Measuring the Ecological Safety Effects of Land Use Transitions Promoted by Land Consolidation Projects: The Case of Yan’an City on the Loess Plateau of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Construction of the Index System
2.3.2. Determination of the Index Weight
2.3.3. Establishment of the Evaluation Model
3. Results
3.1. Evaluation Results of Ecological Safety Effects
3.2. Analysis of the First-Level Index of Ecological Safety Effects
3.3. Analysis of Secondary Index of Ecological Safety Effects
4. Discussion
4.1. Differentiation Analysis of Ecological Safety Effects
4.2. Comprehensive Benefits and Improvement Suggestions
- (1)
- The legal and regulatory system for project quality supervision should be further improved, and a comprehensive project quality supervision mechanism should be established. In addition, the responsibilities of supervisory entities should be reasonably defined and clarified, and a responsive accountability system should be established to impose severe penalties on non-conforming projects.
- (2)
- It is necessary to improve the project quality supervision methods to increase the sense of participation of various entities in society in supervision and feedback [46]. Specifically, various entities should be organically integrated to improve the macro supervision of local government, the direct supervision of construction entities, and the timely feedback of social entities.
- (3)
- Follow-up investigations should be strengthened after the land consolidation project, and problems existing in the project construction should be fed back in time, so as to solve the problems in a targeted way and avoid the further deterioration of the project construction problems.
4.3. Implications for Land Policy Innovation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.S.; Li, Y.H. Revitalize the world’s countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.X.; Gong, Y.H.; Lu, D.D.; Ye, C. Build a people-oriented urbanization: China’s new-type urbanization dream and Anhui model. Land Use Policy 2019, 80, 1–9. [Google Scholar] [CrossRef]
- Deng, X.Z.; Huang, J.K.; Rozelle, S.; Zhang, J.P.; Li, Z.H. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.S.; Fang, F.; Li, Y.H. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Bai, X.M.; McPhearson, T.; Cleugh, H.; Nagendra, H.; Tong, X.; Zhu, T.; Zhu, Y.G. Linking urbanization and the environment: Conceptual and empirical advances. Annu. Rev. Environ. Resour. 2017, 42, 215–240. [Google Scholar] [CrossRef] [Green Version]
- Allahyari, M.S.; Damalas, C.A.; Masouleh, Z.D.; Ghorbani, M. Land consolidation success in paddy fields of northern Iran: An assessment based on farmers’ satisfaction. Land Use Policy 2018, 73, 95–101. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Forty years later: Assessment of the long-lasting effectiveness of land consolidation projects. Land Use Policy 2019, 83, 22–31. [Google Scholar] [CrossRef]
- Li, P.Y.; Qian, H.; Wu, J.H. Accelerate research on land creation. Nature 2014, 510, 29–31. [Google Scholar] [CrossRef]
- Feng, W.L.; Liu, Y.S.; Qu, L.L. Effect of land-centered urbanization on rural development: A regional analysis in China. Land Use Policy 2019, 87, 104072. [Google Scholar] [CrossRef]
- Liu, Y.S.; Feng, W.L.; Li, Y.R. Modern agricultural geographical engineering and agricultural high-quality development: Case study of loess hilly and gully region. Acta Geogr. Sin. 2020, 75, 2029–2046. [Google Scholar]
- Liu, Y.S.; Zhang, Z.W.; Wang, J.Y. Regional differentiation and comprehensive regionalization scheme of modern agriculture in China. Acta Geogr. Sin. 2018, 73, 203–218. [Google Scholar]
- Liu, Q.; Wang, Y.Q.; Zhang, J.; Chen, Y.P. Filling gullies to create farmland on the loess plateau. Environ. Sci. Technol. 2013, 47, 7589–7590. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.J.; Wu, B.F.; Lu, Y.H.; Xu, Z.H.; Cao, J.H.; Niu, D.; Yang, G.S.; Zhou, Y.M. Three Gorges project: Efforts and challenges for the environment. Prog. Phys. Geogr. 2010, 34, 741–754. [Google Scholar] [CrossRef]
- Han, J.C.; Liu, Y.S.; Zhang, Y. Sand stabilization effect of feldspathic sandstone during the fallow period in Mu Us Sandy Land. J. Geogr. Sci. 2015, 25, 428–436. [Google Scholar] [CrossRef]
- Wang, Y.S.; Li, Y.H.; Liu, Y.S. China’s sandy land consolidation engineering and regional agricultural sustainable development practice under water resource constraint: Case study of Yulin city in Shaanxi province, China. Bull. Chin. Acad. Sci. 2020, 35, 1408–1416. [Google Scholar]
- Li, Y.R.; Li, Y.; Fan, P.C.; Long, H.L. Impacts of land consolidation on rural human-environment system in typical watershed of the Loess Plateau and implications for rural development policy. Land Use Policy 2019, 86, 339–350. [Google Scholar]
- Jin, Z. The creation of farmland by gully filling on the Loess Plateau: A double-edged sword. Environ. Sci. Technol. 2014, 48, 883–884. [Google Scholar] [CrossRef]
- Wang, Y.S.; Li, Y.H.; Liu, Y.S. Principle and method of modern agricultural two-dimension optimization engineering experiment. Eng. Sci. 2019, 21, 48–54. [Google Scholar]
- Wang, S.A.; Fu, B.J.; Piao, S.L.; Lu, Y.H.; Ciais, P.; Feng, X.M.; Wang, Y.F. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Li, Y.R.; Zhang, X.C.; Cao, Z.; Liu, Z.J.; Lu, Z.; Liu, Y.S. Towards the progress of ecological restoration and economic development in China’s Loess Plateau and strategy for more sustainable development. Sci. Total Environ. 2021, 756, 143676. [Google Scholar]
- Fu, B.J.; Wang, S.; Liu, Y.; Liu, J.B.; Liang, W.; Miao, C.Y. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Cao, Z.; Li, Y.R.; Liu, Y.S.; Chen, Y.F.; Wang, Y.S. When and where did the Loess Plateau turn “green”? Analysis of the tendency and breakpoints of the normalized difference vegetation index. Land. Degrad. Dev. 2018, 29, 162–175. [Google Scholar] [CrossRef]
- Cao, S.X.; Sun, G.; Zhang, Z.Q.; Chen, L.D.; Feng, Q.; Fu, B.J.; McNulty, S.; Shankman, D.; Tang, J.W.; Wang, Y.H.; et al. Greening China Naturally. Ambio 2011, 40, 828–831. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.S.; Li, Y.H. China’s land creation project stands firm. Nature 2014, 511, 410. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.S.; Li, Y.R. Engineering philosophy and design scheme of gully land consolidation in Loess Plateau. Trans. Chin. Soc. Agric. Eng. 2017, 33, 1–9. [Google Scholar]
- Han, Y.; Yu, C.Y.; Feng, Z.; Du, H.C.; Huang, C.S.; Wu, K.N. Construction and optimization of ecological security pattern based on spatial syntax classification—Taking Ningbo, China, as an Example. Land 2021, 10, 380. [Google Scholar] [CrossRef]
- Li, Z.T.; Yuan, M.J.; Hu, M.M.; Wang, Y.F.; Xia, B.C. Evaluation of ecological security and influencing factors analysis based on robustness analysis and the BP-DEMALTE model: A case study of the Pearl River Delta urban agglomeration. Ecol. Indic. 2019, 101, 595–602. [Google Scholar] [CrossRef]
- Long, H.L.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Gu, X.K.; Dai, B.; Chen, B.M. Landscape effects of land consolidation projects in Central China—A case study of Tianmen City, Hubei Province. Chin. Geogr. Sci. 2008, 18, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Han, X.L.; Lv, P.Y.; Zhao, S.; Sun, Y.; Yan, S.Y.; Wang, M.H.; Han, X.N.; Wang, X.R. The effect of the Gully land consolidation project on soil erosion and crop production on a typical watershed in the Loess Plateau. Land 2018, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.Q.; Jin, X.B.; Fan, Y.T.; Xiang, X.M.; Cao, S.; Chen, C.C.; Zheng, G.; Zhou, Y.K. Determining the effect of land consolidation on agricultural production using a novel assessment framework. Land Degrad. Dev. 2020, 31, 356–371. [Google Scholar] [CrossRef]
- Kolis, K.; Hiironen, J.; Riekkinen, K.; Vitikainen, A. Forest land consolidation and its effect on climate. Land Use Policy 2017, 61, 536–542. [Google Scholar] [CrossRef]
- Liu, Y.S. Integrated land research and land resources engineering. Resour. Sci. 2015, 37, 1–8. [Google Scholar]
- Cay, T.; Iscan, F. Fuzzy expert system for land reallocation in land consolidation. Expert Syst. Appl. 2011, 38, 11055–11071. [Google Scholar] [CrossRef]
- Cay, T.; Ayten, T.; Iscan, F. Effects of different land reallocation models on the success of land consolidation projects: Social and economic approaches. Land Use Policy 2010, 27, 262–269. [Google Scholar] [CrossRef]
- Guo, B.B.; Fang, Y.L.; Jin, X.B.; Zhou, Y.K. Monitoring the effects of land consolidation on the ecological environmental quality based on remote sensing: A case study of Chaohu Lake Basin, China. Land Use Policy 2020, 95, 104569. [Google Scholar] [CrossRef]
- Guo, B.B.; Jin, X.B.; Yang, X.H.; Guan, X.; Lin, Y.A.; Zhou, Y.K. Determining the effects of land consolidation on the multifunctionality of the cropland production system in China using a SPA-fuzzy assessment model. Eur. J. Agron. 2015, 63, 12–26. [Google Scholar] [CrossRef]
- Liu, Y.S.; Guo, Y.J.; Li, Y.R.; Li, Y.H. GIS-based effect assessment of soil erosion before and after gully land consolidation: A case study of Wangjiagou project region, Loess Plateau. Chin. Geogr. Sci. 2015, 25, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.M.; Li, D.L. A method for land consolidation progress assessment based on GPS and PDA. Math. Comput. Sci. Eng. 2009, 8, 429–438. [Google Scholar]
- Lu, S.S.; Li, J.P.; Guan, X.L.; Gao, X.J.; Gu, Y.H.; Zhang, D.H.; Mi, F.; Li, D.D. The evaluation of forestry ecological security in China: Developing a decision support system. Ecol. Indic. 2018, 91, 664–678. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, Z.X. Ecological security assessment of the Guanzhong Plain urban agglomeration based on an adapted eco-logical footprint model. J. Clean. Prod. 2020, 260, 120973. [Google Scholar] [CrossRef]
- Gong, L.; Jin, C.L. Fuzzy comprehensive evaluation for carrying capacity of regional water resources. Water Resour. Manag. 2009, 23, 2505–2513. [Google Scholar] [CrossRef]
- Pang, Y.J.; Liu, L.M.; Li, W.G. Fuzzy comprehensive evaluation model of ecological security based on distinguishable weight of indexes. Prog. Environ. Sci. Technol. 2009, 51(Pts A and B), 99–103. [Google Scholar]
- He, C.X. The present situation, characteristics and functions of the project of treating ditches and constructing land in Yan’an. J. Earth Environ. 2015, 15, 255–260. [Google Scholar]
- Liu, Y.S.; Chen, Z.F.; Li, Y.R. The planting technology and industrial development prospects of forage rape in the loess hilly area: A case study of newly-increased cultivated land through gully land consolidation in Yan’an, Shaanxi Province. J. Nat. Resour. 2017, 32, 2065–2074. [Google Scholar]
- Gedefaw, A.A.; Atzberger, C.; Seher, W.; Mansberger, R. Farmers willingness to participate in voluntary land consolidation in Gozamin District, Ethiopia. Land 2019, 8, 148. [Google Scholar] [CrossRef] [Green Version]
- Long, H.L.; Li, Y.R.; Liu, Y.S.; Woods, M.; Zou, J. Accelerated restructuring in rural China fueled by ‘increasing vs. decreasing balance’ land-use policy for dealing with hollowed villages. Land Use Policy 2012, 29, 11–22. [Google Scholar] [CrossRef]
- Li, Y.R.; Liu, Y.S.; Long, H.L.; Cui, W.G. Community-based rural residential land consolidation and allocation can help to revitalize hollowed villages in traditional agricultural areas of China: Evidence from Dancheng County, Henan Province. Land Use Policy 2014, 39, 188–198. [Google Scholar] [CrossRef]
- Zhu, M. New development of agricultural engineering in China. Trans. Chin. Soc. Agric. Eng. 2005, 21, 1–11. [Google Scholar]
- Feng, W.L.; Liu, Y.S.; Chen, Z.F.; Li, Y.R.; Huang, Y.X. Theoretical and practical research into excavation slope protection for agricultural geographical engineering in the Loess Plateau—A case study of China’s Yangjuangou catchment. J. Rural Stud. 2019, 8, 18–23. [Google Scholar] [CrossRef]
- Jin, X.B.; Shao, Y.; Zhang, Z.H.; Resler, L.M.; Campbell, J.B.; Chen, G.; Zhou, Y.K. The evaluation of land consolidation policy in improving agricultural productivity in China. Sci. Rep. 2017, 7, 2792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.C.; Zhang, Y. Land policy and land engineering. Land Use Policy 2014, 40, 64–68. [Google Scholar] [CrossRef]
- Lu, D.D.; Liu, Y.S.; Fang, C.L.; Chen, M.X.; Wang, J.E.; Xi, J.C. Development and prospect of human-economic geography. Acta Geogr. Sin. 2020, 75, 2570–2592. [Google Scholar]
- Colombo, S.; Manuel, P.V. A practical method for the ex-ante evaluation of land consolidation initiatives: Fully connected parcels with the same value. Land Use Policy 2019, 81, 463–471. [Google Scholar] [CrossRef]
- Long, H.L.; Tu, S.S.; Ge, D.Z.; Li, T.T.; Liu, Y.S. The allocation and management of critical resources in rural China under restructuring: Problems and prospects. J. Rural. Stud. 2016, 47, 392–412. [Google Scholar] [CrossRef] [Green Version]
Criteria | First-Level Weight | Index | Second-Level Weight | Combined Weight |
---|---|---|---|---|
Dam safety (B1) | 0.35 | Project quality (C11) | 0.22 | 0.077 |
Layout rationality (C12) | 0.15 | 0.053 | ||
Anti-risk capability (C13) | 0.15 | 0.053 | ||
Damaged condition (C14) | 0.13 | 0.046 | ||
Channel safety (C15) | 0.12 | 0.042 | ||
Slope stability (C16) | 0.12 | 0.042 | ||
Supporting facilities (C17) | 0.11 | 0.039 | ||
Slope stability (B2) | 0.28 | Design rationality (C21) | 0.2 | 0.056 |
Slope stability (C22) | 0.2 | 0.056 | ||
Vegetation protection (C23) | 0.2 | 0.056 | ||
Slope erosion (C24) | 0.1 | 0.028 | ||
Multistage slopes (C25) | 0.2 | 0.056 | ||
Drainage performance (C26) | 0.1 | 0.028 | ||
Efficient farmland (B3) | 0.22 | Increase of cultivated land (C31) | 0.15 | 0.033 |
Land levelness (C32) | 0.1 | 0.022 | ||
Quality of cultivated land (C33) | 0.1 | 0.022 | ||
Traffic accessibility (C34) | 0.2 | 0.044 | ||
Irrigation and drainage (C35) | 0.2 | 0.044 | ||
Crop yield (C36) | 0.1 | 0.022 | ||
Convenience of production (C37) | 0.15 | 0.033 | ||
Effective management (B4) | 0.15 | Management mechanism (C41) | 0.3 | 0.045 |
Management situation (C42) | 0.3 | 0.045 | ||
Management benefit (C43) | 0.4 | 0.060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, W.; Li, Y. Measuring the Ecological Safety Effects of Land Use Transitions Promoted by Land Consolidation Projects: The Case of Yan’an City on the Loess Plateau of China. Land 2021, 10, 783. https://doi.org/10.3390/land10080783
Feng W, Li Y. Measuring the Ecological Safety Effects of Land Use Transitions Promoted by Land Consolidation Projects: The Case of Yan’an City on the Loess Plateau of China. Land. 2021; 10(8):783. https://doi.org/10.3390/land10080783
Chicago/Turabian StyleFeng, Weilun, and Yurui Li. 2021. "Measuring the Ecological Safety Effects of Land Use Transitions Promoted by Land Consolidation Projects: The Case of Yan’an City on the Loess Plateau of China" Land 10, no. 8: 783. https://doi.org/10.3390/land10080783
APA StyleFeng, W., & Li, Y. (2021). Measuring the Ecological Safety Effects of Land Use Transitions Promoted by Land Consolidation Projects: The Case of Yan’an City on the Loess Plateau of China. Land, 10(8), 783. https://doi.org/10.3390/land10080783