Metrics and Equivalence in Conservation Banking
Abstract
:1. Introduction
US Conservation Banking
2. Aim, Materials, and Methods
- Sparling Ranch Conservation Bank (established 2017, Ventura and Sacramento offices, 3282.6 acres, enhancement and preservation of habitat, sponsored by South Bay Conservation Resources, signed by CDFW and FWS). It provides California Tiger Salamander (Ambystoma californiense), upland habitat, and aquatic/breeding habitat (CDFW distinguishes the 2 habitat types, FWS does not), and California Red-Legged Frog (Rana draytonii) credits. A total of 2000.6 credits were released in January 2018 (phase 1 of the bank), 1282 credits will be released in phase 2.
- Dutchman Creek Conservation Bank (established 2014, Sacramento office, 501 acres, creation and preservation of habitat, sponsored by Westervelt, signed by CDFW and FWS). It provides Vernal Pool Fairy Shrimp (Branchinecta lynchi), Vernal Pool Tadpole Shrimp (Lepidurus packardi), California Tiger Salamander, San Joaquin Kit Fox (Vulpes macrotis mutica), Conservancy Fairy Shrimp (Branchinecta conservatio), Swainson’s Hawk (Buteo swainsoni), Western Spadefoot Toad (Spea hammondii), and Western Burrowing Owl (Athene cunicularia) credits.
- Do the gains equal the losses?
- ∘
- What unit measure is used (e.g., 1 acre = 1 credit)?
- ∘
- Is it the same for measuring gains and losses?
- ∘
- Are ratios (multipliers) applied to calculate the compensation requirement?
- Do metrics and quantification methods on the bank and permitting side reflect the key aspects of equivalence based on [10,24]?
- ∘
- Ecological equivalence: What is the target biodiversity? Does it reflect the overall policy goal of species recovery?
- ∘
- Spatial considerations: Is the landscape-context considered?
- ∘
- Temporal dynamics: Are temporal losses considered? Is a baseline established to measure gains and losses?
- ∘
- Uncertainties: Is the risk of offset failure considered?
3. Results
3.1. Gains and Losses
3.2. Metrics and Equivalence
3.2.1. Ecological Equivalence
- Species status and range-wide conditions,
- Factors affecting these conditions and recovery needs,
- A baseline of the condition in the project area (incl. factors responsible, relationship of the area to recovery and survival),
- Effects, indirect and direct impacts of the project, and
- Cumulative effects (combined impacts of current and future activities).
3.2.2. Spatial Considerations
3.2.3. Temporal Dynamics
3.2.4. Uncertainties
4. Discussion
4.1. Conservation Banking Credits and Metrics
4.2. Challenges to Standardized Metrics
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Brownlie, S.; Treweek, J. Biodiversity offsets for ‘no net loss’ through impact assessment. In Handbook on Biodiversity and Ecosystem Services in Impact Assessment; Geneletti, D., Ed.; Edward Elgar Publishing: Cheltenham, UK; Northampton, MA, USA, 2016; pp. 364–394. ISBN 978-1-78347-898-9. [Google Scholar]
- Madsen, B.; Carroll, N.; Moore Brands, K. State of Biodiversity Markets—Offset and Compensation Programs Worldwide. 2010. Available online: http://www.ecosystemmarketplace.com/documents/acrobat/sbdmr.pdf (accessed on 24 August 2017).
- May, J.; Hobbs, R.J.; Valentine, L.E. Are offsets effective? An evaluation of recent environmental offsets in Western Australia. Biol. Conserv. 2017, 206, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Ermgassen, S.O.S.E.Z.; Baker, J.; Griffiths, R.A.; Strange, N.; Struebig, M.J.; Bull, J.W. The ecological outcomes of biodiversity offsets under “no net loss” policies: A global review. Conserv. Lett. 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Weissgerber, M.; Roturier, S.; Julliard, R.; Guillet, F. Biodiversity offsetting: Certainty of the net loss but uncertainty of the net gain. Biol. Conserv. 2019, 237, 200–208. [Google Scholar] [CrossRef]
- Grimm, M.; Köppel, J. Biodiversity Offset Program Design and Implementation. Sustainability 2019, 11, 6903. [Google Scholar] [CrossRef] [Green Version]
- Bull, J.W.; Gordon, A.; Watson, J.E.M.; Maron, M.; Carvalho, S. Seeking convergence on the key concepts in ‘no net loss’ policy. J. Appl. Ecol. 2016, 53, 1686–1693. [Google Scholar] [CrossRef]
- Gardner, T.A.; von Hase, A.; Brownlie, S.; Ekstrom, J.M.M.; Pilgrim, J.D.; Savy, C.E.; Stephens, R.T.T.; Treweek, J.; Ussher, G.T.; Ward, G.; et al. Biodiversity Offsets and the Challenge of Achieving No Net Loss. Conserv. Biol. 2013, 27, 1254–1264. [Google Scholar] [CrossRef]
- Apostolopoulou, E. (Ed.) Equivalent Natures and Non-places. In Nature Swapped and Nature Lost; Springer International Publishing: Cham, Switzerland, 2020; pp. 75–108. ISBN 978-3-030-46787-6. [Google Scholar]
- BBOP. Standard on Biodiversity Offsets, Washington, DC, USA. 2012. Available online: http://www.forest-trends.org/documents/files/doc_3078.pdf (accessed on 22 August 2017).
- Quétier, F.; Lavorel, S. Assessing ecological equivalence in biodiversity offset schemes: Key issues and solutions. Biol. Conserv. 2011, 144, 2991–2999. [Google Scholar] [CrossRef]
- Sochi, K.; Kiesecker, J.; McKenzie, A. Optimizing regulatory requirements to aid in the implementation of compensatory mitigation. J. Appl. Ecol. 2016, 53, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Marshall, E.; Wintle, B.A.; Southwell, D.; Kujala, H. What are we measuring? A review of metrics used to describe biodiversity in offsets exchanges. Biol. Conserv. 2020, 241, 108250. [Google Scholar] [CrossRef]
- Maron, M.; Brownlie, S.; Bull, J.W.; Evans, M.C.; von Hase, A.; Quétier, F.; Watson, J.E.M.; Gordon, A. The many meanings of no net loss in environmental policy. Nat. Sustain. 2018, 1, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Sonter, L.J.; Barnes, M.; Matthews, J.W.; Maron, M. Quantifying habitat losses and gains made by U.S. Species Conservation Banks to improve compensation policies and avoid perverse outcomes. Conserv. Lett. 2019, 105, e12629. [Google Scholar] [CrossRef] [Green Version]
- Maron, M.; Simmonds, J.S.; Watson, J.E.M.; Sonter, L.J.; Bennun, L.; Griffiths, V.F.; Quétier, F.; von Hase, A.; Edwards, S.; Rainey, H.; et al. Global no net loss of natural ecosystems. Nat. Ecol. Evol. 2020, 4, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Takacs, D. An Aye Aye for An Aye Aye: Making Biodiversity Offsets Sustainable. Columbia J. Environ. Law 2020, 45, 519–572. [Google Scholar] [CrossRef]
- Moilanen, A.; Kotiaho, J.S. Three ways to deliver a net positive impact with biodiversity offsets. Conserv. Biol. 2020, 35, 197–205. [Google Scholar] [CrossRef]
- Moilanen, A.; Kujala, H.; Mikkonen, N. A practical method for evaluating spatial biodiversity offset scenarios based on spatial conservation prioritization outputs. Methods Ecol. Evol. 2020, 11, 794–803. [Google Scholar] [CrossRef]
- Gamarra, M.J.C.; Lassoie, J.P.; Milder, J. Accounting for no net loss: A critical assessment of biodiversity offsetting metrics and methods. J. Environ. Manag. 2018, 220, 36–43. [Google Scholar] [CrossRef]
- Knight, K.B.; Seddon, E.S.; Toombs, T.P. A framework for evaluating biodiversity mitigation metrics. Ambio 2019, 49, 1232–1240. [Google Scholar] [CrossRef]
- McVittie, A.; Faccioli, M. Biodiversity and ecosystem services net gain assessment: A comparison of metrics. Ecosyst. Serv. 2020, 44, 101145. [Google Scholar] [CrossRef]
- BBOP. Guidance Notes to the Standard on Biodiversity Offsets. 2012. Available online: https://www.forest-trends.org/wp-content/uploads/imported/BBOP_Standard_Guidance_Notes_20_Mar_2012_Final_WEB.pdf (accessed on 7 August 2020).
- Bezombes, L.; Gaucherand, S.; Kerbiriou, C.; Reinert, M.-E.; Spiegelberger, T. Ecological Equivalence Assessment Methods: What Trade-Offs between Operationality, Scientific Basis and Comprehensiveness? Environ. Manag. 2017, 60, 216–230. [Google Scholar] [CrossRef] [Green Version]
- Cochran, B.; Maness, N.R.; Alcott, E. Measuring Up: Synchronizing Biodiversity Measurement Systems for Markets and Other Incentive Programs; U.S. Department of Agriculture, Office of Environmental Markets: Hillsboro, OR, USA, 2011; Available online: https://willamettepartnership.org/wp-content/uploads/2015/04/Measuring-Up-w-appendices-final.pdf (accessed on 5 August 2020).
- Pindilli, E.; Casey, F. Biodiversity and Habitat Markets—Policy, Economic, and Ecological Implications of Market-Based Conservation; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2015; ISBN 978-1-4113-3977-4. [Google Scholar]
- Chiavacci, S.J.; Pindilli, E.J. Trends in biodiversity and habitat quantification tools used for market-based conservation in the United States. Conserv. Biol. 2020, 34, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Maron, M.; Ives, C.D.; Kujala, H.; Bull, J.W.; Maseyk, F.J.F.; Bekessy, S.; Gordon, A.; Watson, J.E.M.; Lentini, P.E.; Gibbons, P.; et al. Taming a Wicked Problem: Resolving Controversies in Biodiversity Offsetting. BioScience 2016, 66, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Sonter, L.J.; Gordon, A.; Archibald, C.; Simmonds, J.S.; Ward, M.; Metzger, J.P.; Rhodes, J.R.; Maron, M. Offsetting impacts of development on biodiversity and ecosystem services. Ambio 2020, 49, 892–902. [Google Scholar] [CrossRef] [PubMed]
- Bezombes, L.; Gaucherand, S.; Spiegelberger, T.; Gouraud, V.; Kerbiriou, C. A set of organized indicators to conciliate scientific knowledge, offset policies requirements and operational constraints in the context of biodiversity offsets. Ecol. Indic. 2018, 93, 1244–1252. [Google Scholar] [CrossRef] [Green Version]
- Barral, S. Metrics and public accountability, the case of species credits in the USA. J. Rural. Stud. 2019. [Google Scholar] [CrossRef]
- Vaissière, A.-C.; Meinard, Y. A policy framework to accommodate both the analytical and normative aspects of biodiversity in ecological compensation. Biol. Conserv. 2021, 253, 108897. [Google Scholar] [CrossRef]
- Apostolopoulou, E.; Adams, W.M. Biodiversity offsetting and conservation: Reframing nature to save it. Oryx 2017, 51, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, B.; Marques, A.; Soares, A.M.V.D.M.; Pereira, H.M. Biodiversity offsets: From current challenges to harmonized metrics. Curr. Opin. Environ. Sustain. 2015, 14, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Gorissen, M.M.J.; van der Heide, C.M.; Schaminée, J.H.J. Habitat Banking and Its Challenges in a Densely Populated Country: The Case of The Netherlands. Sustainability 2020, 12, 3756. [Google Scholar] [CrossRef]
- Hayes, N.; Morrison-Saunders, A. Effectiveness of environmental offsets in environmental impact assessment: Practitioner perspectives from Western Australia. Impact Assess. Proj. Apprais. 2007, 25, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Maron, M.; Bull, J.W.; Evans, M.C.; Gordon, A. Locking in loss: Baselines of decline in Australian biodiversity offset policies. Biol. Conserv. 2015, 192, 504–512. [Google Scholar] [CrossRef]
- Darbi, M.; Tausch, C. Loss-Gain Calculations in German Impact Mitigation. 2014. Available online: https://www.researchgate.net/publication/265243988 (accessed on 24 August 2017).
- Maestre-Andrés, S.; Corbera, E.; Robertson, M.; Lave, R. Habitat banking at a standstill: The case of Spain. Environ. Sci. Policy 2020, 109, 54–63. [Google Scholar] [CrossRef]
- Briggs, B.D.J.; Hill, D.A.; Gillespie, R. Habitat banking—How it could work in the UK. J. Nat. Conserv. 2009, 17, 112–122. [Google Scholar] [CrossRef]
- Carroll, N.; Bayon, R.; Fox, J. (Eds.) The Future of Biodiversity Offset Banking. In Conservation and Biodiversity Banking: A Guide to Setting up and Running Biodiversity Credit Trading Systems; Earthscan: London, UK, 2009; pp. 223–226. ISBN 9781844078141. [Google Scholar]
- Sciara, G.-C.; Bjorkman, J.; Stryjewski, E.; Thorne, J.H. Mitigating environmental impacts in advance: Evidence of cost and time savings for transportation projects. Transp. Res. Part D Transp. Environ. 2017, 50, 316–326. [Google Scholar] [CrossRef]
- EFTEC. The Use of Market-Based Instruments for Biodiversity Protection—Habitat Banking Case Studies. 2010. Available online: http://www.forest-trends.org/publication_details.php?publicationID=2410 (accessed on 24 August 2017).
- Grimm, M. Conserving biodiversity through offsets? Findings from an empirical study on conservation banking. J. Nat. Conserv. 2020, 57, 125871. [Google Scholar] [CrossRef]
- FWS. Guidance for the Establishment, Use, and Operation of Conservation Banks. 2003. Available online: https://www.fws.gov/endangered/esa-library/pdf/Conservation_Banking_Guidance.pdf (accessed on 13 June 2018).
- FWS Mitigation Policy. Department of the Interior. In Federal Register; 23 January 1981; pp. 7644–7663. Available online: https://www.fws.gov/policy/46FR7656.pdf (accessed on 26 May 2021).
- Bunn, D.A.; Moyle, P.B.; Johnson, C.K. Maximizing the ecological contribution of conservation banks. Wildl. Soc. Bull. 2014, 38, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Barral, S. Conservation, finance, bureaucrats: Managing time and space in the production of environmental intangibles. J. Cult. Econ. 2020, 1–15. [Google Scholar] [CrossRef]
- McKenney, B.A.; Kiesecker, J.M. Policy Development for Biodiversity Offsets: A Review of Offset Frameworks. Environ. Manag. 2010, 45, 165–176. [Google Scholar] [CrossRef]
- Gamarra, M.J.C.; Toombs, T.P. Thirty years of species conservation banking in the U.S.: Comparing policy to practice. Biol. Conserv. 2017, 214, 6–12. [Google Scholar] [CrossRef]
- Chiavacci, S.J.; Pindilli, E.J. Database of Biodiversity and Habitat Quantification Tools Used for Market-Based Conservation in the United States; U.S. Geological Survey: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Chiavacci, S.J.; Pindilli, E.J. A database of biodiversity and habitat quantification tools used in market-based conservation. Fact Sheet 2018, 4. [Google Scholar] [CrossRef]
- Bendor, T.K.; Riggsbee, J.A. A survey of entrepreneurial risk in U.S. wetland and stream compensatory mitigation markets. Environ. Sci. Policy 2011, 14, 301–314. [Google Scholar] [CrossRef]
- White, T.B.; Bull, J.W.; Toombs, T.P.; Knight, A.T. Uncovering opportunities for effective species conservation banking requires navigating technical and practical complexities. Conserv. Sci. Pr. 2021, e431. [Google Scholar] [CrossRef]
- Laitila, J.; Moilanen, A.; Pouzols, F.M. A method for calculating minimum biodiversity offset multipliers accounting for time discounting, additionality and permanence. Methods Ecol. Evol. 2014, 5, 1247–1254. [Google Scholar] [CrossRef] [Green Version]
- Bekessy, S.A.; Wintle, B.A.; Lindenmayer, D.B.; McCarthy, M.A.; Colyvan, M.; Burgman, M.A.; Possingham, H.P. The biodiversity bank cannot be a lending bank. Conserv. Lett. 2010, 3, 151–158. [Google Scholar] [CrossRef]
- Gause, M.; (Sacremento, Germany); Grimm, M.; (Berlin, Germany). Interview on metrics and crediting in conservation banking. (Videocall on 11 March 2021). Personal communication, 2021. [Google Scholar]
- Kiesecker, J.M.; Copeland, H.; Pocewicz, A.; McKenney, B. Development by design: Blending landscape-level planning with the mitigation hierarchy. Front. Ecol. Environ. 2010, 8, 261–266. [Google Scholar] [CrossRef]
- Lebeau, C.W.; Strickland, M.D.; Johnson, G.D.; Frank, M.S. Landscape-Scale Approach to Quantifying Habitat Credits for A Greater Sage-grouse Habitat Conservation Bank. Rangel. Ecol. Manag. 2017, 71, 149–158. [Google Scholar] [CrossRef]
- Underwood, J.G. Combining Landscape-Level Conservation Planning and Biodiversity Offset Programs: A Case Study. Environ. Manag. 2011, 47, 121–129. [Google Scholar] [CrossRef]
- Grimm, M.; Köppel, J.; Geißler, G. A Shift Towards Landscape-Scale Approaches in Compensation—Suitable Mechanisms and Open Questions. Impact Assess. Proj. Apprais. 2019, 47, 1–12. [Google Scholar] [CrossRef]
- ECOS. Environmental Conservation Online System. Available online: https://ecos.fws.gov/ecp/ (accessed on 24 February 2021).
- Marshall, E.; Valavi, R.; Connor, L.O.; Cadenhead, N.; Southwell, D.; Wintle, B.A.; Kujala, H. Quantifying the impact of vegetation-based metrics on species persistence when choosing offsets for habitat destruction. Conserv. Biol. 2020, 35, 567–577. [Google Scholar] [CrossRef]
- EC. Guidance Document on the Strict Protection of Animal Species of Community Interest Under the Habitats Directive 92/43/EEC. 2007. Available online: https://ec.europa.eu/environment/nature/conservation/species/guidance/pdf/guidance_en.pdf (accessed on 1 March 2021).
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Deiner, K.; Yamanaka, H.; Bernatchez, L. The future of biodiversity monitoring and conservation utilizing environmental DNA. Environ. DNA 2021, 3, 3–7. [Google Scholar] [CrossRef]
- Schmidt, B.R.; Grünig, C.R. Einsatz Von eDNA Im Amphibien-Monitoring; Zurich Open Repository and Archive: Zurich, Switzerland, 2017. [Google Scholar]
- Schenekar, T.; Schletterer, M.; Weiss, S. eDNA als neues Werkzeug für das Gewässermonitoring—Potenzial und Rahmenbedingungen anhand ausgewählter Anwendungsbeispiele aus Österreich. Osterr. Wasser Abfallwirtsch. 2020, 72, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Bendor, T.K.; Riggsbee, J.A.; Doyle, M. Risk and Markets for Ecosystem Services. Environ. Sci. Technol. 2011, 45, 10322–10330. [Google Scholar] [CrossRef]
- Schwartz, M.W. The Performance of the Endangered Species Act. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.M.; Che-Castaldo, J.P.; Crouse, D.; Davis, F.W.; Epanchin-Niell, R.; Flather, C.H.; Frohlich, R.K.; Goble, D.D.; Li, Y.-W.; Male, T.D.; et al. Species Recovery in the United States: Increasing the Effectiveness of the Endangered Species Act. Issues Ecol. 2016, 20, 1–28. [Google Scholar]
- Cargill, C.F. Why Standardization Efforts Fail. J. Electron. Publ. 2011, 14. [Google Scholar] [CrossRef]
Bank | (a) Acres | (b) Credits Released (RIBITS) | (c) Credits Sold (RIBITS) | (d) Compensation Required (Permit Documents) | (e) Acres Impacted (Permit Documents) | (e) Discrepancy? (c–d) |
---|---|---|---|---|---|---|
Sparling Ranch | 3282.6 | 2000.6 (+ 1282 in phase 2) | 1038.78 | 961.797 | 956.796 | + 81.984 |
Dutchman Creek (incomplete analysis) | 501 | 496.8 | 104.54 analyzed (out of 489.04 sold) | 164.67 | 119.28 | + 60.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimm, M. Metrics and Equivalence in Conservation Banking. Land 2021, 10, 565. https://doi.org/10.3390/land10060565
Grimm M. Metrics and Equivalence in Conservation Banking. Land. 2021; 10(6):565. https://doi.org/10.3390/land10060565
Chicago/Turabian StyleGrimm, Marie. 2021. "Metrics and Equivalence in Conservation Banking" Land 10, no. 6: 565. https://doi.org/10.3390/land10060565
APA StyleGrimm, M. (2021). Metrics and Equivalence in Conservation Banking. Land, 10(6), 565. https://doi.org/10.3390/land10060565