Landscape Ecological Risk Assessment under Multiple Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. PCR 3D LERA Framework
2.2.1. PCR 3D Model
2.2.2. LERA Index System
2.3. GeoDetector
2.4. Risk Factors Selection
3. Results
3.1. Spatial Pattern of Indicators in LERA Index System
3.2. Spatial Pattern of Landscape Ecological Risk in Different Criteria
3.3. Spatial Pattern of Comprehensive Landscape Ecological Risk
3.4. Driving Factors Affecting the Landscape Ecological Risk
4. Discussion
4.1. PCR 3D Model Framework Feasibility
4.2. Landscape Ecological Risk Implication
4.3. Regional Risk Management Implementation
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US Environmental Protection Agency Risk Assessment Forum. Guidelines for Ecological Risk Assessment; US Environmental Protection Agency: Washington, DC, USA, 1998.
- Piet, G.J.; Knights, A.M.; Jongbloed, R.H.; Tamis, J.E.; de Vries, P.; Robinson, L.A. Ecological Risk Assessments to Guide Decision-Making: Methodology Matters. Environ. Sci. Policy 2017, 68, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing Landscape Pattern and Ecosystem Service Value Changes for Urbanization Impacts at an Eco-Regional Scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y.; Zhuang, Q.; Li, H.; Wan, R.; Su, W.; Zhang, J. Ecological Risk Assessment of Ecosystem Services in the Taihu Lake Basin of China from 1985 to 2020. Sci. Total Environ. 2016, 554–555, 7–16. [Google Scholar] [CrossRef]
- Wolf, J.; Adger, W.N.; Lorenzoni, I.; Abrahamson, V.; Raine, R. Social Capital, Individual Responses to Heat Waves and Climate Change Adaptation: An Empirical Study of Two UK Cities. Glob. Environ. Change 2010, 20, 44–52. [Google Scholar] [CrossRef]
- Miller, S.; Chua, K.; Coggins, J.; Mohtadi, H. Heat Waves, Climate Change, and Economic Output. J. Eur. Econ. Assoc. 2021. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; O’Connor, P.J.; Yan, J.; Wang, B.; Liu, D.L.; Wang, P.; Wang, Z.; Wan, L.; Li, Y. Ecosystem Services under Climate Change Impact Water Infrastructure in a Highly Forested Basin. Water 2020, 12, 2825. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Peng, J.; Zhang, T.; Wei, H. Urban landscape ecological risk assessment based on the 3D framework of adaptive cycle. ACTA Geogr. Sin. 2015, 70, 1052–1067. (In Chinese) [Google Scholar] [CrossRef]
- Lin, Y.; Hu, X.; Zheng, X.; Hou, X.; Zhang, Z.; Zhou, X.; Qiu, R.; Lin, J. Spatial Variations in the Relationships between Road Network and Landscape Ecological Risks in the Highest Forest Coverage Region of China. Ecol. Indic. 2019, 96, 392–403. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Wang, Y. Relationship between urban heat island and landscape patterns:From city size and landscape composition to spatial configuration. Acta Ecol. Sin. 2017, 37, 7769–7780. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape Ecological Risk Assessment of Chinese Coastal Cities Based on Land Use Change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, X.; Lei, D.; Guo, L.; Sun, X.; Kong, F.; Wu, J. Multi-Scenario Simulation of Landscape Ecological Risk Probability to Facilitate Different Decision-Making Preferences. J. Clean. Prod. 2019, 227, 325–335. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Pan, Y.; Zhao, Z.; Song, Z.; Wang, Y. Study on the Correlation between Ecological Risk due to Natural Disaster and Landscape Pattern-Process: Review and Prospect. Adv. Earth Sci. 2014, 29, 1186–1196. (In Chinese) [Google Scholar] [CrossRef]
- Chen, A.; Zhao, X.; Yao, L.; Chen, L. Application of a New Integrated Landscape Index to Predict Potential Urban Heat Islands. Ecol. Indic. 2016, 69, 828–835. [Google Scholar] [CrossRef]
- McGarigal, K.; Compton, B.W.; Plunkett, E.B.; DeLuca, W.V.; Grand, J.; Ene, E.; Jackson, S.D. A Landscape Index of Ecological Integrity to Inform Landscape Conservation. Landsc. Ecol. 2018, 33, 1029–1048. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Fu, B.; Zhao, W. Source-sink landscape theory and its ecological significance. Front. Biol. China 2008, 3, 131–136. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, L.; Sun, R. Modeling the Non-Point Source Pollution Risks by Combing Pollutant Sources, Precipitation, and Landscape Structure. Environ. Sci. Pollut. Res. 2019, 26, 11856–11863. [Google Scholar] [CrossRef]
- Heinrichs, J.A.; Lawler, J.J.; Schumaker, N.H.; Walker, L.E.; Cimprich, D.A.; Bleisch, A. Assessing Source-Sink Stability in the Context of Management and Land-Use Change. Landsc. Ecol. 2019, 34, 259–274. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling Ecosystem Services Supply and Human Ecological Demand to Identify Landscape Ecological Security Pattern: A Case Study in Beijing–Tianjin–Hebei Region, China. Urban Ecosyst. 2017, 20, 701–714. [Google Scholar] [CrossRef]
- Danish; Ulucak, R.; Khan, S.U.-D. Determinants of the Ecological Footprint: Role of Renewable Energy, Natural Resources, and Urbanization. Sustain. Cities Soc. 2020, 54, 101996. [Google Scholar] [CrossRef]
- Gotts, N.M. Resilience, Panarchy, and World-Systems Analysis. Ecol. Soc. 2007, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, B.; Fath, B.D.; Müller, F. Adapting the Adaptive Cycle: Hypotheses on the Development of Ecosystem Properties and Services. Ecol. Model. 2011, 222, 2878–2890. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S. Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Hughes, T.P.; Rodrigues, M.J.; Bellwood, D.R.; Ceccarelli, D.; Hoegh-Guldberg, O.; McCook, L.; Moltschaniwskyj, N.; Pratchett, M.S.; Steneck, R.S.; Willis, B. Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change. Curr. Biol. 2007, 17, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Liu, Y.; Peng, J.; Wu, J. Assessing Urban Landscape Ecological Risk through an Adaptive Cycle Framework. Landsc. Urban Plan. 2018, 180, 125–134. [Google Scholar] [CrossRef]
- Li, T.; Dong, Y.; Liu, Z. A Review of Social-Ecological System Resilience: Mechanism, Assessment and Management. Sci. Total Environ. 2020, 723, 138113. [Google Scholar] [CrossRef]
- Deng, C.; Bai, H.; Gao, S.; Huang, X.; Meng, Q.; Zhao, T.; Zhang, Y.; Su, K.; Guo, S. Comprehensive effect of climatic factors on plant phenology in Qinling Mountains region during 1964-2015. ACTA Geogr. Sin. 2018, 73, 917–931. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.; Linderholm, H.W.; Song, H.; Cai, Q.; Tian, Q.; Sun, J.; Chen, D.; Simelton, E.; Seftigen, K.; Tian, H.; et al. Temperature Variations Recorded in Pinus Tabulaeformis Tree Rings from the Southern and Northern Slopes of the Central Qinling Mountains, Central China. Boreas 2009, 38, 285–291. [Google Scholar] [CrossRef]
- Li, S.; Lu, J.; Yan, J.; Liu, X.; Kong, F.; Wang, J. Spatiotemporal variability of temperature in northern and southern Qinling Mountains and its influence on climatic boundary. ACTA Geogr. Sin. 2018, 73, 13–24. (In Chinese) [Google Scholar] [CrossRef]
- Shi, H.; Zhou, Q.; Xie, F.; He, N.; He, R.; Zhang, K.; Zhang, Q.; Dang, H. Disparity in Elevational Shifts of Upper Species Limits in Response to Recent Climate Warming in the Qinling Mountains, North-Central China. Sci. Total Environ. 2020, 706, 135718. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xu, G.; Li, P.; Li, Z.; Zhang, Y.; Cheng, Y.; Jia, L.; Zhang, J. Vegetation Dynamics and Their Relationships with Climatic Factors in the Qinling Mountains of China. Ecol. Indic. 2020, 108, 105719. [Google Scholar] [CrossRef]
- Guo, S.; Bai, H.; Meng, Q.; Zhao, T.; Huang, X.; Qi, G. Landscape pattern changes of woodland and grassland and its driving forces in Qinling Mountains. Acta Ecol. Sin. 2020, 40, 130–140. (In Chinese) [Google Scholar] [CrossRef]
- Yan, J. Comparable Studies on Environmental Changes in Southern and Northern Qinling Moutains; China Science Press: Beijing, China, 2006; 219p. [Google Scholar]
- Liu, N.; Liu, Y.; Zhou, Q.; Bao, G. Droughts and Broad-Scale Climate Variability Reflected by Temperature-Sensitive Tree Growth in the Qinling Mountains, Central China. Int. J. Biometeorol. 2013, 57, 169–177. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhou, J.; Peart, M.R.; Chen, J.; Zhang, Q. Sensitivity of Hydrogeomorphological Hazards in the Qinling Mountains, China. Quat. Int. 2012, 282, 37–47. [Google Scholar] [CrossRef]
- Li, S.; Yan, J.; Wan, J. The Characteristics of Temperature Change in Qinling Mountains. Sci. Geogr. Sin. 2012, 32, 853–858. (In Chinese) [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Yao, N.; Li, L.; Feng, P.; Feng, H.; Li Liu, D.; Liu, Y.; Jiang, K.; Hu, X.; Li, Y. Projections of Drought Characteristics in China Based on a Standardized Precipitation and Evapotranspiration Index and Multiple GCMs. Sci. Total Environ. 2020, 704, 135245. [Google Scholar] [CrossRef]
- Mandal, S.; Srivastav, R.K.; Simonovic, S.P. Use of Beta Regression for Statistical Downscaling of Precipitation in the Campbell River Basin, British Columbia, Canada. J. Hydrol. 2016, 538, 49–62. [Google Scholar] [CrossRef]
- Hutchinson, M.F.; Xu, T. Anusplin V Ersion 4.4 User Guide; The Australian National University: Canberra, Australia, 2013. [Google Scholar]
- Mcgarigal, K.S.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps; Computer Software Program; University of Massachusetts: Amherst, MA, USA, 2002. [Google Scholar]
- Morandi, D.T.; de Jesus França, L.C.; Menezes, E.S.; Machado, E.L.M.; da Silva, M.D.; Mucida, D.P. Delimitation of Ecological Corridors between Conservation Units in the Brazilian Cerrado Using a GIS and AHP Approach. Ecol. Indic. 2020, 115, 106440. [Google Scholar] [CrossRef]
- Bu, J.; Li, C.; Wang, X.; Zhang, Y.; Yang, Z. Assessment and Prediction of the Water Ecological Carrying Capacity in Changzhou City, China. J. Clean. Prod. 2020, 277, 123988. [Google Scholar] [CrossRef]
- Gao, P.P.; Li, Y.P.; Sun, J.; Li, H.W. Coupling Fuzzy Multiple Attribute Decision-Making with Analytic Hierarchy Process to Evaluate Urban Ecological Security: A Case Study of Guangzhou, China. Ecol. Complex. 2018, 34, 23–34. [Google Scholar] [CrossRef]
- Rodríguez Sousa, A.A.; Parra-López, C.; Sayadi-Gmada, S.; Barandica, J.M.; Rescia, A.J. A Multifunctional Assessment of Integrated and Ecological Farming in Olive Agroecosystems in Southwestern Spain Using the Analytic Hierarchy Process. Ecol. Econ. 2020, 173, 106658. [Google Scholar] [CrossRef]
- Galic, N.; Schmolke, A.; Forbes, V.; Baveco, H.; van den Brink, P.J. The Role of Ecological Models in Linking Ecological Risk Assessment to Ecosystem Services in Agroecosystems. Sci. Total Environ. 2012, 415, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. ACTA Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar] [CrossRef]
- Wang, T.; Song, H.; Wang, F.; Zhai, S.; Han, Z.; Wang, D.; Li, X.; Zhao, H.; Ma, R.; Zhang, G. Hysteretic Effects of Meteorological Conditions and Their Interactions on Particulate Matter in Chinese Cities. J. Clean. Prod. 2020, 274, 122926. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Jaeger, J.A.G. Landscape Division, Splitting Index, and Effective Mesh Size: New Measures of Landscape Fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Mao, X. Ecological Risk Assessment of Cities on the Tibetan Plateau Based on Land Use/Land Cover Changes—Case Study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Grundmann, P.; Ehlers, M.-H.; Uckert, G. Responses of Agricultural Bioenergy Sectors in Brandenburg (Germany) to Climate, Economic and Legal Changes: An Application of Holling’s Adaptive Cycle. Energy Policy 2012, 48, 118–129. [Google Scholar] [CrossRef]
- Singh, R.; van Werkhoven, K.; Wagener, T. Hydrological Impacts of Climate Change in Gauged and Ungauged Watersheds of the Olifants Basin: A Trading-Space-for-Time Approach. Hydrol. Sci. J. 2014, 59, 29–55. [Google Scholar] [CrossRef]
- Xin, R.; Duan, K. Numerical simulation and spatial distribution of summer precipitation in the Qinling Mountains. Acta Geogr Sin 2019, 74, 2329–2341. (In Chinese) [Google Scholar] [CrossRef]
Datasets | Date Source | Resolution |
---|---|---|
DEM | Global Digital Elevation Model http://www.gdem.aster.ersdac.or.jp/, accessed on 20 September 2019 | 30 m |
Vegetation coverage | Vegetation Indices 16-days L3 Global 250 m product (MOD13Q1) https://ladsweb.modaps.eosdis.nasa.gov, accessed on 15 December 2019 | 250 m |
Surface temperature | Land Surface Temperature/Emissivity 8-days L3 Global 1 km product (MOD11A2) https://ladsweb.modaps.eosdis.nasa.gov, accessed on 25 December 2019 | 1 km |
Land use cover | Land Cover Type Yearly L3 Global 500 m product (MCD12Q1) https://ladsweb.modaps.eosdis.nasa.gov, accessed on 10 September 2019 | 500 m |
Precipitation | China National Meteorological Center http://data.cma.cn, accessed on 20 September 2019 | Vector |
Temperature | China National Meteorological Center http://data.cma.cn, accessed on 20 September 2019 | Vector |
NPP-VIIRS Nighttime light | National Centers for Environmental Information https://www.ngdc.noaa.gov, accessed on 25 December 2019 | 750 m |
Criteria | Risk | Index | Weight | Normalization |
---|---|---|---|---|
Potential risk (0.41) | Exposure | Slope | 0.15 | + |
Land use type | 0.21 | + | ||
Vegetation coverage | 0.22 | − | ||
Disturbance | precipitation erosion | 0.05 | + | |
Drought | 0.08 | + | ||
Surface temperature | 0.14 | + | ||
Nighttime light intensity | 0.15 | + | ||
Connectedness risk (0.33) | Exposure | Shannon diversity index | 0.12 | − |
Landscape contagion index | 0.32 | − | ||
Disturbance | Distance to construction land | 0.21 | − | |
Landscape affinity | 0.35 | + | ||
Resilience risk (0.26) | Exposure | Vegetation coverage trends | 0.50 | − |
Disturbance | Nighttime light intensity trends | 0.25 | + | |
Drought trends | 0.25 | + |
Graphic Visualization | Discrimination | Interaction Type |
---|---|---|
| Weaken, nonlinear | |
| Weaken, uni- | |
| Enhance, bi- | |
| Independent | |
| Enhance, nonlinear |
Population Density | PEPE | Altitude | AI | SPLIT | PD | DIVISION | |
---|---|---|---|---|---|---|---|
PEPE | 0.829 | ||||||
Altitude | 0.839 | 0.669 | |||||
AI | 0.887 | 0.626 | 0.756 | ||||
SPLIT | 0.914 | 0.671 | 0.777 | 0.92 | |||
PD | 0.908 | 0.661 | 0.764 | 0.484 | 0.423 | ||
DIVISION | 0.914 | 0.665 | 0.767 | 0.688 | 0.613 | 0.609 | |
NDVI | 0.890 | 0.695 | 0.650 | 0.744 | 0.773 | 0.751 | 0.764 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, S.; Zhang, Y.; O’Connor, P.J.; Zhang, L.; Yan, J. Landscape Ecological Risk Assessment under Multiple Indicators. Land 2021, 10, 739. https://doi.org/10.3390/land10070739
Li X, Li S, Zhang Y, O’Connor PJ, Zhang L, Yan J. Landscape Ecological Risk Assessment under Multiple Indicators. Land. 2021; 10(7):739. https://doi.org/10.3390/land10070739
Chicago/Turabian StyleLi, Xupu, Shuangshuang Li, Yufeng Zhang, Patrick J. O’Connor, Liwei Zhang, and Junping Yan. 2021. "Landscape Ecological Risk Assessment under Multiple Indicators" Land 10, no. 7: 739. https://doi.org/10.3390/land10070739
APA StyleLi, X., Li, S., Zhang, Y., O’Connor, P. J., Zhang, L., & Yan, J. (2021). Landscape Ecological Risk Assessment under Multiple Indicators. Land, 10(7), 739. https://doi.org/10.3390/land10070739