Understanding the Characteristics and Realization Path of Urban Land Use Transition in the Bohai Economic Rim: An Analytical Framework of “Dominant–Recessive” Morphology Coupling
Abstract
:1. Introduction
2. Theoretical Framework
3. Study Area Selection, Data Sources, and Processing
3.1. Study Area Selection
3.2. Data Sources and Processing
4. Research Methods
4.1. Selection of Transition Indicators
4.2. Transition Measurement Method
4.2.1. Single-Morphology Transition Measure
4.2.2. Dual-Morphology Transition Measure
5. Results
5.1. The Transition Process of the Dominant Morphology of Urban Land Use
5.2. The Transition Process of the Recessive Morphology of Urban Land Use
5.3. Coupling Characteristics of the Dominant and Recessive Morphology of Urban Land Use
5.3.1. Overall Coupling Characteristics
5.3.2. Local Coupling Feature Comparison
5.4. Path Analysis of Urban Land Use Transition
6. Discussion
6.1. General Characteristics
6.2. Drive Mechanism
6.3. Path and Policy Enlightenment
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviations | Explanations |
---|---|
DRSPH | Dominant and recessive synergy hook |
RLPH | Recessive leading positive hook |
DLPH | Dominant leading positive hook |
DRD | Dominant recession decoupling |
RRD | Recessive recession decoupling |
DRNH | Dominant and recessive negative hook |
The LP path | From DRND to RRD or DRD, then to RLPH or DLPH and finally to DRSPH |
The MP1 path | From DRND to RRD or DRD and then to DRSPH |
The MP2 path | From DRND to RLPH or DLPH and then to DRSPH |
The MP3 path | From RRD or DRD to RLPH or DLPH and then to DRSPH |
The SP1 path | From DRND to DRSPH |
The SP2 path | From RRD or DRD to DRSPH |
BER | The Bohai Economic Rim |
BTH | Beijing–Tianjin–Hebei Region |
LP | Liaodong Peninsula |
SP | Shandong Peninsula |
References
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigillo, M. Infrastrutture verdi e servizi eco-sistemici in area urbana: Prospettive di ricerca per la progettazione ambientale/Green Infrastructures and Ecosystem Services in urban areas: Research perspectives in environmental design. Techne 2016, 11, 59–65. [Google Scholar]
- Grimm, N.; Faeth, S.; Golubiewski, N.; Redman, C.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandström, S. Green infrastructure planning in urban Sweden. Plan. Pract. Res. 2002, 17, 373–385. [Google Scholar] [CrossRef]
- Mather, A.S. Global Trends in Forest Resources. Geography 1987, 72, 1–15. [Google Scholar]
- Mather, A.S. The forest transition. Area 1992, 24, 367–379. [Google Scholar]
- Grainger, A. National land use morphology: Patterns and possibilities. Geography 1995, 80, 235–245. [Google Scholar]
- De Fries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Long, H. Land use rransition and rural transformation development. Prog. Geogr. 2012, 31, 131–138. [Google Scholar]
- Long, H. Land use transition and land management. Geogr. Res. 2015, 34, 1607–1618. [Google Scholar]
- Zhu, F.; Zhang, F.; Li, C.; Zhu, T. Functional transition of the rural settlement: Analysis of land-use differentiation in a transect of Beijing, China. Habitat Int. 2014, 41, 262–271. [Google Scholar] [CrossRef]
- Lü, D.; Gao, G.; Lü, Y.; Xiao, F.; Fu, B. Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China. Land Use Policy 2020, 90, 104356–104366. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, L.; Lü, B.; Chang, T.; Ting, C. Characteristics and Driving Forces of Regional Land Use Transition Based on the Leading Function Classification: A Case Study of Jiangsu Province. Econ. Geogr. 2015, 35, 155–173. [Google Scholar]
- Cheng, J.; Cheng, J. The spatio-temporal pattern, driving forces and transformation mode of inter-provincial recessive land use morphology in China. China Land Sci. 2017, 31, 60–68. [Google Scholar]
- Jadin, I.; Meyfroidt, P.; Lambin, E.F. International trade, and land use intensification and spatial reorganization explain Costa Rica’s forest transition. Environ. Res. Lett. 2016, 11, 80–95. [Google Scholar] [CrossRef]
- Nourqolipour, R.; Shariff, A.R.B.M.; Balasundram, S.K.; Ahmad, N.B.; Sood, A.; Buyong, T. Predicting the Effects of Urban Development on Land Transition and Spatial Patterns of Land Use in Western Peninsular Malaysia. Appl. Spat. Anal. Policy 2016, 9, 1–19. [Google Scholar] [CrossRef]
- Shin, H.; Chae, S. Urbanisation and land use transition in a second-tier city: The emergence of small factories in Gimpo, South Korea. Land Use Policy 2018, 77, 534–541. [Google Scholar] [CrossRef]
- Díaz-Palacios-Sisternes, S.; Ayuga, F.; García, A.I. A method for detecting and describing land use transformations: An examination of Madrid’s southern urban–rural gradient between 1990 and 2006. Cities 2014, 40, 99–110. [Google Scholar] [CrossRef]
- Ojoyi, M.M.; Mutanga, O.; Odindi, J.; Kahinda, J.M.M.; Abdel-Rahman, E.M. Implications of land use transitions on soil nitrogen in dynamic landscapes in Tanzania. Land Use Policy 2017, 64, 95–100. [Google Scholar] [CrossRef]
- Sługocki, Ł.; Czerniawski, R.; Kowalska-Góralska, M.; Senze, M.; Reis, A.; Carrola, J.S.; Teixeira, C.A. The Impact of Land Use Transformations on Zooplankton Communities in a Small Mountain River (The Corgo River, Northern Portugal). Int. J. Environ. Res. Public Health 2018, 16, 20. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 2020, 701, 134690–134703. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H.; Li, T.; Tu, S. Land use transitions and their effects on water environment in Huang-Huai-Hai Plain, China. Land Use Policy 2015, 47, 293–301. [Google Scholar] [CrossRef]
- Ferreira, V.; Barreira, A.P.; Loures, L.; Antunes, D.; Panagopoulos, T. Stakeholders’ Engagement on Nature-Based Solutions: A Systematic Literature Review. Sustainability 2020, 12, 640. [Google Scholar] [CrossRef] [Green Version]
- Kurowska-Pysz, J.; Castanho, R.A.; Loures, L. Sustainable Planning of Cross-Border Cooperation: A Strategy for Alliances in Border Cities. Sustainability 2018, 10, 1416. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Wei, Y.D.; He, C.; Li, H. Urban land expansion under economic transition in China: A multi-level modeling analysis. Habitat Int. 2015, 47, 69–82. [Google Scholar] [CrossRef]
- Long, H. Land use transition: A New integrated approach of land use/cover change study. Geogr. Geo Inf. Sci. 2003, 19, 87–90. [Google Scholar]
- Henrik, E.; Van der Leeuw, S.E.; Charles, L.R.; Douglas, J.M.; George, D.; Christine, A.; Thomas, E. Urban transitions: On urban resilience and human-dominated ecosystems. Ambio 2010, 39, 531–545. [Google Scholar]
- Zhu, C.; Zhang, X.; Wang, K.; Yuan, S.; Yang, L.; Skitmore, M. Urban-rural construction land transition and its coupling relationship with population flow in China’s urban agglomeration region. Cities 2020, 101, 102701–102711. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Z. Rural Industrial Land Transition Characteristics in Beijing-Tianjin-Hebei Region under the Background of Rural Industry Revitalization. Econ. Geogr. 2020, 40, 174–182. [Google Scholar]
- Qu, Y.; Jiang, G.-H.; Tian, Y.; Shang, R.; Shuwen, W.; Li, Y. Urban-Rural construction land Transition(URCLT) in Shandong Province of China: Features measurement and mechanism exploration. Habitat Int. 2019, 86, 101–115. [Google Scholar]
- Qu, Y.; Jiang, G.-H.; Li, Z.; Tian, Y.; Wei, S. Understanding rural land use transition and regional consolidation implications in China. Land Use Policy 2019, 82, 742–753. [Google Scholar] [CrossRef]
- Romero, H.; Ihl, M.; Rivera, A.; Zalazar, P.; Azocar, P. Rapid urban growth, land-use changes and air pollution in Santiago, Chile. Atmos. Environ. 1999, 33, 4039–4047. [Google Scholar] [CrossRef]
- You, H. Impact of urbanization on pollution-related agricultural input intensity in Hubei, China. Ecol. Indic. 2016, 62, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Avashia, V.; Garg, A. Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities. Land Use Policy 2020, 95, 104571–104580. [Google Scholar] [CrossRef]
- Nuissl, H.; Haase, D.; Lanzendorf, M.; Wittmer, H. Environmental impact assessment of urban land use transitions—A context-sensitive approach. Land Use Policy 2008, 26, 414–424. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Li, Y.; Wang, Y.; Chen, Z. Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective. Land 2020, 9, 285. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Lü, X.; Liu, Q. Wetland Resource in the Yangtze Basin and Its Protection and Restoration. Geogr. Geo Inf. Sci. 2013, 19, 87–91. [Google Scholar]
- Qu, S.; Hu, S.; Li, Q. Stages and spatial patterns of urban built-up land transition in China. Acta Geogr. Sin. 2020, 75, 1539–1553. [Google Scholar]
- Guo, C.; Gao, J.; Fan, P.; Yao, F. Land Use Transition and Hotspots Detection in Yongcheng City based on the Grid Scale. China Land Sci. 2016, 30, 43–51. [Google Scholar]
- Tian, J.; Wang, B.; Cheng, L.; Wang, S. The process and mechanism of regional land use transition guided by policy: Acase study of Northeast China. Geogr. Res. 2020, 39, 805–821. [Google Scholar]
- Zhang, X.; Jin, X.; Fan, Y.; Liu, J.; Shan, W.; Zhou, Y. Spatial-temporal characteristics and coordination status of the land use function transition in Jiangsu province from 1995 to 2015. J. Nat. Resour. 2019, 34, 689–706. [Google Scholar]
- Qu, Y.; Long, H. The integrated research on regional land use recessive morphology from the perspectives of exploitation and output: The case of the Huang-Huai-Hai Region. Geogr. Res. 2017, 36, 61–73. [Google Scholar]
- Qu, Y.; Long, H. Spatial Differentiation of the Recessive Morphology of Urban Land Use and Its Influential Factors: A Case Study of 289 Prefecture-Level Cities in China. Econ. Geogr. 2016, 36, 1–9. [Google Scholar]
- Luo, H.; Hu, S.; Wu, S. Research Trends and Development Trends of Land Use Transformation in China. Nat. Resour. Econ. China 2019, 376, 65–75. [Google Scholar]
- Fang, F.; Liu, Y.; Long, H.; Li, Y. A study on the moderate non farming of land in the counties around Bohai Sea in China. J. Nat. Resour. 2013, 28, 889–897. [Google Scholar]
- Yang, R.; Liu, Y.; Long, H. The study on non-agricultural transformation co-evolution characteristics of “population-land-industry”: Case study of the Bohai Rim in China. Geogr. Res. 2015, 34, 475–486. [Google Scholar]
- Jiang, W.; Wang, W.; Chen, Y.; Liu, J.; Tang, H.; Hou, P.; Yang, Y. Quantifying driving forces of urban wetlands change in Beijing City. J. Geogr. Sci. 2012, 22, 301–314. [Google Scholar] [CrossRef]
- Zhang, W.; An, J.; Han, C. Application of entropy to evaluation of urban sustainable development. J. Quant. Tech. Econ. 2003, 20, 115–118. [Google Scholar]
- Luo, L.; Hu, S.; He, J.; Zeng, G. Relationship between Green Development and Economic Growth of Yangtze River Delta Urban Agglomeration: Based on the Decoupling Index Analysis. Econ. Geogr. 2020, 40, 40–49. [Google Scholar]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, J.; de Groot, H.L.; Rietveld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural land use change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Song, X. Discussion on land use transition research framework. Acta Geogr. Sin. 2017, 72, 471–487. [Google Scholar]
Target Layer | Element Layer | Index Layer | Weight | Direction |
---|---|---|---|---|
Dominant morphology | Scale (0.352) | Area of urban built-up area (km2) | 0.22 | + |
Proportion of the newly increased urban land construction area to the total increased urban and rural construction land area (%) | 0.32 | + | ||
Population per urban construction land unit area (person/km2) | 0.46 | + | ||
Structure (0.364) | Proportion of residential land area (%) | 0.20 | +/− | |
Proportion of land area for administration and public services (%) | 0.20 | +/− | ||
Proportion of land area for industrial and manufacturing (%) | 0.20 | +/− | ||
Proportion of land area for roads, streets, and transportation (%) | 0.20 | +/− | ||
Proportion of land area for green spaces and squares (%) | 0.20 | +/− | ||
Pattern ① (0.284) | Area | 0.18 | + | |
Landscape shape index | 0.23 | − | ||
Patch density | 0.32 | − | ||
Contiguity index | 0.27 | + | ||
Recessive morphology | Production quality (0.365) | Per capita GDP (10,000 yuan/person) | 0.29 | + |
Proportion of non-agricultural industry output values (%) | 0.19 | + | ||
Per capita investment in fixed assets (10,000 yuan/person) | 0.29 | + | ||
Per capita public budget revenue (10,000 yuan/person) | 0.23 | + | ||
Living quality (0.410) | Annual per capita disposable income of urban households (10,000 yuan/person) | 0.25 | + | |
Per capita expenditure on science and education (10,000 yuan/person) | 0.37 | + | ||
Number of doctors per 10,000 population (person) | 0.22 | + | ||
Per-capita area of paved roads in city (m2/person) | 0.16 | + | ||
Ecological quality (0.225) | Built district green space rate (%) | 0.35 | + | |
Comprehensively utilized industrial solid wastes rate (%) | 0.17 | + | ||
Wastewater treatment rate (%) | 0.28 | + | ||
Domestic garbage treatment rate (%) | 0.21 | + |
Land Use Type | Proportion of Urban Construction Land (%) |
---|---|
Residential | 25–40 |
Administration and public services | 5–8 |
Industrial and manufacturing | 15–30 |
Roads, streets, and transportation | 10–25 |
Green spaces and squares | 10–15 |
Decoupling Index | The Relationship between ΔTe and ΔTh | Coupling Type |
---|---|---|
0.8 ≤ Id ≤ 1.2 | ΔTe > 0, ΔTh > 0 | Dominant and recessive synergy hook (DRSPH) |
0 < Id < 0.8 | ΔTe > 0, ΔTh > 0, and ΔTe > ΔTh | Recessive leading positive hook (RLPH) |
Id > 1.2 | ΔTe > 0, ΔTh > 0, and ΔTe < ΔTh | Dominant leading positive hook (DLPH) |
Id < 0 | ΔTe < 0, ΔTh > 0 | Dominant recession decoupling (DRD) |
ΔTe > 0, ΔTh < 0 | Recessive recession decoupling (RRD) | |
Id > 0 | ΔTe < 0, ΔTh < 0 | Dominant and recessive negative hook (DRNH) |
Coupling Type | Number of Cities/Proportions | ||||
---|---|---|---|---|---|
2000–2005 (T1) | 2005–2010 (T2) | 2010–2015 (T3) | 2015–2020 (T4) | 2000–2020 | |
DRSPH | 1/2.27 | 4/9.09 | 4/9.09 | 12/27.27 | 9/20.45 |
RLPH | 7/15.91 | 2/4.55 | 7/15.91 | 15/34.09 | 14/31.82 |
DLPH | 5/11.36 | 14/31.82 | 13/29.55 | 15/34.09 | 16/36.36 |
DRD | 6/13.64 | 12/27.27 | 10/22.73 | 2/4.55 | 5/11.36 |
RRD | 19/43.18 | 12/27.27 | 10/22.73 | 0 | 0 |
DRND | 6/13.64 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Shu, Y.; Zong, H.; Si, H.; Yang, Z.; Liu, T. Understanding the Characteristics and Realization Path of Urban Land Use Transition in the Bohai Economic Rim: An Analytical Framework of “Dominant–Recessive” Morphology Coupling. Land 2021, 10, 493. https://doi.org/10.3390/land10050493
Qu Y, Shu Y, Zong H, Si H, Yang Z, Liu T. Understanding the Characteristics and Realization Path of Urban Land Use Transition in the Bohai Economic Rim: An Analytical Framework of “Dominant–Recessive” Morphology Coupling. Land. 2021; 10(5):493. https://doi.org/10.3390/land10050493
Chicago/Turabian StyleQu, Yanbo, Yue Shu, Haining Zong, Hongyun Si, Zhiheng Yang, and Tiantian Liu. 2021. "Understanding the Characteristics and Realization Path of Urban Land Use Transition in the Bohai Economic Rim: An Analytical Framework of “Dominant–Recessive” Morphology Coupling" Land 10, no. 5: 493. https://doi.org/10.3390/land10050493
APA StyleQu, Y., Shu, Y., Zong, H., Si, H., Yang, Z., & Liu, T. (2021). Understanding the Characteristics and Realization Path of Urban Land Use Transition in the Bohai Economic Rim: An Analytical Framework of “Dominant–Recessive” Morphology Coupling. Land, 10(5), 493. https://doi.org/10.3390/land10050493