Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Land Use Transfer Matrix
2.3.2. Habitat Quality Module of the InVEST Model
2.3.3. GeoDetector
3. Results
3.1. Land Use Transitions
3.1.1. Changes in Land Types and Degree of Change
3.1.2. Drastic Changes in Construction Land and Cultivated Land
3.1.3. Water Area
3.1.4. Ecological Land
3.1.5. Land Use Changes in Different Counties
3.2. Changes of Habitat Quality
3.2.1. Overall Habitat Quality
3.2.2. High Quality Habitat Areas
3.2.3. Medium and Low Quality Habitat Areas
3.2.4. Changes of Habitat Quality in Different Counties
3.2.5. Degree of Habitat Degradation
3.3. Habitat Quality Effect of Land Use Transitions
3.3.1. Driving Factors of Habitat Quality Change
3.3.2. Contribution of Land Use Transition to Habitat Quality Effect
4. Discussion
4.1. Mechanism of Land Use Transitions Affecting Habitat Quality Change
4.2. Suggestions on Improving Regional Habitat Quality
- (1)
- The territorial and spatial planning must be strengthened, and water source areas must be regulated. On the basis of reasonable delineation of the “three areas and three lines,” the local government should strictly regulate territorial and spatial use to prevent the extensive use and disorderly expansion of construction land caused by urban expansion; additionally, the government should continue to promote the return of farmland to forest and grassland and reasonably increase the quantity and quality of ecological space, improving the functions of water source area ecosystems, such as carbon sequestration, water conservation, and biodiversity conservation.
- (2)
- Research, monitoring, and evaluation on environmental quality should be continued. An all-round, full-time, and long-period comprehensive monitoring system for the environment of the water source area should be established; research, monitoring, and evaluation should be conducted on water quality, water quantity, climate, vegetation, biodiversity, and other factors; changes of adverse factors affecting habitat quality should be reduced; and positive countermeasures for sudden ecological security incidents should be implemented, including the timely elimination or reduction of the impact.
- (3)
- Environmental protection and restoration should be actively promoted. According to the theory of “landscape, forest, field, lake, and grass” community life, combined with the ecological space planning and control policy of water source areas, the core ecological protection area should be designated in the middle and north areas with high habitat quality, and the occupation and interference of human activities on the ecological space should be reduced in the southeast plain area with significantly declined habitat quality and strong habitat degradation. Based on the degree of ecosystem damage, different artificial support methods, such as conservation, natural restoration, assisted regeneration, and ecological reconstruction, should be adopted to conduct ecological restoration activities [53] in water source areas.
- (4)
- A scientific and effective compensation mechanism for ecological protection should be established. The industrial development of water source areas is limited by the objective of environment protection, which leads to serious losses in local finance and people’s income. The principles of clear authority and responsibility, overall coordination, and overall planning should be followed based on scientific research on quantitative accounting of ecological compensation for the MRP, and the authority and responsibility of government departments at all levels of the water source and receiving area should be clarified. The relevant industrial policies and laws, and regulations should be improved to form a long-term ecological compensation operation mechanism.
- (5)
- Feasible paths to achieve green and sustainable development should be explored. Using the theory of “green water and mountains are also golden and silver mountains” as a guide, the government should explore the ecological resource asset accounting of water source areas and realize the ecological product value; actively cultivate and develop ecotourism, green agriculture, a special agricultural products processing industry, and other green industrial systems which rely on the local rich mountain landscape and biological resources; and form an endogenous mechanism for achieving high quality development of the ecology, economy, and society in the water source area.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, X.; Shi, Y.; Chen, C.; Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province. Land Use Policy 2017, 69, 25–40. [Google Scholar] [CrossRef]
- Xu, Y.; Mcnamara, P.; Wu, Y.; Dong, Y. An econometric analysis of changes in arable land utilization using multinomial logit model in Pinggu district, Beijing, China. J. Environ. Manag. 2013, 128, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Long, H. The economic and environmental effects of land use transitions under rapid urbanization and the implications for land use management. Habitat Int. 2018, 82, 113–121. [Google Scholar] [CrossRef]
- Bongaarts, J. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 2019, 45, 680–681. [Google Scholar] [CrossRef] [Green Version]
- Oliver, T.H.; Heard, M.S.; Isaac, N.; Roy, D.B.; Procter, D.; Eigenbrod, F.; Freckleton, R.; Hector, A.; Orme, C.; Petchey, O.L. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 2015, 30, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A.; Nassikas, A.A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 2017, 31, 456–472. [Google Scholar] [CrossRef]
- Perring, M.P.; De Frenne, P.; Baeten, L.; Maes, S.L.; Depauw, L.; Blondeel, H.; Caron, M.M.; Verheyen, K. Global environmental change effects on ecosystems: The importance of land-use legacies. Glob. Chang. Biol. 2016, 22, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Long, H.; Li, T. The coupling characteristics and mechanism of farmland and rural housing land transition in China. J. Geogr. Sci. 2012, 22, 548–562. [Google Scholar] [CrossRef]
- Tsai, Y.; Zia, A.; Koliba, C.; Bucini, G.; Guilbert, J.; Beckage, B. An interactive land use transition agent-based model (ILUTABM): Endogenizing human-environment interactions in the Western Missisquoi Watershed. Land Use Policy 2015, 49, 161–176. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y.; Tu, S.; Zhang, Y.; Jiang, Y. Development of land use transitions research in China. J. Geogr. Sci. 2020, 30, 1195–1214. [Google Scholar] [CrossRef]
- Long, H. Land Use Transitions and Rural Restructuring in China; Springer: Singapore, 2020. [Google Scholar]
- Yang, Y.; Bao, W.; Li, Y.; Wang, Y.; Chen, Z. Land use transition and its eco-environmental effects in the Beijing–Tianjin–Hebei urban agglomeration: A production–living–ecological perspective. Land 2020, 9, 285. [Google Scholar] [CrossRef]
- Grainger, A. The Future Role of the Tropical Rain Forests in the World Forest Economy; University of Oxford: Oxford, UK, 1986. [Google Scholar]
- Grainger, A. The forest transition: An alternative approach. Area 1995, 27, 242–251. [Google Scholar]
- Liu, Y.; Long, H. Land use transitions and their dynamic mechanism: The case of the Huang-Huai-Hai Plain. J. Geogr. Sci. 2016, 26, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Ye, C.; Cai, Y.; Xing, X.; Chen, Q. The impact of rural out-migration on land use transition in China: Past, present andtrend. Land Use Policy 2014, 40, 101–110. [Google Scholar] [CrossRef]
- Xu, J.; Sharma, R.; Fang, J.; Xu, Y. Critical linkages between land-use transition and human health in the Himalayan region. Environ. Int. 2008, 34, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Joo, R.; Kim, Y. Forest transition in South Korea: Reality, path and drivers. Land Use Policy 2012, 29, 198–207. [Google Scholar] [CrossRef]
- Yeo, I.; Huang, C. Revisiting the forest transition theory with historical records and geospatial data: A case study from Mississippi(USA). Land Use Policy 2013, 32, 1–13. [Google Scholar] [CrossRef]
- Qu, Y.; Jiang, G.; Li, Z.; Tian, Y.; Wei, S. Understanding rural land use transition and regional consolidation implications in China. Land Use Policy 2019, 82, 742–753. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, Y.; Qian, M.; Zeng, Z. Land Use Transition and Driving Forces in Chinese Loess Plateau: A Case Study from Pu County, Shanxi Province. Land 2021, 10, 67. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, Z.; Liang, D.; Xu, Z. Rural residential land transition in the Beijing-Tianjin-Hebei region: Spatial-temporal patterns and policy implications. Land Use Policy 2020, 96, 104700. [Google Scholar] [CrossRef]
- Long, H.; Heilig, G.K.; Li, X.; Zhang, M. Socio-economic development and land-use change: Analysis of rural housing land transition in the Transect of the Yangtse River, China. Land Use Policy 2007, 24, 141–153. [Google Scholar] [CrossRef]
- Tong, W.; Kazak, J.; Qi, H.; Vries, B.D. A framework for path-dependent industrial land transition analysis using vector data. Eur. Plan. Stud. 2019, 27, 1391–1412. [Google Scholar]
- Zhu, F.; Zhang, F.; Ke, X. Rural industrial restructuring in China’s metropolitan suburbs: Evidence from the land use transition of rural enterprises in suburban Beijing. Land Use Policy 2018, 74, 121–129. [Google Scholar] [CrossRef]
- Lyu, L.; Gao, Z.; Long, H.; Wang, X.; Fan, Y. Farmland use transition in a typical farming area: The case of Sihong County in the Huang-Huai-Hai Plain of China. Land 2021, 10, 347. [Google Scholar] [CrossRef]
- Lou, Y.; Yin, G.; Xin, Y.; Xie, S.; Li, G.; Liu, S.; Wang, X. Recessive transition mechanism of arable land use based on the perspective of coupling coordination of input–output: A case study of 31 provinces in China. Land 2021, 10, 41. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Ma, L.; Ge, D.; Tu, S.; Qu, Y. Farmland function evolution in the Huang-Huai-Hai Plain: Processes, patterns and mechanisms. J. Geogr. Sci. 2018, 28, 759–777. [Google Scholar] [CrossRef] [Green Version]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, D.; Li, Q.; Lu, S. Impacts of socioeconomic factors on cropland transition and its adaptation in Beijing, China. Environ. Earth Sci. 2018, 77, 575. [Google Scholar] [CrossRef]
- Yin, D.; Li, X.; Li, G.; Zhang, J.; Yu, H. Spatio-temporal evolution of land use transition and its eco-environmental effects: A case study of the Yellow River Basin, China. Land 2020, 9, 514. [Google Scholar] [CrossRef]
- Qiu, L.; Pan, Y.; Zhu, J.; Amable, G.S.; Xu, B. Integrated analysis of urbanization-triggered land use change trajectory and implications for ecological land management: A case study in Fuyang, China. Sci. Total Environ. 2018, 660, 209–217. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H.; Li, T.; Tu, S. Land use transitions and their effects on water environment in Huang-Huai-Hai Plain, China. Land Use Policy 2015, 47, 293–301. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fellman, J.B.; Eran, H.; William, D.; Sanjay, P.; Meador, J.P. Stream physical characteristics impact habitat quality for pacific salmon in two temperate coastal watersheds. PLoS ONE 2015, 10, e0132652. [Google Scholar] [CrossRef] [Green Version]
- Hillard, E.M.; Nielsen, C.K.; Groninger, J.W. Swamp rabbits as indicators of wildlife habitat quality in bottomland hardwood forest ecosystems. Ecol. Indic. 2017, 79, 47–53. [Google Scholar] [CrossRef]
- Riedler, B.; Lang, S. A spatially explicit patch model of habitat quality, integrating spatio-structural indicators. Ecol. Indic. 2017, 94, 128–141. [Google Scholar] [CrossRef]
- Zhang, J.; Hull, V.; Huang, J.; Yang, W.; Zhou, S.; Xu, W.; Huang, Y.; Ouyang, Z.; Zhang, H.; Liu, J. Natural recovery and restoration in giant panda habitat after the Wenchuan earthquake. For. Ecol. Manag. 2014, 319, 1–9. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, W.; Wang, Y.; Lien, W.; Huang, T.; Hsu, C.; Schmeller, D.S.; Crossman, N.D. Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services. Environ. Model. Softw. 2017, 90, 126–146. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.8.7. User’s Guide; Collaborative Publication by the Natural Capital Project, Stanford University, University of Minnesota, the Nature Conservancy, World Wildlife Fund; Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Zhang, X.; Zhou, J.; Li, M. Analysis on spatial and temporal changes of regional habitat quality based on the spatial pattern reconstruction of land use. Acta Geogr. Sin. 2020, 75, 160–178. [Google Scholar]
- Sallustio, L.; Toni, A.D.; Strollo, A.; Febbraro, M.D.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiang, Z.; Liu, F.; Zhang, D. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. Ecol. Indic. 2019, 102, 716–723. [Google Scholar] [CrossRef]
- Hack, J.; Molewijk, D.; Beiler, M.R. A conceptual approach to modeling the geospatial impact of typical urban threats on the habitat quality of river corridors. Remote Sens. 2020, 12, 1315. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Sun, C.; Fan, F. Estimating the characteristic spatiotemporal variation in habitat quality using the InVEST model—A Case Study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.; XU, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Edmonds, J.A.; Link, R.; Waldhoff, S.T.; Cui, R. A global food demand model for the assessment of complex human-earth systems. Clim. Chang. Econ. 2017, 8, 1750012. [Google Scholar] [CrossRef]
- Liu, Y. Modern human-earth relationship and human-earth system science. Sci. Geogr. Sin. 2020, 40, 1221–1234. [Google Scholar]
- Bai, Z.; Shi, X.; Zhou, W.; Wang, J.; Zhao, Z.; Cao, Y. How does artificiality support and guide the natural restoration of ecosystems. China Land Sci. 2020, 34, 1–9. [Google Scholar]
Threat Factors | Farthest Threat Distance (km) | Threat Degree | Declining Type |
---|---|---|---|
Cultivated land | 4 | 0.5 | linear |
Construction land | 8 | 1.0 | exponential |
Main traffic arteries | 6 | 0.9 | linear |
Bare land | 5 | 0.8 | linear |
Land Use Types | Habitat Suitability | Cultivated Land | Construction Land | Main Traffic Arteries | Bare Land |
---|---|---|---|---|---|
Cultivated land | 0.4 | 0 | 0.8 | 0.6 | 0.4 |
Forest land | 1.0 | 0.6 | 0.7 | 0.8 | 0.3 |
Grassland | 0.8 | 0.8 | 0.6 | 0.5 | 0.4 |
Wetland | 0.7 | 0.7 | 0.6 | 0.6 | 0.2 |
Water area | 0.6 | 0.5 | 0.4 | 0.4 | 0.2 |
Construction land | 0 | 0 | 0 | 0 | 0 |
Other land | 0.2 | 0.5 | 0.7 | 0.2 | 0 |
2000 | 2020 | Reduction | ||||||
---|---|---|---|---|---|---|---|---|
Grassland | Cultivated Land | Construction Land | Forest Land | Wetland | Water Area | Other Land | ||
Grassland | 1461.63 | 64.77 | 20.28 | 173.44 | 0.80 | 37.74 | 2.74 | 299.76 |
Cultivated land | 47.48 | 4286.88 | 376.26 | 140.25 | 12.56 | 213.35 | 1.70 | 791.60 |
Construction land | 2.58 | 111.71 | 481.20 | 0.66 | 0.05 | 1.92 | 0.59 | 117.51 |
Forest land | 72.50 | 171.71 | 21.75 | 9146.06 | 0.19 | 15.24 | 1.71 | 283.09 |
Wetland | 0.54 | 1.11 | 0.01 | 0.10 | 1.68 | 17.53 | 0.00 | 19.29 |
Water area | 1.61 | 4.56 | 1.09 | 2.79 | 1.36 | 165.47 | 0.00 | 11.41 |
Increase | 124.72 | 353.86 | 419.39 | 317.23 | 14.95 | 285.79 | 6.73 | |
Change | −175.05 | −437.74 | 301.88 | 34.13 | −4.34 | 274.38 | 6.73 |
Land Use Type | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area/km2 | % | Area/km2 | % | Area/km2 | % | |
Grassland | 1761.39 | 10.32 | 1614.21 | 9.46 | 1586.35 | 9.30 |
Cultivated land | 5078.48 | 29.76 | 4901.65 | 28.72 | 4640.74 | 27.19 |
Construction land | 598.71 | 3.51 | 715.48 | 4.19 | 900.59 | 5.28 |
Forestland | 9429.16 | 55.25 | 9517.76 | 55.77 | 9463.29 | 55.45 |
Wetland | 20.96 | 0.12 | 18.41 | 0.11 | 16.62 | 0.10 |
Water area | 176.88 | 1.04 | 298.06 | 1.75 | 451.26 | 2.64 |
Other land | 0.00 | 0.00 | 0.00 | 0.00 | 6.73 | 0.04 |
County | Year | Grassland | Cultivated Land | Construction Land | Forestland | Wetland | Water Area | Other Land |
---|---|---|---|---|---|---|---|---|
Lushi | 2000 | 545.22 | 499.01 | 8.66 | 2598.88 | 0.00 | 5.03 | 0.00 |
2010 | 495.89 | 489.43 | 22.84 | 2636.99 | 7.30 | 4.35 | 0.00 | |
2020 | 493.79 | 486.61 | 35.73 | 2627.94 | 7.99 | 4.73 | 0.00 | |
Luanchuan | 2000 | 137.39 | 185.87 | 15.94 | 2130.46 | 0.00 | 1.35 | 0.00 |
2010 | 113.71 | 167.78 | 34.66 | 2152.64 | 0.76 | 1.48 | 0.00 | |
2020 | 113.50 | 168.13 | 49.09 | 2134.21 | 0.74 | 3.24 | 2.11 | |
Xixia | 2000 | 218.62 | 452.49 | 28.32 | 2743.72 | 0.00 | 4.56 | 0.00 |
2010 | 201.70 | 458.53 | 48.54 | 2730.33 | 0.00 | 8.63 | 0.00 | |
2020 | 204.64 | 426.18 | 79.10 | 2725.24 | 0.00 | 12.55 | 0.00 | |
Xichuan | 2000 | 548.44 | 1197.63 | 81.73 | 810.69 | 19.85 | 155.58 | 0.00 |
2010 | 506.39 | 1090.38 | 92.50 | 845.45 | 10.34 | 268.87 | 0.00 | |
2020 | 492.14 | 952.97 | 126.13 | 837.91 | 7.88 | 394.69 | 2.21 | |
Neixiang | 2000 | 285.57 | 781.75 | 105.81 | 1127.89 | 0.56 | 3.53 | 0.00 |
2010 | 273.17 | 776.07 | 116.48 | 1132.96 | 0.00 | 6.44 | 0.00 | |
2020 | 262.92 | 745.57 | 154.22 | 1122.57 | 0.00 | 14.42 | 2.41 | |
Dengzhou | 2000 | 25.77 | 1960.55 | 358.17 | 15.70 | 0.55 | 6.80 | 0.00 |
2010 | 23.01 | 1918.30 | 400.39 | 17.55 | 0.00 | 8.27 | 0.00 | |
2020 | 19.03 | 1860.12 | 456.24 | 13.56 | 0.00 | 18.58 | 0.00 |
2000 | 2020 | Reduction | ||||
---|---|---|---|---|---|---|
Low | Medium-Low | Medium | Medium-High | High | ||
Low | 481.79 | 111.71 | 1.92 | 2.63 | 0.66 | 116.92 |
Medium-low | 377.97 | 4286.88 | 213.35 | 60.04 | 140.25 | 791.60 |
Medium | 1.09 | 4.56 | 165.47 | 2.97 | 2.79 | 11.41 |
Medium-high | 23.02 | 65.88 | 55.28 | 1464.55 | 173.52 | 317.69 |
High | 23.46 | 171.71 | 15.24 | 72.79 | 9146.08 | 283.19 |
Increase | 425.53 | 353.86 | 285.79 | 138.42 | 317.21 | |
Change | 308.61 | −437.74 | 274.38 | −179.27 | 34.02 |
County | Year | low | Medium-Low | Medium | Medium-High | High |
---|---|---|---|---|---|---|
Lushi | 2000–2010 | 14.19 | −9.58 | −0.68 | −41.92 | 38.00 |
2010–2020 | 12.89 | −2.82 | 0.38 | −1.40 | −9.05 | |
Luanchuan | 2000–2010 | 18.71 | −18.10 | 0.13 | −22.92 | 22.18 |
2010–2020 | 16.54 | 0.36 | 1.76 | −0.23 | −18.43 | |
Xixia | 2000–2010 | 20.21 | 6.04 | 4.07 | −7.93 | −13.39 |
2010–2020 | 30.57 | −32.35 | 3.93 | −6.06 | −5.08 | |
Xichuan | 2000–2010 | 10.77 | −107.25 | 113.28 | −51.55 | 34.75 |
2010–2020 | 35.84 | −137.41 | 125.82 | −16.72 | −7.54 | |
Neixiang | 2000–2010 | 10.66 | −5.68 | 2.90 | −12.96 | 5.07 |
2010–2020 | 40.17 | −30.35 | 11.01 | −10.31 | −10.57 | |
Dengzhou | 2000–2010 | 42.21 | −42.24 | 1.48 | −3.31 | 1.86 |
2010–2020 | 55.85 | −58.19 | 10.31 | −3.99 | −3.99 |
Driving Factors | Unit | Range/Type | ||
---|---|---|---|---|
Ecological factors | Topography | elevation x1 | m | >1503 |
slope x2 | ° | 33.48–40.06 | ||
slope aspect x3 | — | North | ||
Geomorphology | geomorphology type x4 | — | Middle elevation relief mountains | |
Soil | soil type x5 | — | Calcareous soil | |
Climate | annual precipitation x6 | mm | 554–591 | |
annual average temperature x7 | °C | 12.30–13.40 | ||
Vegetation | vegetation type x8 | — | Swamp, grass | |
NDVI index x9 | — | 0.08–0.29 | ||
LUCC | land use type x10 | — | Forestland | |
Economic factors | GDP | per capita GDP x11 | Yuan/person | 55,716–57,676 |
Industry | proportion of agricultural output value x12 | % | 13.49–20.50 | |
grain yield per unit area x13 | kg/hm2 | 4271–4532 | ||
Social factors | Carrying capacity | population density x14 | Person/km2 | 137.78–146.72 |
Development degree | urbanization rate x15 | % | 50.00–50.14 | |
road network density x16 | km/km2 | <0.54 |
Conversion of Land Types with Declining Habitat Suitability | Area/km2 | % | Conversion of Land Types with Improving Habitat Suitability | Area/km2 | % |
---|---|---|---|---|---|
Cultivated land—Construction land | 376.26 | 46.36 | Cultivated land—Water area | 213.35 | 30.01 |
Forest land—Cultivated land | 171.71 | 21.15 | Grassland—Forest land | 173.44 | 24.39 |
Forest land—Grassland | 72.50 | 8.93 | Cultivated land—Forest land | 140.25 | 19.73 |
Grassland—Cultivated land | 64.77 | 7.98 | Construction land—Cultivated land | 111.71 | 15.71 |
Grassland—Water area | 37.74 | 4.65 | Cultivated land—Grassland | 47.48 | 6.68 |
Forest land—Construction land | 21.75 | 2.68 | Cultivated land—Wetland | 12.56 | 1.77 |
Grassland—Construction land | 20.28 | 2.50 | Water area—Forest land | 2.79 | 0.39 |
Wetland—Water area | 17.53 | 2.16 | Construction land—Grassland | 2.58 | 0.36 |
Forest land—Water area | 15.24 | 1.88 | Construction land—Water area | 1.92 | 0.27 |
Water area—Cultivated land | 4.56 | 0.56 | Water area—Grassland | 1.61 | 0.23 |
Grassland—Other land | 2.74 | 0.34 | Water area—Wetland | 1.36 | 0.19 |
Forest land—Other land | 1.71 | 0.21 | Construction land—Forest land | 0.66 | 0.09 |
Cultivated land—Other land | 1.70 | 0.21 | Construction land—Other land | 0.59 | 0.08 |
Wetland—Cultivated land | 1.11 | 0.14 | Wetland—Grassland | 0.54 | 0.08 |
Water area—Construction land | 1.09 | 0.13 | Wetland—Forest land | 0.10 | 0.01 |
Grassland—Wetland | 0.80 | 0.10 | Construction land—Wetland | 0.05 | 0.01 |
Forest land—Wetland | 0.19 | 0.02 | |||
Total | 811.68 | 100 | Total | 710.99 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Bai, Z.; Wang, Q.; Shi, Z. Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project. Land 2021, 10, 796. https://doi.org/10.3390/land10080796
Chen M, Bai Z, Wang Q, Shi Z. Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project. Land. 2021; 10(8):796. https://doi.org/10.3390/land10080796
Chicago/Turabian StyleChen, Meijing, Zhongke Bai, Qingri Wang, and Zeyu Shi. 2021. "Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project" Land 10, no. 8: 796. https://doi.org/10.3390/land10080796
APA StyleChen, M., Bai, Z., Wang, Q., & Shi, Z. (2021). Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project. Land, 10(8), 796. https://doi.org/10.3390/land10080796