Maintaining the Many Societal Benefits of Rangelands: The Case of Hawaiʻi
Abstract
:1. Introduction
2. Rangelands in Hawaiʻi—History, Challenges, and Vision for the Future
3. Ecosystem Services Provided by Ranches in Hawaiʻi
3.1. Local Food and Livelihoods
3.2. Watershed Services
3.2.1. Role of Well-Managed Rangelands in Providing Watershed Services
3.2.2. Groundwater Recharge
3.2.3. Water Quality
3.2.4. Limitations of Rangelands in Providing Watershed Services
3.2.5. Future Research
3.3. Carbon Sequestration and Soil Health
3.3.1. Definition of Service
3.3.2. Role of Well-Managed Rangelands in Providing the Service
Above-Ground Carbon Sequestration and Storage
Soil Health
1. Keep the soil covered
2. Minimize Disturbance
3. Maximize diversity
4. Maintain Living Roots
5. Integrate livestock
3.3.3. Soil Carbon and Health
3.3.4. Limitations of Rangelands in Providing Carbon Sequestration and Storage Benefits
3.3.5. Future Research
3.4. Fire Risk Reduction
3.4.1. Definition of Service
3.4.2. Role of Well-Managed Rangelands in Reducing Fire Risk
3.4.3. Limitations of Rangelands in Reducing Fire Risk
3.4.4. Future Research
3.5. Biodiversity Conservation
3.5.1. Definition of Service
3.5.2. Role of Rangelands in Biodiversity Conservation
3.5.3. Limitations of Rangelands in Providing Biodiversity
3.5.4. Future Research Needs
Haleakalā Ranch: Leading by Example
Conservation Programs
- In 2015, Haleakalā Ranch initiated an aggressive ranch-wide axis deer control program with the goal of reducing the total deer population by several thousand animals. This program may be expanded to include large-scale control of feral goats in the leeward portions of the ranch, adjacent to Nakula Natural Area Reserve, Kahikinui Forest Reserve and Department of Hawaiian Homelands watershed restoration lands. This initiative is expected to significantly reduce damage to the Ranch’s natural resources as well as those regional native species on adjacent lands.
- Haleakalā Ranch actively supports endangered Nene recovery in its leeward pastures, which provide ideal habitat for the species. They voluntarily entered into a Safe Harbor Agreement with DLNR and the USFWS with the goal of establishing a breeding population of 200 birds on over 1200 hectares of pastureland.
- Haleakalā Ranch is an active member of and plays a leadership role in the East Maui Watershed Partnership and the Leeward Haleakalā Watershed Restoration Partnership. Collectively, these two partnerships manage close to 60,000 hectares on east Maui, including at least nine Critical Habitat units.
Established Reserves
- Waikamoi Preserve: In 1983 Haleakalā Ranch provided The Nature Conservancy with a perpetual Conservation Easement for the creation of Waikamoi Preserve. The Preserve encompasses 2080 has along the northern border of Haleakalā National Park on east Maui and includes eight proposed Critical Habitat units for plants. The Preserve is a model for effective management and there exists multiple formal conservation agreements with State, County and Federal agencies, all of which support the Ranch’s and TNC’s long-term collaborative conservation efforts.
- Puʻu Pahu Reserve: In 2001, Haleakalā ranch entered into formal conservation agreements with the Service and the Natural Resources Conservation Service, which provided funding and support for management actions to conserve and protect the endangered plant Geranium arboretum and subalpine Critical Habitat at Puʻu Pahu on the northwestern slopes of Haleakalā. These management actions include construction of ungulate-proof fences followed by removal of ungulates and invasive plant species within the fenced area. The area is also being outplanted with rare and endangered plants, including Geranium arboreum. This protected area is adjacent to fenced conservation lands at Haleakalā National Park and greatly compliments management actions by the National Park Service.
- Puʻu o Kali: The site of a voluntary conservation project between the Partners for Fish and Wildlife, USGS-BRD, and the Department of Hawaiian Homelands for Critical Habitat protection at Puʻu o Kali, on the west slope of Haleakalā. The project involves protection of native dryland forest, fence construction to exclude axis deer and feral goats, invasive plant control, and propagation and out-planting of native plants. Haleakalā Ranch provides regular management access by the Leeward Haleakalā Watershed Partnership to the project area.
- Ukulele Pasture: This 40 ha pasture is being taken out of grazing to protect and restore native plants, wildlife, and other important resources. The project area is characterized by a relatively intact native Acacia Koa and Metrosideros polymorpha (ʻōhiʻa lehua) with a remnant diverse native understory, especially in the steep gulches that dissect the site. It is adjacent to Makawao Forest Reserve, The Nature Conservancy’s Waikamoi Preserve, and other active grazing lands owned by Haleakalā Ranch.
3.6. Cultural Services
3.6.1. Definition of Cultural Ecosystem Services
3.6.2. Role of Well-Managed Rangelands in Providing Cultural Ecosystem Services
3.6.3. Limitations of Rangelands in Providing CES
3.6.4. Future Research
4. Conclusions: Pathways to Recognize and Support Rangeland Benefits
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farley, K.A.; Walsh, K.C.; Levine, A.S. Opportunities and Obstacles for Rangeland Conservation in San Diego County, California, USA. Ecol. Soc. 2017, 22, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.H.; Presnall, C.K.; López-Hoffman, L.; Nabhan, G.P.; Knight, R.L.; Ruyle, G.B.; Toombs, T.P. Beef and beyond: Paying for Ecosystem Services on Western US Rangelands. Rangelands 2011, 33, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Huntsinger, L.; Oviedo, J.L. Ecosystem Services Are Social–Ecological Services in a Traditional Pastoral System: The Case of California’s Mediterranean Rangelands. Ecol. Soc. 2014, 19, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Sayre, N.F.; McAllister, R.R.; Bestelmeyer, B.T.; Moritz, M.; Turner, M.D. Earth Stewardship of Rangelands: Coping with Ecological, Economic, and Political Marginality. Front. Ecol. Environ. 2013, 11, 348–354. [Google Scholar] [CrossRef]
- Reid, R.S.; Fernández-Giménez, M.E.; Galvin, K.A. Dynamics and Resilience of Rangelands and Pastoral Peoples around the Globe. Annu. Rev. Environ. Resour. 2014, 39, 217–242. [Google Scholar] [CrossRef]
- Gosnell, H.; Charnley, S.; Stanley, P. Climate Change Mitigation as a Co-Benefit of Regenerative Ranching: Insights from Australia and the United States. Interface Focus 2020, 10, 20200027. [Google Scholar] [CrossRef] [PubMed]
- Brunson, M. Unwanted No More: Land Use, Ecosystem Services, and Opportunities for Resilience in Human-Influenced Shrublands. Rangelands 2014, 36, 5–11. [Google Scholar] [CrossRef]
- Bremer, L.L.; Mandle, L.; Trauernicht, C.; Pascua, P.; McMillen, H.L.; Burnett, K.; Wada, C.A.; Kurashima, N.; Quazi, S.A.; Giambelluca, T.; et al. Bringing Multiple Values to the Table: Assessing Future Land-Use and Climate Change in North Kona, Hawaiʻi. Ecol. Soc. 2018, 23, 33. [Google Scholar] [CrossRef] [Green Version]
- Theobald, D.M. Landscape Patterns of Exurban Growth in the USA from 1980 to 2020. Ecol. Soc. 2005, 10, 32–66. [Google Scholar] [CrossRef] [Green Version]
- Melrose, J.; Perroy, R.; Cares, S. Statewide Agricultural Land Use Baseline 2015; Hawaiʻi Department of Agriculture: Honolulu, HI, USA, 2016. Available online: https://hdoa.hawaii.gov/wp-content/uploads/2016/02/StateAgLandUseBaseline2015.pdf (accessed on 15 March 2021).
- Cox, L.J.; Bredhoff, S. The Hawaiʻi Beef Industry: Situation and Outlook Update; Publication LM-8; University of Hawaiʻi at Manoa, College of Tropical Agriculture and Human Resources: Honolulu, HI, USA, 2003; pp. 1–11. [Google Scholar]
- Tinsley, T.L.; Chumbley, S.; Mathis, C.; Machen, R.; Turner, B.L. Managing Cow Herd Dynamics in Environments of Limited Forage Productivity and Livestock Marketing Channels: An Application to Semi-Arid Pacific Island Beef Production Using System Dynamics. Agric. Syst. 2019, 173, 78–93. [Google Scholar] [CrossRef]
- Pascua, P.; McMillen, H.; Ticktin, T.; Vaughan, M.; Winter, K.B. Beyond Services: A Process and Framework to Incorporate Cultural, Genealogical, Place-Based, and Indigenous Relationships in Ecosystem Service Assessments. Ecosyst. Serv. 2017, 26, 465–475. [Google Scholar] [CrossRef]
- Guerry, A.D.; Polasky, S.; Lubchenco, J.; Chaplin-Kramer, R.; Daily, G.C.; Griffin, R.; Ruckelshaus, M.; Bateman, I.J.; Duraiappah, A.; Elmqvist, T. Natural Capital and Ecosystem Services Informing Decisions: From Promise to Practice. Proc. Natl. Acad. Sci. USA 2015, 112, 7348–7355. [Google Scholar] [CrossRef] [Green Version]
- Daily, G.C.; Matson, P.A. Ecosystem Services: From Theory to Implementation. Proc. Natl. Acad. Sci. USA 2008, 105, 9455–9456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandle, L.A.; Ouyang, Z.; Daily, G.C.; Salzman, J.E. Green Growth That Works: Natural Capital Policy and Finance Mechanisms from around the World; Island Press: Wasington, DC, USA, 2019. [Google Scholar]
- Gadzia, K.; Holistic Management International, Albuquerque, NM, USA. Personal communication, 2021.
- Elmore, A.J.; Asner, G.P. Effects of Grazing Intensity on Soil Carbon Stocks Following Deforestation of a Hawaiian Dry Tropical Forest. Glob. Chang. Biol. 2006, 1761–1772. [Google Scholar] [CrossRef]
- Leopold, C.R.; Hess, S.C. Conversion of Native Terrestrial Ecosystems in Hawaiʻi to Novel Grazing Systems: A Review. Biol. Invasions 2017, 19, 161–177. [Google Scholar] [CrossRef]
- Blackmore, M.; Vitousek, P.M. Cattle Grazing, Forest Loss, and Fuel Loading in a Dry Forest Ecosystem at Puʻu Wa’aWa’a Ranch, Hawaiʻi. Biotropica 2000, 32, 625–632. [Google Scholar] [CrossRef]
- Loope, L.L.; Scowcroft, P.G. Vegetation Response within Exclosures in Hawaiʻi: A Review. Hawai’i’s Terr. Ecosyst. Preserv. Manag. 1985, 12, 377–402. [Google Scholar]
- Grace, K.T. Analysis and Prediction of Growth, Grazing Impacts, and Economic Production of Acacia Koa. Ph.D. Thesis, University of Hawaiʻi at Manoa, Honolulu, HI, USA, 1995. [Google Scholar]
- Kamakau, S. Ulukau: Ruling Chiefs of Hawaiʻi; Revised 1992; Kamehameha Schools: Honolulu, HI, USA, 1961; Available online: http://www.ulukau.org/elib/cgi-bin/library?e=d-0chiefs-000Sec--11haw-50-20-frameset-book--1-010escapewin&a=d&d=D0.2&toc=0 (accessed on 23 May 2021).
- Martin, L. Nã Paniolo o Hawaiʻi: A Traveling Exhibition Celebrating Paniolo Folk Arts and the History of Ranching in Hawaiʻi; The Academy: Honolulu, HI, USA, 1987; ISBN 978-0-937426-08-1. [Google Scholar]
- Maly, K.; Wilcox, B.A. A Short History of Cattle and Range Management in Hawaiʻi. Rangel. Arch. 2000, 22, 21–23. [Google Scholar]
- Kauanui, J.K. Paradoxes of Hawaiian Sovereignty: Land, Sex, and the Colonial Politics of State Nationalism; Duke University Press: Durham, NC, USA, 2018. [Google Scholar]
- Harrison, T.E. Using Targeted Cattle Grazing to Reduce Wildfire Risk In Hawaiʻi: Stakeholder Values and Public Support. Master’s Thesis, Department of Natural Resources and Environmental Managment, University of Hawaiʻi at Mānoa, Honolulu, HI, USA, 2020. [Google Scholar]
- Goldstein, J.H.; Pejchar, L.; Daily, G.C. Using Return-on-Investment to Guide Restoration: A Case Study from Hawaiʻi. Conserv. Lett. 2008, 1, 236–243. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Daily, G.C.; Friday, J.B.; Matson, P.A.; Naylor, R.L.; Vitousek, P. Business Strategies for Conservation on Private Lands: Koa Forestry as a Case Study. Proc. Natl. Acad. Sci. USA 2006, 103, 10140–10145. [Google Scholar] [CrossRef] [Green Version]
- Markin, G.P.; Conant, P. Status of Biological Control of the Shrub Gorse (Ulex Europaeus) on the Island of Hawaiʻi. In Proceedings of the XIII International Symposiumon Biological Control of Weeds, Waikoloa, HI, USA, 11–16 September 2011; Wu, Y., Johnson, T., Sing, S., Raghu, S., Wheeler, G., Pratt, P., Warner, K., Center, T., Goolsby, J., Reardon, R., Eds.; USDA: Fort Collins, CO, USA, 2013. [Google Scholar]
- Thorne, M.S.; Fukumoto, G.K.; Curtiss, R.T.; Hamasaki, R.T. New Spittlebug on Pasture Grasses in Hawaiʻi Two-Lined Spittlebug, Prosapia bicincta; College of Tropical Agriculture, University of Hawaiʻi at Manoa: Honolulu, HI, USA, 2017. [Google Scholar]
- Ige, D.Y. Early History of “Island Ranching” in Hawaiʻi is Theme of 2018 Historic Preservation Calendar. 2018. Available online: https://governor.Hawaii.gov/newsroom/latest-news/early-history-of-island-ranching-in-Hawaiʻi-is-theme-of-2018-historic-preservation-calendar/ (accessed on 23 May 2021).
- Hawaiʻi Land Trust–Agriculture. Available online: https://www.hilt.org/agriculture (accessed on 23 May 2021).
- Hittle, A.; Phillips, J.; Laramee, L.; Gonsalves, M.; Lopera, D. Climate Ready Hawaiʻi Nature-Based Resilience and Adaptation to Climate Change in Hawaiʻi; Hawawi’i: A Climate Ready Hawaiʻi Working Paper; Climate Change Mitigation and Adaptation Commission: Honolulu, HI, USA, 2021. Available online: https://climate.hawaii.gov/wp-content/uploads/2021/04/CRHI-Working-Paper-V5.pdf (accessed on 21 May 2021).
- Perroy, R.; Collier, E. 2020 Update to the Hawaiʻi Statewide Agricultural Land Use Baseline; Hawaiʻi State Department of Agriculture: Honolulu, HI, USA, 2021. [Google Scholar]
- Hawaiʻi Beef Council. Raising Cattle in Hawaiʻi. Available online: https://www.Hawaiʻibeef.org/the-beef-story/raising-cattle-in-Hawaiʻi (accessed on 30 May 2021).
- State of Hawaiʻi Department of Business, Economic Development, and Tourism, Research and Economic Analysis Division. The Hawaiʻi State Input-Output Study: 2017 Benchmark Report. 2017. Available online: https://files.Hawaiʻi.gov/dbedt/economic/reports/IO/2017_state_io_study.pdf (accessed on 30 May 2021).
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu Rev Env. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Bremer, L.L.; Delevaux, J.M.; Leary, J.J.; Cox, L.J.; Oleson, K.L. Opportunities and Strategies to Incorporate Ecosystem Services Knowledge and Decision Support Tools into Planning and Decision Making in Hawaiʻi. Environ. Manag. 2015, 55, 884–899. [Google Scholar] [CrossRef] [PubMed]
- Gingerich, S.B. Ground Water in Hawaiʻi; US Geological Survey: Washington, DC, USA, 2000.
- Tribble, G.W. Ground Water on Tropical Pacific Islands: Understanding a Vital Resource; US Geological Survey: Washington, DC, USA, 2008.
- Bremer, L.L.; Wada, C.A.; Medoff, S.; Page, J.; Falinski, K.; Burnett, K.M. Contributions of Native Forest Protection to Local Water Supplies in East Maui. Sci. Total Environ. 2019, 688, 1422–1432. [Google Scholar] [CrossRef]
- Adler, P.S.; Ranney, K. Adaptive Management Symposium on Groundwater Dependent Ecosystems at Kaloko-Honokōhau National Historic Park: Meeting Record and Summary. 2018. Available online: https://files.Hawaiʻi.gov/dlnr/cwrm/activity/keauhou/20181108-GDE_Symposium_Final.pdf (accessed on 30 May 2021).
- Sproat, D.K. Ola i Ka Wai: A Legal Primer for Water Use and Management in Hawaiʻi. In Ka Huli Ao Center for Excellence in Native Hawaiian Law; University of Hawaiʻi at Manoa: Honolulu, HI, USA, 2009. [Google Scholar]
- Delevaux, J.M.S.; Jupiter, S.D.; Stamoulis, K.A.; Bremer, L.L.; Wenger, A.S.; Dacks, R.; Garrod, P.; Falinski, K.A.; Ticktin, T. Scenario Planning with Linked Land-Sea Models Inform Where Forest Conservation Actions Will Promote Coral Reef Resilience. Sci. Rep. 2018, 8, 12465. [Google Scholar] [CrossRef]
- Delevaux, J.M.; Whittier, R.; Stamoulis, K.A.; Bremer, L.L.; Jupiter, S.; Friedlander, A.M.; Poti, M.; Guannel, G.; Kurashima, N.; Winter, K.B. A Linked Land-Sea Modeling Framework to Inform Ridge-to-Reef Management in High Oceanic Islands. PLoS ONE 2018, 13, e0193230. [Google Scholar] [CrossRef] [Green Version]
- Fabricius, K.E. Effects of Terrestrial Runoff on the Ecology of Corals and Coral Reefs: Review and Synthesis. Mar. Pollut. Bull. 2005, 50, 125–146. [Google Scholar] [CrossRef]
- Golbuu, Y.; van Woesik, R.; Richmond, R.H.; Harrison, P.; Fabricius, K.E. River Discharge Reduces Reef Coral Diversity in Palau. Mar. Pollut. Bull. 2011, 62, 824–831. [Google Scholar] [CrossRef]
- Hamel, P.; Falinski, K.; Sharp, R.; Auerbach, D.A.; Sánchez-Canales, M.; Dennedy-Frank, P.J. Sediment Delivery Modeling in Practice: Comparing the Effects of Watershed Characteristics and Data Resolution across Hydroclimatic Regions. Sci. Total Environ. 2017, 580, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
- Oleson, K.L.; Falinski, K.A.; Lecky, J.; Rowe, C.; Kappel, C.V.; Selkoe, K.A.; White, C. Upstream Solutions to Coral Reef Conservation: The Payoffs of Smart and Cooperative Decision-Making. J. Environ. Manag. 2017, 191, 8–18. [Google Scholar] [CrossRef]
- Peng, M.; Oleson, K.L. Beach Recreationalists’ Willingness to Pay and Economic Implications of Coastal Water Quality Problems in Hawaiʻi. Ecol. Econ. 2017, 136, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Weijerman, M.; Veazey, L.; Yee, S.; Vaché, K.; Delevaux, J.; Donovan, M.K.; Falinski, K.; Lecky, J.; Oleson, K.L. Managing Local Stressors for Coral Reef Condition and Ecosystem Services Delivery under Climate Scenarios. Front. Mar. Sci. 2018, 5, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenger, A.S.; Williamson, D.H.; da Silva, E.T.; Ceccarelli, D.M.; Browne, N.K.; Petus, C.; Devlin, M.J. Effects of Reduced Water Quality on Coral Reefs in and out of No-Take Marine Reserves. Conserv. Biol. 2016, 30, 142–153. [Google Scholar] [CrossRef]
- Kroeger, T.; Klemz, C.; Boucher, T.; Fisher, J.R.; Acosta, E.; Cavassani, A.T.; Dennedy-Frank, P.J.; Garbossa, L.; Blainski, E.; Santos, R.C. Returns on Investment in Watershed Conservation: Application of a Best Practices Analytical Framework to the Rio Camboriú Water Producer Program, Santa Catarina, Brazil. Sci. Total Environ. 2019, 657, 1368–1381. [Google Scholar] [CrossRef] [PubMed]
- Bartley, R.; Bainbridge, Z.T.; Lewis, S.E.; Kroon, F.J.; Wilkinson, S.N.; Brodie, J.E.; Silburn, D.M. Relating Sediment Impacts on Coral Reefs to Watershed Sources, Processes and Management: A Review. Sci. Total Environ. 2014, 468, 1138–1153. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, P.J.; Wilkinson, S.N. Conceptual Frameworks for Estimating the Water Quality Benefits of Improved Agricultural Management Practices in Large Catchments. Agric. Ecosyst. Environ. 2013, 180, 192–209. [Google Scholar] [CrossRef]
- Trauernicht, C.; Pickett, E.; Giardina, C.P.; Litton, C.M.; Cordell, S.; Beavers, A. The Contemporary Scale and Context of Wildfire in Hawaiʻi. Pac. Sci. 2015, 69, 427–444. [Google Scholar] [CrossRef]
- Brauman, K.A.; Freyberg, D.L.; Daily, G.C. Land Cover Effects on Groundwater Recharge in the Tropics: Ecohydrologic Mechanisms. Ecohydrology 2012, 5, 435–444. [Google Scholar] [CrossRef]
- Perkins, K.S.; Nimmo, J.R.; Medeiros, A.C.; Szutu, D.J.; von Allmen, E. Assessing Effects of Native Forest Restoration on Soil Moisture Dynamics and Potential Aquifer Recharge, Auwahi, Maui. Ecohydrology 2014, 7, 1437–1451. [Google Scholar] [CrossRef]
- Ponette-Gonzalez, A.G.; Brauman, K.A.; Marín-Spiotta, E.; Farley, K.A.; Weathers, K.C.; Young, K.R.; Curran, L.M. Managing Water Services in Tropical Regions: From Land Cover Proxies to Hydrologic Fluxes. Ambio 2015, 44, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, A.I.; Keenan, R.J. Planted Forests and Water in Perspective. For. Ecol. Manag. 2007, 251, 1–9. [Google Scholar] [CrossRef]
- Brauman, K.A.; Freyberg, D.L.; Daily, G.C. Forest Structure Influences on Rainfall Partitioning and Cloud Interception: A Comparison of Native Forest Sites in Kona, Hawaiʻi. Agric. For. Meteorol. 2010, 150, 265–275. [Google Scholar] [CrossRef]
- Ponette-González, A.G.; Marín-Spiotta, E.; Brauman, K.A.; Farley, K.A.; Weathers, K.C.; Young, K.R. Hydrologic Connectivity in the High-Elevation Tropics: Heterogeneous Responses to Land Change. BioScience 2014, 64, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Brauman, K.A.; Freyberg, D.L.; Daily, G.C. Impacts of Land-Use Change on Groundwater Supply: Ecosystem Services Assessment in Kona, Hawaiʻi. J. Water Resour. Plan. Manag. 2015, 141, A4014001. [Google Scholar] [CrossRef]
- Brauman, K.A.; Freyberg, D.L.; Daily, G.C. Potential Evapotranspiration from Forest and Pasture in the Tropics: A Case Study in Kona, Hawaiʻi. J. Hydrol. 2012, 440–441, 52–61. [Google Scholar] [CrossRef]
- Wada, C.A.; Bremer, L.L.; Burnett, K.; Trauernicht, C.; Giambelluca, T.; Mandle, L.; Parsons, E.; Weil, C.; Kurashima, N.; Ticktin, T. Estimating Cost-Effectiveness of Hawaiian Dry Forest Restoration Using Spatial Changes in Water Yield and Landscape Flammability Under Climate Change. Pac. Sci. 2017, 71, 401–424. [Google Scholar] [CrossRef] [Green Version]
- Giambelluca, T.W.; Shuai, X.; Barnes, M.L.; Alliss, R.J.; Longman, R.J.; Miura, T.; Chen, Q.; Frazier, A.G.; Mudd, R.G.; Cuo, L.; et al. Evapotranspiration of Hawaiʻi Final Report; Commission on Water Resource Management: Honolulu, HI, USA, 2014. [Google Scholar]
- Friel, G.; Haleakalā Ranch, Makawao, HI, USA. Personal communication, 2019.
- Jokiel, J.; Haleakalā Ranch, Makawao, HI, USA. Personal communication, 2019.
- Falinski, K. Predicting Sediment Export into Tropical Coastal Ecosystems to Support Ridge to Reef Management. Ph.D. Thesis, University of Hawaiʻi at Mānoa, Honolulu, HI, USA, 2016. [Google Scholar]
- Wright, S.J.; Turner, B.L.; Yavitt, J.B.; Harms, K.E.; Kaspari, M.; Tanner, E.V.J.; Bujan, J.; Griffin, E.A.; Mayor, J.R.; Pasquini, S.C.; et al. Plant Responses to Fertilization Experiments in Lowland, Species-Rich, Tropical Forests. Ecology 2018, 99, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. InVEST 3.4. 4 User’s Guide. Nat. Cap. Proj. 2018. Available online: https://invest-userguide.readthedocs.io/_/downloads/en/3.5.0/pdf/ (accessed on 23 May 2021).
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural Climate Solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Energy Outlook 2020—Analysis. Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 23 May 2021).
- Cao, M.; Woodward, F.I. Net Primary and Ecosystem Production and Carbon Stocks of Terrestrial Ecosystems and Their Responses to Climate Change. Glob. Chang. Biol. 1998, 4, 185–198. [Google Scholar] [CrossRef]
- Dixon, R.K.; Solomon, A.M.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon Pools and Flux of Global Forest Ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Gross, M. Forests in a Warming World. Curr. Biol. 2020, 30, R677–R679. [Google Scholar] [CrossRef]
- Friday, J.B.; Friday, K.; Elevitch, C. Appendix A: Regional Summaries: Hawaiʻi and the U.S.—Affiliated Pacific Islands. In Agroforestry: Enhancing Resiliency in U.S. Agricultural Landscapes under Changing Conditions; Schoeneberger, M.M., Bentrup, G., Patel-Weynand, T., Eds.; USDA Forest Service: Washington, DC, USA, 2017. [Google Scholar]
- Project Drawdown: Silvopasture. Available online: https://www.drawdown.org/solutions/silvopasture/technical-summary (accessed on 23 May 2021).
- Gross, A.F.; Ray, R.; Gaskin, E. Reversing Climate Change: A Study of Pathways through Hawaiʻi’s Natural and Working Lands; Conservation International: Washington, DC, USA, 2017. Available online: http://planning.hawaii.gov/wp-content/uploads/Conservation-International-FINAL-Report_GHG-4.30.2020.pdf (accessed on 20 March 2021).
- Matus, F.; Rumpel, C.; Neculman, R.; Panichini, M.; Mora, M.L. Soil Carbon Storage and Stabilisation in Andic Soils: A Review. CATENA 2014, 120, 102–110. [Google Scholar] [CrossRef]
- Crow, S.E.; Turn, M.; Taniguchi, S.; Schubert, S.; Koch, N. Carbon Balance Implications of Land Use Change from Pasture to Managed Eucalyptus Forest in Hawaiʻi. Carbon Manag. 2016, 7, 3–4. [Google Scholar] [CrossRef]
- Soil Health—NRCS Soils. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 6 July 2021).
- Fuhrer, J. Soil Health: Principle 1 of 5—Soil Armor. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/nd/soils/health/?cid=nrcseprd1300631 (accessed on 6 July 2021).
- Brady, N.C.; Weil, R.R. Elements of the Nature and Properties of Soils, 2nd ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2010; ISBN 0-13-048038-X. [Google Scholar]
- DeLonge, M.; Basche, A. Managing Grazing Lands to Improve Soils and Promote Climate Change Adaptation and Mitigation: A Global Synthesis. Renew. Agric. Food Syst. 2018, 33, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, J.; Crowley, G. Monitoring Rangeland Biodiversity: Plants as Indicators. Austral Ecol. 2004, 29, 59–77. [Google Scholar] [CrossRef]
- Biondini, M.E.; Patton, B.D.; Nyren, P.E. Grazing Intensity and Ecosystem Processes in a Northern Mixed-Grass Prairie, USA. Ecol. Appl. 1998, 8, 469–479. [Google Scholar] [CrossRef]
- Yan, L.; Zhou, G.; Zhang, F. Effects of Different Grazing Intensities on Grassland Production in China: A Meta-Analysis. PLoS ONE 2013, 8, e81466. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Vendramini, J.M.; Aryal, P.; Silveira, M.L.A.; Kohmann, M.M.; da Silva, L.S.; Cooley, K.D.; Shepard, E. Producer Engagement to Identify Causes of Bahiagrass Pasture Decline. In Proceedings of the ASA, CSSA, and CSA International Annual Meeting, Baltimore, MD, USA, 4–7 November 2018. [Google Scholar]
- Bellows, B. Nutrient Cycling in Pastures; ATTRA-NCAT: Butte, MT, USA, 2001. [Google Scholar]
- De Faccio Carvalho, P.C.; Anghinoni, I.; de Moraes, A.; de Souza, E.D.; Sulc, R.M.; Lang, C.R.; Flores, J.P.C.; Lopes, M.L.T.; da Silva, J.L.S.; Conte, O. Managing Grazing Animals to Achieve Nutrient Cycling and Soil Improvement in No-till Integrated Systems. Nutr. Cycl. Agroecosystems 2010, 88, 259–273. [Google Scholar] [CrossRef]
- White, R. Pilot Analysis of Global Ecosystems: Grassland Ecosystems; World Resource Institute: Washington, DC, USA, 2000; ISBN 978-1-56973-461-2. [Google Scholar]
- Sierra, C.A.; del Valle, J.I.; Orrego, S.A.; Moreno, F.H.; Harmon, M.E.; Zapata, M.; Colorado, G.J.; Herrera, M.A.; Lara, W.; Restrepo, D.E.; et al. Total Carbon Stocks in a Tropical Forest Landscape of the Porce Region, Colombia. For. Ecol. Manag. 2007, 243, 299–309. [Google Scholar] [CrossRef]
- Dass, P.; Houlton, B.Z.; Wang, Y.; Warlind, D. Grasslands May Be More Reliable Carbon Sinks than Forests in California. Environ. Res. Lett. 2018, 13, 074027. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Torn, M.S.; Trumbore, S.E.; Chadwick, O.A.; Vitousek, P.; Hendricks, D.M. Mineral Control of Soil Organic Carbon Storage and Turnover. Nature 1997, 389, 170–173. [Google Scholar] [CrossRef]
- Milchunas, D.G.; Lauenroth, W.K. Quantitative Effects of Grazing on Vegetation and Soils Over a Global Range of Environments. Ecol. Monogr. 1993, 63, 327–366. [Google Scholar] [CrossRef]
- Piñeiro, G.; Paruelo, J.M.; Oesterheld, M.; Jobbágy, E.G. An Assessment of Grazing Effects on Soil Carbon Stocks in Grasslands. Rangel. Ecol. Manag. 2010, 63, 1–13. [Google Scholar] [CrossRef]
- Schuman, G.E.; Reeder, J.D.; Manley, J.T.; Hart, R.H.; Manley, W.A. Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecol. Appl. 1991, 9, 65–71. [Google Scholar] [CrossRef]
- Derner, J.D.; Schuman, G.E. Carbon Sequestration and Rangelands: A Synthesis of Land Management and Precipitation Effects. J. Soil Water Conserv. 2007, 62, 77–85. [Google Scholar]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, Land-Use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland Management Impacts on Soil Carbon Stocks: A New Synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.B.; Donnelly, A. Carbon Sequestration in Temperate Grassland Ecosystems and the Influence of Management, Climate and Elevated CO2. New Phytol. 2004, 164, 423–439. [Google Scholar] [CrossRef]
- Managed Grazing. Available online: https://www.drawdown.org/solutions/managed-grazing/technical-summary (accessed on 28 May 2021).
- Selmants, P.C.; Giardina, C.P.; Jacobi, J.D.; Zhu, Z. Baseline and Projected Future Carbon Storage and Carbon Fluxes in Ecosystems of Hawaiʻi; US Geological Survey Professional Paper 1834; US Geological Survey: Reston, VA, USA, 2017; Volume 1834, p. 134. [CrossRef] [Green Version]
- Schuman, G.E.; Janzen, H.H.; Herrick, J.E. Soil Carbon Dynamics and Potential Carbon Sequestration by Rangelands. Environ. Pollut. 2002, 116, 391–396. [Google Scholar] [CrossRef]
- Silver, W.L.; Ostertag, R.; Lugo, A.E. The Potential for Carbon Sequestration Through Reforestation of Abandoned Tropical Agricultural and Pasture Lands. Restor. Ecol. 2000, 8, 394–407. [Google Scholar] [CrossRef]
- Li, Y.Q.; Mathews, B.W. Effect of Conversion of Sugarcane Plantation to Forest and Pasture on Soil Carbon in Hawaiʻi. Plant Soil 2010, 335, 245–253. [Google Scholar] [CrossRef]
- Paul, K.I.; Polglase, P.J.; Nyakuengama, J.G.; Khanna, P.K. Change in Soil Carbon Following Afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- Osher, L.J.; Matson, P.A.; Amundson, R. Effect of Land Use Change on Soil Carbon in Hawaiʻi. Biogeochemistry 2003, 65, 213–222. [Google Scholar] [CrossRef]
- Bashkin, M.A.; Binkley, D. Changes in Soil Carbon Following Afforestation in Hawaiʻi. Ecology 1998, 79, 828–833. [Google Scholar] [CrossRef]
- Krueger, N. Soil Carbon in Hawaiian Rangelands. Ph.D. Thesis, The University of Hawaiʻi at Mānoa, Honolulu, HI, USA, 2020. [Google Scholar]
- Necpálová, M.; Anex, R.P.; Kravchenko, A.N.; Abendroth, L.J.; Grosso, S.J.D.; Dick, W.A.; Helmers, M.J.; Herzmann, D.; Lauer, J.G.; Nafziger, E.D.; et al. What Does It Take to Detect a Change in Soil Carbon Stock? A Regional Comparison of Minimum Detectable Difference and Experiment Duration in the North Central United States. J. Soil Water Conserv. 2014, 69, 517–531. [Google Scholar] [CrossRef] [Green Version]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane Emissions from Cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L. Three Decades of Global Methane Sources and Sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Stanley, P.L.; Rowntree, J.E.; Beede, D.K.; DeLonge, M.S.; Hamm, M.W. Impacts of Soil Carbon Sequestration on Life Cycle Greenhouse Gas Emissions in Midwestern USA Beef Finishing Systems. Agric. Syst. 2018, 162, 249–258. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Dlugokencky, E.J.; Bousquet, P. Methane on the Rise—Again. Science 2014, 343, 493–495. [Google Scholar] [CrossRef] [Green Version]
- Gosnell, H.; Robinson-Maness, N.; Charnley, S. Engaging Ranchers in Market-Based Approaches to Climate Change Mitigation: Opportunities, Challenges, and Policy Implications. Rangelands 2011, 33, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Hurteau, M.D.; Bradford, J.B.; Fulé, P.Z.; Taylor, A.H.; Martin, K.L. Climate Change, Fire Management, and Ecological Services in the Southwestern US. For. Ecol. Manag. 2014, 327, 280–289. [Google Scholar] [CrossRef]
- Ice, G.G.; Neary, D.G.; Adams, P.W. Effects of Wildfire on Soils and Watershed Processes. J. For. 2004, 102, 16–20. [Google Scholar] [CrossRef]
- Minton, D. Fire, Erosion, and Sedimentation in the Asan-Piti Watershed and War in the Pacific NHP, Guam; Pacific Cooperative Studies Unit, Department of Botany, University of Hawaiʻi at Manoa: Honolulu, HI, USA, 2006. [Google Scholar]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-Started Wildfires Expand the Fire Niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, J.M.; Enriques, G.; Nakahara, M.; Weise, D.; Ford, L.; Moraga, R.; Vihnanek, R. Effects of Cattle Grazing, Glyphosate, and Prescribed Burning on Fountaingrass Fuel Loading in Hawaiʻi. In Proceedings of the 23rd Tall Timbers Fire Ecology Conference: Fire in Grassland and Shrubland Ecosystems, Bartlesville, OK, USA, 17–19 October 2005; Masters, R.E., Galley, K.E.M., Eds.; Tall Timbers Research Station: Tallahass, FL, USA, 2007; pp. 230–239. [Google Scholar]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The Human Dimension of Fire Regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Antonio, C.M.; Vitousek, P.M. Biological Invasions by Exotic Grasses, the Grass/Fire Cycle, and Global Change. Annu. Rev. Ecol. Syst. 1992, 23, 63–87. [Google Scholar] [CrossRef]
- Gollin, L.X.; Trauernicht, C. The critical role of firefighters’ place-based environmental knowledge in responding to novel fire regimes in Hawaiʻi. In Fire Otherwise: Ethnobiology of Burning for a Changing World; University of Utah Press: Salt Lake City, UT, USA, 2018. [Google Scholar]
- Trauernicht, C. Vegetation—Rainfall Interactions Reveal How Climate Variability and Climate Change Alter Spatial Patterns of Wildland Fire Probability on Big Island, Hawaiʻi. Sci. Total Environ. 2019, 650, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.W.; Ellsworth, L.M.; Litton, C.M.; Evans, E.W.; Ellsworth, L.M.; Litton, C.M. Impact of Grazing on Fine Fuels and Potential Wildfire Behaviour in a Non-Native Tropical Grassland. Pac. Conserv. Biol. 2015, 21, 126–132. [Google Scholar] [CrossRef]
- Warren, S.D.; Sherman, S.A.; Zeidler, J.A. Assessment of Livestock Grazing on Fuels and Cultural Resources at Makua Military Reservation (MMR), Island of Oahu, Hawaiʻi; CEKKL TPS07-06; Center for Environmental Management of Militray Lands, Colorado State University: Fort Collins, CO, USA, 2007. [Google Scholar]
- Ansari, S.; Hirsh, H.; Thair, T. Removal of Invasive Fire-Prone Grasses to Increase Training Lands in the Pacific; SWCA Environmental Consultants for Department of Defense Legacy Resource Management Program: Honolulu, HI, USA, 2008. [Google Scholar]
- Rice, F.; Integrated Tissue Dynamics, New York, NY, USA; Wood, K.; University of Colorado Denver, Denver, CO, USA. Personal communication, 2020.
- Taylor, C.A., Jr. Targeted Grazing to Manage Fire Risk. In Targeted Grazing: A Natural Approach to Vegetation Management and Landscape Enhancement; American Sheep Industry Association: Englewood, CO, USA, 2006; pp. 107–112. [Google Scholar]
- Nader, G.; Henkin, Z.; Smith, E.; Ingram, R.; Narvaez, N. Planned Herbivory in the Management of Wildfire Fuels. Rangelands 2007, 29, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Diamond, J.M.; Call, C.A.; Devoe, N. Effects of Targeted Cattle Grazing on Fire Behavior of Cheatgrass-Dominated Rangeland in the Northern Great Basin, USA. Int. J. Wildland Fire 2010, 18, 944–950. [Google Scholar] [CrossRef]
- Davies, K.W.; Bates, J.D.; Svejcar, T.J.; Boyd, C.S. Effects of Long-Term Livestock Grazing on Fuel Characteristics in Rangelands: An Example from the Sagebrush Steppe. Rangel. Ecol. Manag. 2010, 63, 662–669. [Google Scholar] [CrossRef]
- Ruiz-Mirazo, J.; Robles, A.B.; González-Rebollar, J.L. Two-Year Evaluation of Fuelbreaks Grazed by Livestock in the Wildfire Prevention Program in Andalusia (Spain). Agric. Ecosyst. Environ. 2011, 141, 13–22. [Google Scholar] [CrossRef]
- Lovreglio, R.; Meddour-Sahar, O.; Leone, V. Goat Grazing as a Wildfire Prevention Tool: A Basic Review. Iforest-Biogeosci. For. 2014, 7, 260. [Google Scholar] [CrossRef] [Green Version]
- Strand, E.K.; Launchbaugh, K.L.; Limb, R.F.; Torell, L.A. Livestock Grazing Effects on Fuel Loads for Wildland Fire in Sagebrush Dominated Ecosystems. J. Rangel. Appl. 2014, 1, 35–57. [Google Scholar]
- Cheney, P.; Sullivan, A. Grassfires: Fuel, Weather and Fire Behaviour; Csiro Publishing: Collingwood, Australia, 2008; ISBN 978-0-643-09901-2. [Google Scholar]
- Toman, E.; Stidham, M.; Shindler, B.; McCaffrey, S. Reducing Fuels in the Wildland–Urban Interface: Community Perceptions of Agency Fuels Treatments. Int. J. Wildland Fire 2011, 20, 340–349. [Google Scholar] [CrossRef]
- Scowcroft, P.G.; Conrad, C.E. Alien and Native Plant Response to Release from Feral Sheep Browsing on Mauna Kea. In Alien Plant Invasions in Native Ecosystems of Hawaiʻi: Management and Research; Cooperative National Park Resources Studies Unit, University of Hawaiʻi: Honolulu, HI, USA, 1992; pp. 625–665. [Google Scholar]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef] [Green Version]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and Ecosystem Services: A Multilayered Relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Bratman, G.N.; Anderson, C.B.; Berman, M.G.; Cochran, B.; De Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross, J.J.; Hartig, T. Nature and Mental Health: An Ecosystem Service Perspective. Sci. Adv. 2019, 5, eaax0903. [Google Scholar] [CrossRef] [Green Version]
- Remme, R.P.; Frumkin, H.; Guerry, A.D.; King, A.C.; Mandle, L.; Sarabu, C.; Bratman, G.N.; Giles-Corti, B.; Hamel, P.; Han, B. An Ecosystem Service Perspective on Urban Nature, Physical Activity, and Health. Proc. Natl. Acad. Sci. USA 2021, 118, e2018472118. [Google Scholar] [CrossRef]
- West, N.E. Biodiversity of Rangelands. Rangel. Ecol. Manag. Range Manag. Arch. 1993, 46, 2–13. [Google Scholar] [CrossRef]
- Havstad, K.M.; Peters, D.P.; Skaggs, R.; Brown, J.; Bestelmeyer, B.; Fredrickson, E.; Herrick, J.; Wright, J. Ecological Services to and from Rangelands of the United States. Ecol. Econ. 2007, 64, 261–268. [Google Scholar] [CrossRef]
- Carlyle, C.N. The Benefits of Cattle for Carbon Storage and Biodiversity in the Canadian Prairie; Canadian Agri-food Policy Institute: Ottawa, ON, Canada, 2019. [Google Scholar]
- Pejchar, L.; Gallo, T.; Hooten, M.B.; Daily, G.C. Predicting Effects of Large-Scale Reforestation on Native and Exotic Birds. Divers. Distrib. 2018, 24, 811–819. [Google Scholar] [CrossRef] [Green Version]
- Gould, R.K.; Pejchar, L.; Bothwell, S.G.; Brosi, B.; Wolny, S.; Mendenhall, C.D.; Daily, G. Forest Restoration and Parasitoid Wasp Communities in Montane Hawaiʻi. PLoS ONE 2013, 8, e59356. [Google Scholar] [CrossRef]
- Loope, L.L.; Hughes, R.F.; Meyer, J.-Y. Plant Invasions in Protected Areas of Tropical Pacific Islands, with Special Reference to Hawaiʻi. In Plant Invasions in Protected Areas: Patterns, Problems and Challenges; Foxcroft, L.C., Pyšek, P., Richardson, D.M., Genovesi, P., Eds.; Invading Nature—Springer Series in Invasion Ecology; Springer: Dordrecht, The Netherlands, 2013; pp. 313–348. ISBN 978-94-007-7750-7. [Google Scholar]
- Hawaiʻi Cattlemen’s Council—Inductees. Available online: https://www.hicattle.org/paniolo-hall-of-fame/inductees/ (accessed on 24 May 2021).
- Cole, R.J.; Litton, C.M. Vegetation Response to Removal of Non-Native Feral Pigs from Hawaiian Tropical Montane Wet Forest. Biol. Invasions 2014, 16, 125–140. [Google Scholar] [CrossRef]
- Cabin, R.J.; Weller, S.G.; Lorence, D.H.; Flynn, T.W.; Sakai, A.K.; Sandquist, D.; Hadway, L.J. Effects of Long-Term Ungulate Exclusion and Recent Alien Species Control on the Preservation and Restoration of a Hawaiian Tropical Dry Forest. Conserv. Biol. 2000, 14, 439–453. [Google Scholar] [CrossRef]
- Stone, C.P.; Smith, C.W.; Tunison, J.T. Alien Plant Invasions in Native Ecosystems of Hawaiʻi: Management and Research; University of Hawaï: Honolulu, HI, USA, 1992. [Google Scholar]
- Fish and Wildlife Service Endangered and Threatened Wildlife and Plants; Designation and Nondesignation of Critical Habitat on Molokai, Lanai, Maui, and Kahoolawe for 135 Species. Available online: https://www.federalregister.gov/documents/2016/03/30/2016-06069/endangered-and-threatened-wildlife-and-plants-designation-and-nondesignation-of-critical-habitat-on (accessed on 31 May 2021).
- Luther, L.; Massachusetts General Hospital, Boston, MA, USA. Personal communication, 2019.
- Hawaiʻi’s Comprehensive Wildlife Conservation Strategy: Malama Mauna Kea Library Catalog. Available online: http://www.malamamaunakea.org/library/reference/index/refid/152-Hawaiʻi’s-comprehensive-wildlife-conservation-strategy (accessed on 28 May 2021).
- Standley, B. Ranchers Advance Recovery of Rare Hawaiian Bird—Center for Conservation Incentives—Environmental Defense Fund. Available online: http://web.archive.org/web/20080718205313/www.edf.org/article.cfm?contentID=4503 (accessed on 28 May 2021).
- Sato, A.Y.; Ticktin, T.; Alapai, L.; von Allmen, E.I.; Brawner, W.P.; Carter, Y.Y.; Carter, K.A.; Keakealani, R.K.; Medeiros, A.C.; Zahawi, R.A. Biocultural Restoration of Hawaiian Tropical Dry Forests. Pac. Conserv. Biol. 2021. [Google Scholar] [CrossRef]
- Auwahi Forest Restoration Project. Available online: https://www.auwahi.org/ (accessed on 28 May 2021).
- Erdman, S.; Medeiros, A.; Durso, A.; Loope, L. Ranchers and Biologists in Hawaiʻi—Keeping a Business Strong and Protecting Native Forests at Ulupalakua Ranch, Maui. Rangelands 2000, 22, 33–35. [Google Scholar] [CrossRef] [Green Version]
- Goldman, R.L.; Goldstein, L.P.; Daily, G.C. Assessing the Conservation Value of a Human-Dominated Island Landscape: Plant Diversity in Hawaiʻi. Biodivers. Conserv. 2008, 17, 1765–1781. [Google Scholar] [CrossRef]
- Salzman, J.; Bennett, G.; Carroll, N.; Goldstein, A.; Jenkins, M. The Global Status and Trends of Payments for Ecosystem Services. Nat. Sustain. 2018, 1, 136–144. [Google Scholar] [CrossRef]
- Pejchar, L.; Clough, Y.; Ekroos, J.; Nicholas, K.A.; Olsson, O.L.A.; Ram, D.; Tschumi, M.; Smith, H.G. Net Effects of Birds in Agroecosystems. BioScience 2018, 68, 896–904. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating Ecosystem-Service Tradeoffs into Land-Use Decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [Green Version]
- Goldman, R.L.; Thompson, B.H.; Daily, G.C. Institutional Incentives for Managing the Landscape: Inducing Cooperation for the Production of Ecosystem Services. Ecol. Econ. 2007, 64, 333–343. [Google Scholar] [CrossRef]
- Goldman, R.L.; Daily, G.C. Landscape-Scale Conservation: Fostering Partnerships through Ecosystem Service Approaches. In Sustainability Science for Watershed Landscapes; ISEAS Publishing: Singapore, 2010; pp. 195–218. [Google Scholar]
- Chan, K.M.; Goldstein, J.; Satterfield, T.; Hannahs, N.; Kikiloi, K.; Naidoo, R.; Vadeboncoeur, N.; Woodside, U. Cultural Services and Non-Use Values. In Natural Capital: Theory and Practice of Mapping Ecosystem Services; Oxford University Press: Oxford, UK, 2011; pp. 206–228. [Google Scholar]
- Andersen, M.D.; Kerr, G.N.; Lambert, S.J. Cultural Differences in Environmental Valuation. In Proceedings of the New Zealand Agricultural and Resource Economics Society Conference, Nelson, New Zealand, 31 August 2012; pp. 30–31. [Google Scholar]
- Baulcomb, C.; Fletcher, R.; Lewis, A.; Akoglu, E.; Robinson, L.; von Almen, A.; Hussain, S.; Glenk, K. A Pathway to Identifying and Valuing Cultural Ecosystem Services: An Application to Marine Food Webs. Ecosyst. Serv. 2015, 11, 128–139. [Google Scholar] [CrossRef]
- Chan, K.M.A.; Satterfield, T.; Goldstein, J. Rethinking Ecosystem Services to Better Address and Navigate Cultural Values. Ecol. Econ. 2012, 74, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Gould, R.K.; Klain, S.C.; Ardoin, N.M.; Satterfield, T.; Woodside, U.; Hannahs, N.; Daily, G.C.; Chan, K.M. A Protocol for Eliciting Nonmaterial Values through a Cultural Ecosystem Services Frame. Conserv. Biol. 2015, 29, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Mills, P.R.; White, C.L.; Barna, B. The Paradox of the Paniolo: An Archaeological Perspective of Hawaiian Ranching. Available online: https://link.springer.com/article/10.1007/BF03376902 (accessed on 27 May 2021).
- Huntsinger, L.; Johnson, M.; Stafford, M.; Fried, J. Hardwood Rangeland Landowners in California from 1985 to 2004: Production, Ecosystem Services, and Permanence. Rangel. Ecol. Manag. 2010, 63, 324–334. [Google Scholar] [CrossRef]
- Assessment, M.E. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Liffmann, R.H.; Huntsinger, L.; Forero, L.C. To Ranch or Not to Ranch: Home on the Urban Range? Rangel. Ecol. Manag. Range Manag. Arch. 2000, 53, 362–370. [Google Scholar] [CrossRef]
- O‘ahu: Sunset Ranch, Pupukea. Available online: https://www.hilt.org/oahu-sunset-ranch-pupukea (accessed on 31 May 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bremer, L.L.; Nathan, N.; Trauernicht, C.; Pascua, P.; Krueger, N.; Jokiel, J.; Barton, J.; Daily, G.C. Maintaining the Many Societal Benefits of Rangelands: The Case of Hawaiʻi. Land 2021, 10, 764. https://doi.org/10.3390/land10070764
Bremer LL, Nathan N, Trauernicht C, Pascua P, Krueger N, Jokiel J, Barton J, Daily GC. Maintaining the Many Societal Benefits of Rangelands: The Case of Hawaiʻi. Land. 2021; 10(7):764. https://doi.org/10.3390/land10070764
Chicago/Turabian StyleBremer, Leah L., Neil Nathan, Clay Trauernicht, Puaʻala Pascua, Nicholas Krueger, Jordan Jokiel, Jayme Barton, and Gretchen C. Daily. 2021. "Maintaining the Many Societal Benefits of Rangelands: The Case of Hawaiʻi" Land 10, no. 7: 764. https://doi.org/10.3390/land10070764
APA StyleBremer, L. L., Nathan, N., Trauernicht, C., Pascua, P., Krueger, N., Jokiel, J., Barton, J., & Daily, G. C. (2021). Maintaining the Many Societal Benefits of Rangelands: The Case of Hawaiʻi. Land, 10(7), 764. https://doi.org/10.3390/land10070764