clim. Res. 2011, 50, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Ye, H.; Chen, F.; Xiong, Y.; Wang, C. Urbanization effect on the diurnal temperature range: Different roles under solar dimming and brightening. J. Clim. 2012, 25, 1022–1027. [Google Scholar] [CrossRef]
- Wei, Y.H.D. Restructuring for growth in urban China: Transitional institutions, urban development, and spatial transformation. Habitat Int. 2012, 36, 396–405. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, L.; Hao, L.; Sun, G.; Liu, Y.; Zhu, C. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China. Sci. Total Environ. 2016, 544, 617–626. [Google Scholar] [CrossRef]
- Yang, P.; Ren, G.; Liu, W. Spatial and Temporal Characteristics of Beijing Urban Heat Island Intensity. J. Appl. Meteorol. Climatol. 2013, 52, 1803–1816. [Google Scholar] [CrossRef]
- Dickerson, R.; Kondragunta, S.; Stenchikov, G.; Civerolo, K.; Doddridge, B.; Holben, B. The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 1997, 278, 827–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Zhao, C.; Zhou, L.; Wang, Y.; Liu, X. Distinct impact of different types of aerosols on surface solar radiation in China. J. Geophys. Res. Atmos. 2016, 121, 6459–6471. [Google Scholar] [CrossRef]
- Cong, Z.T.; Yang, D.W.; Ni, G.H. Does evaporation paradox exist in China? Hydrol. Earth Syst. Sci. 2009, 13, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Xing, W.; Wang, W.; Shao, Q.; Yu, Z.; Yang, T.; Fu, J. Periodic fluctuation of reference evapotranspiration during the past five decades: Does Evaporation Paradox really exist in China? Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Owen, T.W.; Gallo, K.P. Updated Population Metadata for United States Historical Climatology Network Stations. J. Clim. 2010, 13, 4028–4033. [Google Scholar] [CrossRef]
- Johnson, G.L.; Davis, J.M.; Karl, T.R.; Mcnab, A.L.; Gallo, K.P.; Tarpley, J.D.; Bloomfield, P.R. Estimating urban temperature bias using polar-orbiting satellite data. J. Appl. Meteorol. Climatol. 2010, 33, 358–369. [Google Scholar] [CrossRef] [Green Version]
- Small, C. Global Population Distribution and Urban Land Use in Geophysical Parameter Space. Earth Interact. 2009, 8, 145–147. [Google Scholar] [CrossRef]
Basin Name | Reference Stations | Urban Stations | Total Stations | Mean Pan-Evaporation (mm) | Pan-Evaporation Trend (mm/Decade) |
---|---|---|---|---|---|
Songhua river | 7 | 51 | 58 | 534.66 | −6.67 * |
Liaohe river | 3 | 30 | 33 | 633.06 | −15.23 ** |
Haihe river | 3 | 31 | 34 | 656.44 | −29.40 ** |
Huaihe river | 2 | 34 | 36 | 710.9 | −16.61 ** |
Yellow river | 3 | 52 | 55 | 596.93 | −30.09 ** |
Upper Yangtze | 5 | 83 | 88 | 497.15 | −5.43 ** |
Mid/lower Yangtze | 3 | 50 | 53 | 582.93 | −27.33 ** |
Whole study region | 26 | 331 | 357 | 584.92 | −14.88 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, C.; Ren, G.; Zhang, P.; Tysa, S.K.; Qin, Y. Urbanization Significantly Affects Pan-Evaporation Trends in Large River Basins of China Mainland. Land 2021, 10, 407. https://doi.org/10.3390/land10040407
Ren C, Ren G, Zhang P, Tysa SK, Qin Y. Urbanization Significantly Affects Pan-Evaporation Trends in Large River Basins of China Mainland. Land. 2021; 10(4):407. https://doi.org/10.3390/land10040407
Chicago/Turabian StyleRen, Chenchen, Guoyu Ren, Panfeng Zhang, Suonam Kealdrup Tysa, and Yun Qin. 2021. "Urbanization Significantly Affects Pan-Evaporation Trends in Large River Basins of China Mainland" Land 10, no. 4: 407. https://doi.org/10.3390/land10040407
APA StyleRen, C., Ren, G., Zhang, P., Tysa, S. K., & Qin, Y. (2021). Urbanization Significantly Affects Pan-Evaporation Trends in Large River Basins of China Mainland. Land, 10(4), 407. https://doi.org/10.3390/land10040407