Local Climate Zone Mapping Using Multi-Source Free Available Datasets on Google Earth Engine Platform
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Datasets Used for LCZ Mapping
2.1.1. Sentinel-2 Data
2.1.2. Sentinel-1 Data
2.1.3. Spectral Indexes Data
2.1.4. Texture Data
2.1.5. OSM Data
2.1.6. NTL Data
2.1.7. Datasets Combinations
3. Methods
3.1. LCZ Classification System for Wuhan City and Training Polygons Selection
3.2. RF Classification
3.3. Accuracy Assessment
4. Results and Discussion
4.1. Accuracy Assessment and Comparison
4.2. LCZ Map of Wuhan
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Acronyms
No. | Acronym | Full name |
1 | UHI | Urban heat island |
2 | LCZ | Local climate zone |
3 | MSI | Multispectral instrument |
4 | SAR | Synthetic aperture radar |
5 | NTL | Nighttime light |
6 | OSM | Open street map |
7 | GEE | Google Earth Engine |
8 | SI | Spectral indexes |
9 | GLCM | Gray-level co-occurrence matrix |
10 | RF | Random forest |
11 | NDVI | Normalized difference vegetation index |
12 | MNDWI | Modified normalized difference water index |
13 | Con | Contrast |
14 | Corr | Correlation |
15 | Ent | Entropy |
16 | Asm | Angular second moment |
17 | Diss | Dissimilarity |
18 | Idm | Inverse difference moment |
19 | Savg | Sum average |
20 | Var | Variance |
21 | OA | Overall accuracy |
22 | UA | User’s accuracy |
23 | PA | Producer’s accuracy |
24 | OAb | Overall accuracy for built type LCZ classes |
25 | OAlc | Overall accuracy for land cover type LCZ classes |
References
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Founda, D.; Santamouris, M. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Sci. Rep. 2017, 7, 10973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salata, F.; Golasi, I.; Petitti, D.; Vollaro, E.D.L.; Coppi, M.; Vollaro, A.D.L. Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Yadav, N.; Sharma, C.; Peshin, S.K.; Masiwal, R. Study of intra-city urban heat island intensity and its influence on atmospheric chemistry and energy consumption in Delhi. Sustain. Cities Soc. 2017, 32, 202–211. [Google Scholar] [CrossRef]
- Fallmann, J.; Forkel, R.; Emeis, S. Secondary effects of urban heat island mitigation measures on air quality. Atmos. Environ. 2016, 125, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Ching, J.; Mills, G.; Bechtel, B.; See, L.; Feddema, J.; Wang, X.; Ren, C.; Brousse, O.; Martilli, A.; Neophytou, M.; et al. WUDAPT: An Urban Weather, Climate, and Environmental Modeling Infrastructure for the Anthropocene. Bull. Am. Meteorol. Soc. 2018, 99, 1907–1924. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Ren, C.; Xu, Y.; Lau, K.K.-L.; Shi, Y. Mapping the local climate zones of urban areas by GIS-based and WUDAPT methods: A case study of Hong Kong. Urban Clim. 2018, 24, 567–576. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Beck, C.; Bohner, J.; Brousse, O.; Ching, J.; Demuzere, M.; Fonte, C.C.; Gal, T.; Hidalgo, J. Generating WUDAPT Level 0 data–Current status of production and evaluation. Urban Clim. 2019, 27, 24–45. [Google Scholar] [CrossRef] [Green Version]
- Danylo, O.; See, L.; Bechtel, B.; Schepaschenko, D.; Fritz, S. Contributing to WUDAPT: A Local Climate Zone Classification of Two Cities in Ukraine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1841–1853. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Ren, C.; Xu, Y.; Lau, K.K.-L.; Wang, R. Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology—A case study of Yangtze River Delta, China. Urban Clim. 2018, 24, 485–502. [Google Scholar] [CrossRef]
- Cai, M.; Ren, C.; Xu, Y.; Dai, W.; Wang, X.M. Local climate zone study for sustainable megacities development by using improved WUDAPT methodology–a case study in Guangzhou. Procedia Environ. Sci. 2016, 36, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Mills, G.; Ching, J.; See, L.; Bechtel, B.; Foley, M. An introduction to the WUDAPT project. In Proceedings of the 9th International Conference on Urban Climate, Toulouse, France, 20–24 July 2015; pp. 20–24. [Google Scholar]
- Demuzere, M.; Bechtel, B.; Mills, G. Global transferability of local climate zone models. Urban Clim. 2019, 27, 46–63. [Google Scholar] [CrossRef]
- Pradhesta, Y.F.; Nurjani, E.; Arijuddin, B.I. Local Climate Zone classification for climate-based urban planning using Landsat 8 Imagery (A case study in Yogyakarta Urban Area). In International Conference on Tropical Meteorology and Atmospheric Sciences; IOP Publishing: Bristol, UK, 2019; Volume 303. [Google Scholar]
- Yue, Y.; Zhan, Q.; Wang, J.; Xiao, Y. Optimizing the urban thermal environment at local scale: A case study in Wuhan, China. Int. J. Sustain. Dev. Plan. 2017, 12, 1312–1325. [Google Scholar] [CrossRef] [Green Version]
- Verdonck, M.L.; Okujeni, A.; van der Linden, S.; Demuzere, M.; De Wulf, R.; Van Coillie, F. Influence of neighbourhood information on ‘Local Climate Zone’ mapping in heterogeneous cities. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 102–113. [Google Scholar] [CrossRef]
- Yoo, C.; Han, D.; Im, J.; Bechtel, B. Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 157, 155–170. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, C.; Cai, M.; Edward, N.Y.Y.; Wu, T. Classification of Local Climate Zones Using ASTER and Landsat Data for High-Density Cities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3397–3405. [Google Scholar] [CrossRef]
- Qiu, C.; Schmitt, M.; Mou, L.; Ghamisi, P.; Zhu, X.X. Feature Importance Analysis for Local Climate Zone Classification Using a Residual Convolutional Neural Network with Multi-Source Datasets. Remote Sens. 2018, 10, 1572. [Google Scholar] [CrossRef] [Green Version]
- Fonte, C.C.; Lopes, P.; See, L.; Bechtel, B. Using OpenStreetMap (OSM) to enhance the classification of local climate zones in the framework of WUDAPT. Urban Clim. 2019, 28, 100456. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M. GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Morav. Geogr. Rep. 2016, 24, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Ghamisi, P.; Zhu, X.X. Feature extraction and selection of sentinel-1 dual-pol data for global-scale local climate zone classification. ISPRS Int. J. Geo-Inf. 2018, 7, 379. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; See, L.; Mills, G.; Foley, M. Classification of Local Climate Zones Using SAR and Multispectral Data in an Arid Environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3097–3105. [Google Scholar] [CrossRef]
- Reza, A.; Jalal, A.; Claudia, N.; Felix, G. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale. Remote Sens. 2018, 10, 1285. [Google Scholar]
- Guo, J.; Lin, Z.; Jin, B. Crop Classification Based on Data Fusion of Sentinel-1 and Sentinel-2. Trans. Chin. Soc. Agric. Mach. 2018, 49, 192–198. [Google Scholar]
- Wangchuk, S.; Bolch, T. Mapping of glacial lakes using Sentinel-1 and Sentinel-2 data and a random forest classifier: Strengths and challenges. Sci. Remote Sens. 2020, 2, 100008. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Sentinel-1 and sentinel-2 data fusion for wetlands mapping: Balikdami, turkey. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2018, 42. Available online: https://d-nb.info/1161190805/34 (accessed on 1 May 2020). [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of crop identification based on optical and SAR image time series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- Werner, A.; Storie, C.D.; Storie, J. Evaluating SAR-Optical Image Fusions for Urban LULC Classification in Vancouver Canada. Can. J. Remote Sens. 2014, 40, 278–290. [Google Scholar] [CrossRef]
- Qiu, C.; Mou, L.; Schmitt, M.; Zhu, X.X. Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network. ISPRS J. Photogramm. Remote Sens. 2019, 154, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Manand Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Conners, R.W.; Trivedi, M.M.; Harlow, C.A. Segmentation of a high-resolution urban scene using texture operators. Comput. Vis. Graph. Image Process. 1984, 25, 273–310. [Google Scholar] [CrossRef]
- Haklay, M.; Weber, P. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, C.; Cai, M.; Li, X.; Zhang, L.; Ng, E. Assessment of Local Climate Zone Classification Maps of Cities in China and Feasible Refinements. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Built Type | Definition | Land Cover Type | Definition |
---|---|---|---|
1. Compact high-rise | Dense mix of tall buildings to tens of stories. Few or no trees. Land cover mostly paved. Concrete, steel, stone, and glass construction materials. | A. Dense trees | Heavily wooded landscape of deciduous and/or evergreen trees. Land cover mostly pervious (low plants). Zone function is natural forest, tree cultivation, or urban park. |
2. Compact midrise | Dense mix of midrise buildings (3–9 stories). Few or no trees. Land cover mostly paved. Stone, brick, tile, and concrete construction materials. | B. Scattered trees | Lightly wooded landscape of deciduous and/or evergreen trees. Land cover mostly pervious (low plants). Zone function is natural forest, tree cultivation, or urban park. |
3. Compact low-rise | Dense mix of low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved. Stone, brick, tile, and concrete construction materials. | C. Bush, scrub | Open arrangement of bushes, shrubs, and short, woody trees. Land cover mostly pervious (bare soil or sand). Zone function is natural scrubland or agriculture. |
4. Open high-rise | Open arrangement of tall buildings to tens of stories. Abundance of pervious land cover (low plants, scattered trees). Concrete, steel, stone, and glass construction materials. | D. Low plants | Featureless landscape of grass or herbaceous plants/crops. Few or no trees. Zone function is natural grassland, agriculture, or urban park. |
5. Open midrise | Open arrangement of midrise buildings (3–9 stories). Abundance of pervious land cover (low plants, scattered trees). Concrete, steel, stone, and glass construction materials. | E. Bare rock or paved | Featureless landscape of rock or paved cover. Few or no trees or plants. Zone function is natural desert (rock) or urban transportation. |
6. Open low-rise | Open arrangement of low-rise buildings (1–3 stories). Abundance of pervious land cover (low plants, scattered trees). Wood, brick, stone, tile, and concrete construction materials. | F. Bare soil or sand | Featureless landscape of soil or sand cover. Few or no trees or plants. Zone function is natural desert or agriculture. |
7. Lightweight low-rise | Dense mix of single-story buildings. Few or no trees. Land cover mostly hard-packed. Lightweight construction materials (e.g., wood, thatch, corrugated metal). | G. Water | Large, open water bodies such as seas and lakes, or small bodies such as rivers, reservoirs, and lagoons. |
8. Large low-rise | Open arrangement of large low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved. Steel, concrete, metal, and stone construction materials | ||
9. Sparsely built | Sparse arrangement of small or medium-sized buildings in a natural setting. Abundance of pervious land cover (low plants, scattered trees). | ||
10. Heavy industry | Low-rise and midrise industrial structures (towers, tanks, stacks). Few or no trees. Land cover mostly paved or hard-packed. Metal, steel, and concrete construction materials. |
Dataset Category | Dataset Name | Dataset Description | Bands Name | Feature Size |
---|---|---|---|---|
Sentinel datasets | S2_year | The median of all qualified Sentinel-2 images in 2018 | B2, B3, B4, B8 | 4 |
S1_year | The median of all Sentinel-1 images in 2018 | VV, VH | 2 | |
S2_season | The median of qualified Sentinel-2 images for each season in 2018 | B2, B3, B4, B8 | 16 (4 × 4) | |
S1_season | The median of Sentinel-1 images for each season in 2018 | VV, VH | 8 (2 × 4) | |
Secondary datasets | SI | The spectral indexes of the “S2_season” dataset | NDVI, NDWI | 8 (2 × 4) |
GLCM(PC1) | The texture information of the “S2_season” dataset | Con, Corr, Var, Ent, Asm, Diss, Idm, Savg | 8 | |
NTL | Luojia1-01 dataset | Band_ntl | 1 | |
OSM | Open street map dataset | Building, Water, Road | 3 |
No. | Combination Name | Description |
---|---|---|
1 | S2_year | This combination only includes” S2_year” |
2 | S2_S1_year | The combination of “S2_year” and “S1_year” |
3 | S2_season | This combination only includes” S2_ season” |
4 | S2_S1_season | This combination of “S2_season” and “S1_ season (median)”, taking this one as a basic combination. |
5 | +NTL | Adding any one secondary datasets to the basic combination |
6 | +SI | |
7 | +OSM | |
8 | +GLCM(PC1) | |
9 | +GLCM(PC1)+NTL | Adding any two secondary datasets to the basic combination |
10 | +GLCM(PC1)+OSM | |
11 | +OSM+NTL | |
12 | +SI+ GLCM(PC1) | |
13 | +SI+NTL | |
14 | +SI+OSM | |
15 | +NTL+OSM+GLCM(PC1) | Adding any three secondary datasets to the basic combination |
16 | +NTL+OSM+SI | |
17 | +NTL+GLCM(PC1)+SI | |
18 | +OSM+GLCM(PC1)+SI | |
19 | +NTL+OSM+GLCM(PC1)+SI | Adding all secondary datasets to the basic combination |
Built Type | Name | Land Cover Type | Name |
---|---|---|---|
LCZ 1 | Compact high-rise | LCZ A | Dense trees |
LCZ 2 | Compact midrise | LCZ B | Scattered trees |
LCZ 3 | Compact low-rise | LCZ D | Low plants |
LCZ 4 | Open high-rise | LCZ E | Bare rock or paved |
LCZ 5 | Open midrise | LCZ F | Bare soil or sand |
LCZ 6 | Open low-rise | LCZ G | Water |
LCZ 8 | Large low-rise |
Class | S2_Year | S2_S1_Year | S2_Season | S2_S1_Season | ||||
---|---|---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
LCZ 1 | 20.38 | 20.63 | 37.96 | 36.87 | 31.70 | 34.28 | 40.64 | 40.77 |
LCZ 2 | 34.30 | 43.80 | 38.90 | 49.68 | 43.77 | 69.23 | 45.17 | 68.43 |
LCZ 3 | 53.34 | 41.35 | 58.64 | 42.37 | 82.71 | 46.90 | 79.41 | 42.09 |
LCZ 4 | 26.71 | 27.94 | 31.76 | 34.60 | 29.54 | 37.93 | 33.42 | 40.46 |
LCZ 5 | 35.87 | 33.30 | 41.09 | 36.74 | 36.70 | 24.39 | 38.60 | 24.04 |
LCZ 6 | 45.14 | 35.19 | 71.06 | 53.64 | 58.33 | 56.12 | 70.68 | 59.10 |
LCZ 8 | 85.98 | 93.53 | 88.01 | 94.04 | 85.77 | 95.96 | 91.62 | 93.53 |
LCZ A | 76.38 | 94.03 | 76.44 | 94.76 | 92.23 | 97.67 | 91.51 | 98.59 |
LCZ B | 33.55 | 34.81 | 25.87 | 23.62 | 52.98 | 84.47 | 59.04 | 80.38 |
LCZ D | 60.72 | 46.72 | 62.71 | 58.38 | 85.01 | 43.03 | 74.79 | 57.48 |
LCZ E | 50.53 | 55.42 | 75.58 | 79.11 | 60.65 | 64.69 | 73.81 | 81.35 |
LCZ F | 65.95 | 42.76 | 74.87 | 50.55 | 74.72 | 60.02 | 81.10 | 68.60 |
LCZ G | 99.03 | 93.90 | 99.98 | 100.00 | 99.53 | 79.49 | 99.93 | 99.16 |
OA(%) | 58.95 | 66.91 | 65.33 | 71.34 | ||||
OAb(%) | 50.29 | 56.88 | 58.12 | 58.63 | ||||
OAlc(%) | 67.58 | 76.91 | 72.51 | 84.01 |
Class | +NTL | +SI | +GLCM(PC1) | +OSM | ||||
---|---|---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
LCZ 1 | 40.48 | 40.74 | 40.06 | 39.70 | 43.17 | 43.11 | 42.66 | 43.71 |
LCZ 2 | 62.45 | 42.13 | 48.03 | 70.89 | 45.00 | 73.34 | 63.89 | 80.82 |
LCZ 3 | 41.54 | 79.89 | 81.59 | 51.25 | 77.25 | 49.95 | 83.68 | 48.84 |
LCZ 4 | 43.43 | 32.47 | 34.67 | 41.62 | 37.82 | 42.09 | 32.36 | 45.57 |
LCZ 5 | 23.73 | 40.33 | 45.68 | 29.99 | 44.79 | 25.75 | 51.26 | 31.73 |
LCZ 6 | 63.04 | 82.64 | 73.48 | 61.22 | 78.53 | 62.49 | 76.53 | 66.58 |
LCZ 8 | 94.18 | 91.36 | 91.70 | 95.61 | 92.78 | 94.81 | 94.62 | 93.37 |
LCZ A | 96.70 | 93.40 | 92.52 | 98.53 | 91.70 | 98.45 | 94.02 | 90.25 |
LCZ B | 80.63 | 53.61 | 48.61 | 83.14 | 53.44 | 81.72 | 49.70 | 83.22 |
LCZ D | 54.35 | 79.90 | 77.57 | 42.99 | 85.74 | 57.74 | 77.07 | 49.55 |
LCZ E | 80.59 | 74.13 | 76.48 | 82.09 | 76.82 | 84.57 | 83.33 | 92.52 |
LCZ F | 73.30 | 79.55 | 82.21 | 71.08 | 88.56 | 79.17 | 74.97 | 68.94 |
LCZ G | 99.04 | 99.76 | 99.98 | 100.00 | 99.21 | 100.00 | 98.28 | 99.18 |
OA (%) | 71.35 | 72.15 | 73.87 | 73.89 | ||||
ΔOA (%) | +0.01 | +0.81 | +2.53 | +2.55 | ||||
OAb (%) | 59.50 | 61.13 | 61.13 | 63.29 | ||||
OAlc (%) | 82.93 | 83.13 | 86.58 | 84.45 |
Class | +SI+OSM | + GLCM(PC1) + NTL | +OSM + NTL | +SI+ GLCM(PC1) | +SI + NTL | + GLCM(PC1) + OSM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
LCZ 1 | 43.69 | 42.68 | 41.18 | 41.23 | 44.24 | 45.05 | 42.36 | 41.55 | 39.44 | 38.67 | 43.45 | 44.88 |
LCZ 2 | 42.84 | 69.87 | 60.55 | 78.95 | 59.32 | 80.07 | 48.52 | 72.92 | 45.18 | 68.38 | 59.16 | 85.20 |
LCZ 3 | 68.89 | 47.73 | 82.34 | 50.05 | 83.83 | 44.13 | 78.31 | 53.10 | 73.84 | 42.83 | 74.02 | 57.72 |
LCZ 4 | 38.81 | 47.38 | 31.97 | 44.59 | 32.72 | 47.88 | 36.81 | 44.23 | 35.22 | 44.73 | 37.79 | 47.30 |
LCZ 5 | 46.92 | 23.56 | 56.32 | 35.80 | 52.39 | 31.63 | 48.21 | 28.53 | 46.17 | 29.96 | 53.69 | 29.65 |
LCZ 6 | 83.89 | 66.33 | 75.46 | 66.84 | 83.70 | 65.42 | 79.06 | 65.67 | 80.71 | 64.31 | 80.93 | 69.51 |
LCZ 8 | 92.57 | 93.55 | 94.07 | 93.97 | 95.62 | 93.72 | 92.29 | 95.54 | 91.72 | 94.41 | 94.89 | 93.64 |
LCZ A | 92.42 | 98.66 | 93.81 | 94.08 | 92.68 | 87.19 | 92.22 | 97.14 | 92.40 | 98.06 | 93.97 | 90.18 |
LCZ B | 55.84 | 81.39 | 45.33 | 82.97 | 44.94 | 81.22 | 51.65 | 82.14 | 46.49 | 80.72 | 46.11 | 84.06 |
LCZ D | 84.60 | 62.41 | 81.37 | 46.81 | 87.34 | 60.31 | 76.11 | 47.11 | 73.88 | 48.99 | 80.40 | 49.76 |
LCZ E | 75.75 | 85.05 | 85.21 | 92.77 | 83.04 | 92.67 | 78.22 | 83.36 | 76.35 | 82.89 | 84.97 | 92.87 |
LCZ F | 88.07 | 74.13 | 82.65 | 69.88 | 82.46 | 68.79 | 79.22 | 75.25 | 88.76 | 65.33 | 80.28 | 75.03 |
LCZ G | 99.51 | 100.00 | 99.91 | 100.00 | 98.36 | 99.88 | 99.93 | 100.00 | 99.98 | 100.00 | 98.98 | 100.00 |
OA (%) | 73.84 | 74.38 | 74.34 | 73.27 | 71.86 | 75.19 | ||||||
ΔOA (%) | +2.50 | +3.04 | +3.00 | +1.93 | +0.52 | +3.85 | ||||||
OAb (%) | 63.48 | 61.05 | 63.45 | 62.31 | 60.67 | 64.71 | ||||||
OAlc (%) | 85.24 | 86.59 | 85.20 | 84.19 | 83.02 | 85.64 |
Class | +NTL+ GLCM(PC1)+OSM | +NTL+OSM+SI | +NTL+GLCM(PC1)+SI | +OSM+GLCM(PC1)+SI | ||||
---|---|---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
LCZ 1 | 41.69 | 42.04 | 40.41 | 40.09 | 41.39 | 40.06 | 43.75 | 43.07 |
LCZ 2 | 54.47 | 83.60 | 59.72 | 78.95 | 46.04 | 71.79 | 57.14 | 82.69 |
LCZ 3 | 81.30 | 55.50 | 82.79 | 49.40 | 72.24 | 52.73 | 78.61 | 57.45 |
LCZ 4 | 37.39 | 51.61 | 33.82 | 51.43 | 38.79 | 49.98 | 37.23 | 48.46 |
LCZ 5 | 56.10 | 27.70 | 53.14 | 30.34 | 49.58 | 26.58 | 55.99 | 32.67 |
LCZ 6 | 86.64 | 69.51 | 85.77 | 67.64 | 84.92 | 67.49 | 84.28 | 68.86 |
LCZ 8 | 94.01 | 94.30 | 94.64 | 93.69 | 93.16 | 94.87 | 95.11 | 95.11 |
LCZ A | 94.37 | 89.21 | 93.40 | 93.42 | 91.86 | 98.11 | 93.41 | 91.75 |
LCZ B | 47.57 | 82.64 | 45.43 | 87.15 | 50.66 | 83.31 | 46.56 | 86.39 |
LCZ D | 85.73 | 46.85 | 88.47 | 48.01 | 78.99 | 46.72 | 88.16 | 60.95 |
LCZ E | 85.20 | 91.39 | 84.79 | 93.02 | 79.33 | 83.79 | 86.13 | 93.16 |
LCZ F | 74.75 | 74.50 | 85.70 | 73.00 | 82.22 | 76.68 | 93.28 | 78.83 |
LCZ G | 96.95 | 100.00 | 99.72 | 100.00 | 100.00 | 100.00 | 99.98 | 100.00 |
OA(%) | 74.56 | 74.75 | 73.62 | 76.64 | ||||
ΔOA(%) | +3.22 | +3.41 | +2.28 | +5.30 | ||||
OAb(%) | 64.54 | 63.44 | 62.49 | 65.18 | ||||
OAlc(%) | 84.55 | 86.02 | 84.72 | 88.06 |
Class | S2_S1_Season | +OSM | +GLCM(PC1)+ OSM | +OSM+ GLCM(PC1)+SI | +NTL+OSM+ GLCM(PC1)+SI | |||||
---|---|---|---|---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | |
LCZ 1 | 40.64 | 40.77 | 42.66 | 43.71 | 43.45 | 44.88 | 43.75 | 43.07 | 44.41 | 43.25 |
LCZ 2 | 45.17 | 68.43 | 63.89 | 80.82 | 59.16 | 85.20 | 57.14 | 82.69 | 58.33 | 82.69 |
LCZ 3 | 79.41 | 42.09 | 83.68 | 48.84 | 74.02 | 57.72 | 78.61 | 57.45 | 75.15 | 57.35 |
LCZ 4 | 33.42 | 40.46 | 32.36 | 45.57 | 37.79 | 47.30 | 37.23 | 48.46 | 38.46 | 55.45 |
LCZ 5 | 38.60 | 24.04 | 51.26 | 31.73 | 53.69 | 29.65 | 55.99 | 32.67 | 58.87 | 32.22 |
LCZ 6 | 70.68 | 59.10 | 76.53 | 66.58 | 80.93 | 69.51 | 84.28 | 68.86 | 89.61 | 70.17 |
LCZ 8 | 91.62 | 93.53 | 94.62 | 93.37 | 94.89 | 93.64 | 95.11 | 95.11 | 94.62 | 93.95 |
LCZ A | 91.51 | 98.59 | 94.02 | 90.25 | 93.97 | 90.18 | 93.41 | 91.75 | 93.38 | 93.08 |
LCZ B | 59.04 | 80.38 | 49.70 | 83.22 | 46.11 | 84.06 | 46.56 | 86.39 | 47.21 | 84.89 |
LCZ D | 74.79 | 57.48 | 77.07 | 49.55 | 80.40 | 49.76 | 88.16 | 60.95 | 82.64 | 40.21 |
LCZ E | 73.81 | 81.35 | 83.33 | 92.52 | 84.97 | 92.87 | 86.13 | 93.16 | 84.76 | 93.12 |
LCZ F | 81.10 | 68.60 | 74.97 | 68.94 | 80.28 | 75.03 | 93.28 | 78.83 | 75.75 | 71.79 |
LCZ G | 99.93 | 99.16 | 98.28 | 99.18 | 98.98 | 100.00 | 99.98 | 100.00 | 99.74 | 100.00 |
OA (%) | 71.34 | 73.89 | 75.19 | 76.64 | 75.34 | |||||
ΔOA (%) | - | +2.55 | +3.85 | +5.30 | +4.00 | |||||
OAb (%) | 58.63 | 63.29 | 64.71 | 65.18 | 65.93 | |||||
OAlc (%) | 84.01 | 84.45 | 85.64 | 88.06 | 84.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Ling, F. Local Climate Zone Mapping Using Multi-Source Free Available Datasets on Google Earth Engine Platform. Land 2021, 10, 454. https://doi.org/10.3390/land10050454
Shi L, Ling F. Local Climate Zone Mapping Using Multi-Source Free Available Datasets on Google Earth Engine Platform. Land. 2021; 10(5):454. https://doi.org/10.3390/land10050454
Chicago/Turabian StyleShi, Lingfei, and Feng Ling. 2021. "Local Climate Zone Mapping Using Multi-Source Free Available Datasets on Google Earth Engine Platform" Land 10, no. 5: 454. https://doi.org/10.3390/land10050454
APA StyleShi, L., & Ling, F. (2021). Local Climate Zone Mapping Using Multi-Source Free Available Datasets on Google Earth Engine Platform. Land, 10(5), 454. https://doi.org/10.3390/land10050454