How to Perceive the Trade-Off of Economic and Ecological Intensity of Land Use in a City? A Functional Zones-Based Case Study of Tangshan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Research Units
2.2. Data Sources
2.3. Research Framework
2.4. Estimation of Economic Intensity of Land Use
2.4.1. Indicator System Establishment
- (1)
- The level of land price realization, the amount of fixed asset investment in unit land, the number of administrative staff in unit land service, the number of students in unit land service, and the total industrial income in unit land use 1/4 quantiles as ideal values;
- (2)
- The commercial property occupancy rate and infrastructure completeness adopt the extreme value method as the ideal value;
- (3)
- The population density is based on the per capita residential land use control index stipulated in the “Urban Residential Area Planning and Design Code”, with 138 people/ha as the ideal value; the comprehensive plot ratio is based on the “Tangshan City Master Plan (2011–2020)”. Select the highest control interval of floor area ratio, and at the same time select the floor area ratio of land sold in Tangshan City from 2012 to 2014, calculate the average floor area ratio of each functional area, and then make reasonable corrections to obtain the ideal interval value of the comprehensive floor area ratio of each FZ. The ideal value of the building density is based on the comprehensive floor area ratio; its value is the ratio of the comprehensive floor area ratio and the floor (comprehensive method).
2.4.2. Economic Intensity of Land Use within FZs
2.5. Estimation of Ecological Intensity of Land Use
2.5.1. Determining Indicator System
2.5.2. Ecological Intensity Land Use within FZs
2.6. Spatial Autocorrelation
2.7. Economic and Ecological Positioning of Different Types of FZ
3. Results
3.1. Economic Intensity of FZ
3.2. Ecological Intensity of FZ
3.3. Trade-Off between Economic Intensity and Ecological Intensity
3.4. Further Verification of Economic–Ecological Status of Typical Zones
Analysis of Trade-Off Results of Population and Ecological Spaces
4. Discussion and Conclusions
4.1. Main Achievements
4.2. Implications for Policy-Making and Urban Management
4.3. Limitation and Uncertainties
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, H.; Xia, J.; Zhang, L. The Current Status of Urban Landscape Ecology Study and Its Perspectives. Sci. Geogr. Sinica 2003, 23, 484–492. [Google Scholar]
- Pickett, S.; Cadenasso, M.; Grove, J.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.; Nilon, C.; et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 2011, 92, 331–362. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Liu, Y.-L.; Chen, C.-F. Evaluation of Land-Use Efficiency Based on Regional Scale: A Case Study in Zhanjiang, Guangdong Province. J. China Univ. Min. Technol. 2007, 17, 215–219. [Google Scholar] [CrossRef]
- Eickhouta, B.; Van Meijl, H.; Tabeau, A.; Van Rheenen, T. Economic and ecological consequences of four European land use scenarios. Land Use Policy 2007, 24, 562–575. [Google Scholar] [CrossRef]
- Li, G.; Jiang, C.; Du, J.; Jia, Y.; Bai, J. Spatial differentiation characteristics of internal ecological land structure in rural settlements and its response to natural and socio-economic conditions in the Central Plains, China. Sci. Total Environ. 2020, 709, 135932. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, M.; Zhang, Z.; Tao, J.; Fu, W. A trade-off approach of optimal land allocation between socio-economic development and ecological stability. Ecol. Model. 2014, 272, 175–187. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Cotter, M.; Berkhoff, K.; Gibreel, T.; Ghorbani, A.; Golbon, R.; Nuppenau, E.-A.; Sauerborn, J. Designing a sustainable land use scenario based on a combination of ecological assessments and economic optimization. Ecol. Indic. 2014, 36, 779–787. [Google Scholar] [CrossRef]
- Cooper, A.; Shine, T.; McCann, T.; Tidane, D. An ecological basis for sustainable land use of Eastern Mauritanian wetlands. J. Arid Environ. 2006, 67, 116–141. [Google Scholar] [CrossRef]
- Zhang, S.L.; Wang, Z.S.; Hou, H.P. Comment on the Intensive and Ecological Cooperative Use of Built-up Land. China Land 2014, 7, 29–30. (In Chinese) [Google Scholar]
- Alberti, M. Maintaining ecological integrity and sustaining ecosystem function in urban areas. Curr. Opin. Environ. Sustain. 2010, 2, 178–184. [Google Scholar] [CrossRef]
- Wellmann, T.; Haase, D.; Knapp, S.; Salbach, C.; Selsam, P.; Lausch, A. Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecol. Indic. 2018, 85, 190–203. [Google Scholar] [CrossRef]
- Yang, S.H. The Content of Intensive Exploitation in City Land and Its Evaluating Index Sign System to Set up. Inq. Econ. Issues 2007, 1, 27–31. [Google Scholar]
- Li, Z.; Luan, W.; Zhang, Z.; Su, M. Relationship between urban construction land expansion and population/economic growth in Liaoning Province, China. Land Use Policy 2020, 99, 105022. [Google Scholar] [CrossRef]
- Tao, Z.H. Discussion on Several Basic Problems of Urban Intensive Land Use. China Land Sci. 2000, 14, 1–5. [Google Scholar]
- Li, Q.; Dong, Z.; Du, G.; Yang, A. Spatial Differentiation of Cultivated Land Use Intensification in Village Settings: A Survey of Typical Chinese Villages. Land 2021, 10, 249. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, K.; Yang, S.; Li, W.; Zhang, Y.; Zhang, B.; Fu, Y.; Liu, X.; Run, Y.; Chubwa, O.G.; et al. Warming Effort and Energy Budget Difference of Various Human Land Use Intensity: Case Study of Beijing, China. Land 2020, 9, 280. [Google Scholar] [CrossRef]
- Wu, J. (Jingle) Making the Case for Landscape Ecology: An Effective Approach to Urban Sustainability. Landsc. J. 2008, 27, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Wu, J. Urban sustainability: An inevitable goal of landscape research. Landsc. Ecol. 2010, 25, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Wu, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Park, R.; Burgess, E.; McKenzie, R. The City: Suggestions for the Investigation of Human Behavior in the Urban Environment; The University of Chicago Press: Chicago, IL, USA, 1925. [Google Scholar]
- Wilson, F. Urban Ecology: Urbanization and Systems of Cities. Annu. Rev. Sociol. 1984, 10, 283–307. [Google Scholar] [CrossRef] [PubMed]
- Guihe, J. Ecoevaluation and ecodevice of land. Acta Geogr. Sin. 1986, 41, 1–7. [Google Scholar]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B. The Role of Extensive Green Roofs in Sustainable Development. HortScience 2006, 41, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- Govindarajulu, D. Urban green space planning for climate adaptation in Indian cities. Urban Clim. 2014, 10, 35–41. [Google Scholar] [CrossRef]
- Niemelä, J. Ecology of urban green spaces: The way forward in answering major research questions. Landsc. Urban Plan. 2014, 125, 298–303. [Google Scholar] [CrossRef]
- Bosch, M.A.V.D.; Mudu, P.; Uscila, V.; Barrdahl, M.; Kulinkina, A.; Staatsen, B.; Swart, W.; Kruize, H.; Zurlyte, I.; Egorov, A.I. Development of an urban green space indicator and the public health rationale. Scand. J. Public Health 2015, 44, 159–167. [Google Scholar] [CrossRef]
- Van den Berg, M.; Wendel-Vos, W.; Van Poppel, M.; Kemper, H.; van Mechelen, W.; Maas, J. Health benefits of green spaces in the living environment: A systematic review of epidemiological studies. Urban For. Urban Green. 2015, 14, 806–816. [Google Scholar] [CrossRef]
- Jennings, V.; Larson, L.; Yun, J. Advancing Sustainability through Urban Green Space: Cultural Ecosystem Services, Equity, and Social Determinants of Health. Int. J. Environ. Res. Public Health 2016, 13, 196. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Zhang, Q.; Pi, J.; Wan, C.; Weng, M. Public health in linkage to land use: Theoretical framework, empirical evidence, and critical implications for re-connecting health promotion to land use policy. Land Use Policy 2016, 57, 605–618. [Google Scholar] [CrossRef]
- Richardson, E.A.; Pearce, J.; Mitchell, R.; Kingham, S. Role of physical activity in the relationship between urban green space and health. Public Health 2013, 127, 318–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, D.A.; McKenzie, T.L.; Sehgal, A.; Williamson, S.; Golinelli, D.; Lurie, N. Contribution of Public Parks to Physical Activity. Am. J. Public Health 2007, 97, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Schüle, S.A.; Gabriel, K.M.A.; Bote, G. Relationship between neighbourhood socioeconomic position and neighbourhood public green space availability: An environmental inequality analysis in a large German city applying generalized linear models. Int. J. Hyg. Environ. Health 2017, 220, 711–718. [Google Scholar] [CrossRef] [PubMed]
- WEI, L.; LIU, Y.; LI, B. Construction of new countryside in the pearl river delta: Gradual improvement vs. thorough reconstruction. City Plan. Rev. 2010, 36–41. (In Chinese) [Google Scholar]
- Soja, E.W. The socio-spatial dialectic. Ann. Assoc. Am. Geogr. 1980, 70, 207–225. [Google Scholar] [CrossRef]
- Barbosa, O.; Tratalos, J.A.; Armsworth, P.R.; Davies, R.G.; Fuller, R.A.; Johnson, P.; Gaston, K.J. Who benefits from access to green space? A case study from Sheffield, UK. Landsc. Urban Plan. 2007, 83, 187–195. [Google Scholar] [CrossRef]
- Pincetl, S.; Gearin, E. The Reinvention of Public Green Space. Urban Geogr. 2005, 26, 365–384. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Van Zoest, J.; Hopman, M. Taking the economic benefits of green space into account: The story of the Dutch TEEB for Cities project. Urban Clim. 2014, 7, 107–114. [Google Scholar] [CrossRef]
- Baycan-Levent, T.; Nijkamp, P. Planning and Management of Urban Green Spaces in Europe: Comparative Analysis. J. Urban Plan. Dev. 2009, 135, 1–12. [Google Scholar] [CrossRef]
- James, P.; Tzoulas, K.; Adams, M.; Barber, A.; Box, J.; Breuste, J.; Elmqvist, T.; Frith, M.; Gordon, C.; Greening, K.; et al. Towards an integrated understanding of green space in the European built environment. Urban For. Urban Green. 2009, 8, 65–75. [Google Scholar] [CrossRef]
- Chen, W.Y.; Wang, D. Economic development and natural amenity: An econometric analysis of urban green spaces in China. Urban For. Urban Green. 2013, 12, 435–442. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities just green enough. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.C.S.; Yi, F. Urbanization of Capital or Capitalization on Urban Land? Land Development and Local Public Finance in Urbanizing China. Urban Geogr. 2011, 32, 50–79. [Google Scholar] [CrossRef]
- Shen, J.; Wu, F. Restless Urban Landscapes in China: A Case Study of Three Projects in Shanghai. J. Urban Aff. 2012, 34, 255–277. [Google Scholar] [CrossRef]
- Wang, H.B.; Li, H.; Ming, H.B.; Hu, Y.H.; Chen, J.K.; Zhao, B. Past land use decisions and socioeconomic factors influence urban greenbelt development: A case study of Shanghai, China. Landsc. Ecol. 2014, 29, 1759–1770. [Google Scholar] [CrossRef]
- Yang, J.; Huang, C.; Zhang, Z.; Wang, L. The temporal trend of urban green coverage in major Chinese cities between 1990 and Urban For. Urban Green. 2014, 13, 19–27. [Google Scholar] [CrossRef]
- Zhang, L. Conceptualizing China’s urbanization under reforms. Habitat Int. 2008, 32, 452–470. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Lu, C. Urban land expansion and arable land loss of the major cities in China in the 1990s. Sci. China 2005, 48, 1492–1500. [Google Scholar] [CrossRef]
- Wang, G. The Current Status of Urban Landscape Ecology Study and Its Perspectives. Land Resour. 2008, 22–23. [Google Scholar]
- Wang, Z.; Zhang, S.; Jia, R.; Zhang, Y.; Zhang, J.; Zhao, J. Synergistic mechanism on intensive and ecological utilization of urban construction land. J. Jiangsu Normal Univ. 2019, 35, 14–17. [Google Scholar]
- Cerqueti, R.; Ausloos, M. Statistical assessment of regional wealth inequalities: The Italian case. Qual. Quant. 2014, 49, 2307–2323. [Google Scholar] [CrossRef]
- Wang, J.-N.; Lu, Y.-T.; Zhou, J.-S.; Li, Y.; Dong, C. Analysis of China resource-environment Gini coefficient based on GDP. China Environ. Sci. 2006, 26, 111–115. [Google Scholar]
- Kabisch, N.; Haase, D. Green spaces of European cities revisited for 1990–2006. Landsc. Urban Plan. 2013, 110, 113–122. [Google Scholar] [CrossRef]
- Kanbur, R.; Zhang, X. Which regional inequality? The evolution of rural–urban and inland–coastal inequality in China from 1983 to 1995. J. Comp. Econ. 1999, 27, 686–701. [Google Scholar] [CrossRef] [Green Version]
- Conceicao, P.; Ferreira, P. The Young Person’s Guide to the Theil Index: Suggesting Intuitive Interpretations and Exploring Analytical Applications; Social Science Electronic Publishing: Rochester, NY, USA, 2000. [Google Scholar]
Type | Data | Format | Source |
---|---|---|---|
Statistical | GDP | Text | 2015 Tangshan Statistical Yearbook |
Demography | Text | The Sixth National Population Census of China | |
Benchmark land price and Transaction land price | Text | 2015 Tangshan Statistical Yearbook | |
Reports/plans related | Land present | Text | Tangshan City Land Use Master Plan (2006–2020) |
City plan | Text | Tangshan City Master Plan (2011–2020) | |
Land transfer data | Text | Tangshan City Land Transfer Records (2014) | |
Spatial | FZ classification | Vector | The second national land survey cadastral data (2009) |
Land present | Vector | Land use change survey database (2014) | |
Remote sensing images | Raster | Remote sensing image (MODIS; Landsat8, 30 M, 2014, www.gscloud.cn) | |
Field research vector data | Vector | Field survey (land category and building information) |
Type | Indicator | Ideal Value | Determination Basis | Weight |
---|---|---|---|---|
RFZ | Comprehensive floor area ratio | 0.8–5.6 | Comprehensive method | 0.28 |
Population density | 138 people/hm2 | Control indicator | 0.24 | |
Infrastructure completeness | 100% | Extreme value method | 0.2 | |
Residential land price level | 1.5 | 1/4 quartile method | 0.16 | |
Building density | 33–53% | Comprehensive method | 0.12 | |
CFZ | Comprehensive floor area ratio | 0.6–6 | Comprehensive method | 0.28 |
Infrastructure completeness | 100% | Extreme value method | 0.16 | |
Commercial land price level | 1.3 | 1/4 quartile method | 0.24 | |
Building density | 35–55% | Comprehensive method | 0.12 | |
Commercial property occupancy rate | 95% | Extreme value method | 0.2 | |
IFZ | Comprehensive floor area ratio | 0.46–4.3 | Comprehensive method | 0.28 |
Infrastructure completeness | 100% | Extreme value method | 0.16 | |
Total fixed assets of the unit land | CNY 45 million/hm2 | 1/4 quartile method | 0.2 | |
Total revenue of unit land use industry | CNY 80 million/hm2 | 1/4 quartile method | 0.24 | |
Building density | 35–45% | Comprehensive method | 0.12 | |
PFZ | Comprehensive floor area ratio | 0.85–1.77 | Comprehensive method | 0.34 |
Infrastructure completeness | 100% | Extreme value method | 0.22 | |
Number of administrative staff per unit area | 200 people/hm2 | 1/4 quartile method | 0.28 | |
Building density | 36–47% | Comprehensive method | 0.16 | |
EFZ | Comprehensive floor area ratio | 0.77–6.5 | Comprehensive method | 0.34 |
Infrastructure completeness | 100% | Extreme value method | 0.22 | |
Number of students per unit area | 260 people/hm2 | 1/4 quartile method | 0.28 | |
Building density | 32–60% | Comprehensive method | 0.16 | |
OFZ | Comprehensive floor area ratio | 0.47–3.5 | Comprehensive method | 0.6 |
Building density | 32–62% | Comprehensive method | 0.4 |
FZ Type | High Level (0.8–1.0) | Medium Level (0.6–0.8) | Low Level (0–0.6) | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | Quantity | Area | Quantity | Area | Quantity | Area | Quantity | |||||||
ha | % | No. | % | ha | % | No. | % | ha | % | No. | % | ha | No. | |
RFZ | 4869.86 | 61.28 | 197 | 67.01 | 1876.38 | 23.61 | 60 | 20.41 | 1201.13 | 15.11 | 37 | 12.59 | 7947.38 | 294 |
CFZ | 293.85 | 33.52 | 32 | 39.51 | 569.71 | 64.98 | 46 | 56.79 | 13.14 | 1.5 | 3 | 3.7 | 876.7 | 81 |
IFZ | 1440.43 | 38.51 | 14 | 19.44 | 200.81 | 5.37 | 6 | 8.33 | 2099.63 | 56.13 | 52 | 72.22 | 3740.88 | 72 |
PFZ | 66.53 | 40.67 | 16 | 47.06 | 68.67 | 41.98 | 12 | 35.29 | 28.36 | 17.34 | 6 | 17.65 | 163.57 | 34 |
EFZ | 286.35 | 59.87 | 19 | 55.88 | 85.76 | 17.93 | 9 | 26.47 | 106.18 | 22.2 | 6 | 17.65 | 478.3 | 34 |
OFZ | 199.46 | 6.28 | 16 | 24.24 | 866.37 | 27.28 | 12 | 18.18 | 2110.29 | 66.44 | 38 | 57.58 | 3176.12 | 66 |
Total | 7156.48 | 43.68 | 294 | 50.6 | 3667.72 | 22.39 | 145 | 24.96 | 5558.73 | 33.93 | 142 | 24.44 | 16,382.94 | 581 |
FZ Type | High Level (0.8–1.0) | Medium Level (0.6–0.8) | Low Level (0–0.6) | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | Quantity | Area | Quantity | Area | Quantity | Area | Quantity | |||||||
ha | % | No. | % | ha | % | No. | % | ha | % | No. | % | ha | No. | |
RFZ | 211.85 | 2.67 | 4 | 1.36 | 2451.46 | 30.84 | 68 | 23.13 | 5284.07 | 66.49 | 222 | 75.51 | 7947.38 | 294 |
CFZ | 13.13 | 1.5 | 2 | 2.47 | 369.95 | 42.2 | 11 | 13.58 | 493.61 | 56.3 | 68 | 83.95 | 876.7 | 81 |
IFZ | 124.94 | 3.34 | 2 | 2.78 | 1393.31 | 37.25 | 27 | 37.5 | 2222.63 | 59.41 | 43 | 59.72 | 3740.88 | 72 |
PFZ | 0 | 0 | 0 | 0 | 59.35 | 36.28 | 7 | 20.59 | 104.23 | 63.72 | 27 | 79.41 | 163.57 | 34 |
EFZ | 29.6 | 6.19 | 1 | 2.94 | 31.54 | 6.59 | 1 | 2.94 | 417.15 | 87.22 | 32 | 94.12 | 478.3 | 34 |
OFZ | 525.39 | 16.54 | 5 | 7.58 | 2148.82 | 67.65 | 32 | 48.49 | 501.91 | 15.8 | 29 | 43.94 | 3176.12 | 66 |
Total | 904.91 | 5.52 | 14 | 2.41 | 6454.42 | 39.4 | 146 | 25.13 | 9023.61 | 55.08 | 421 | 72.46 | 16,382.94 | 581 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, W.; Zhang, J.; Zhou, X.; Li, S.; Geng, X. How to Perceive the Trade-Off of Economic and Ecological Intensity of Land Use in a City? A Functional Zones-Based Case Study of Tangshan, China. Land 2021, 10, 551. https://doi.org/10.3390/land10060551
Shen W, Zhang J, Zhou X, Li S, Geng X. How to Perceive the Trade-Off of Economic and Ecological Intensity of Land Use in a City? A Functional Zones-Based Case Study of Tangshan, China. Land. 2021; 10(6):551. https://doi.org/10.3390/land10060551
Chicago/Turabian StyleShen, Wencang, Jianjun Zhang, Xiangli Zhou, Shengnan Li, and Xiaoli Geng. 2021. "How to Perceive the Trade-Off of Economic and Ecological Intensity of Land Use in a City? A Functional Zones-Based Case Study of Tangshan, China" Land 10, no. 6: 551. https://doi.org/10.3390/land10060551
APA StyleShen, W., Zhang, J., Zhou, X., Li, S., & Geng, X. (2021). How to Perceive the Trade-Off of Economic and Ecological Intensity of Land Use in a City? A Functional Zones-Based Case Study of Tangshan, China. Land, 10(6), 551. https://doi.org/10.3390/land10060551