Does External Shock Influence Farmer’s Adoption of Modern Irrigation Technology?—A Case of Gansu Province, China
Abstract
:1. Introduction
2. Research Problem and Hypothesis
3. Materials and Methods
3.1. Data Sources
3.2. Measurement Model
3.2.1. Mediation Effect Model
3.2.2. Moderation Effect Model
4. Results and Discussion
4.1. Test and Analysis of Mediation Effect
4.2. Analysis of Moderator Effect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Reliability and Validity Test of Data
Variable | Dimension | Measure Index | Factor Load | Cronbach’α |
---|---|---|---|---|
Social capital | Social network | Number of regular contacts (Unit: person) | 0.707 | 0.784 |
Expenses for human relationship gifts (unit: yuan) | 0.680 | |||
Do you often meet with your friends? | 0.806 | |||
Can you get helpful information about marriage, school, and so on from people around you? | 0.823 | |||
Social trust | Do you think people around you keep their promises? | 0.798 | 0.846 | |
Do you trust strangers? | 0.805 | |||
Would you like to lend something to the people around you? | 0.822 | |||
Do you believe the relevant policies issued by the village committee? | 0.839 | |||
Social prestige | Is your neighbor willing to help when your family is busy? | 0.902 | 0.917 | |
Do the villagers respect you? | 0.913 | |||
Are there any influential factors in your village that will impact on your opinion? | 0.923 | |||
If there is any problem in your neighbor’s house, will you ready to help them? | 0.885 | |||
Social participation | Do you often visit your neighbor’s house? | 0.896 | 0.891 | |
Do you often take part in the village people’s weddings, funerals, and other activities? | 0.768 | |||
Do you and the villagers often discuss problems with each other? | 0.881 | |||
Do you often participate in playing cards and communal dances with your neighbor? | 0.865 |
Appendix B. Reliability and Validity Test of the Results
Variable | Explained Variable | ||
---|---|---|---|
Degree of Technology Adoption (1) | Economic Vulnerability (2) | Degree of Technology Adoption (1) | |
External shocks | −0.5942 *** (0.1737) | 0.0820 ** (0.0360) | −0.5599 *** (0.1723) |
Economic vulnerability | - | - | −2.8287 ** (1.3439) |
Intercept term | −5.3062 *** (1.5612) | 0.4808 *** (0.0384) | −2.2920 ** (1.3288) |
Control variable | Yes | Yes | Yes |
Wald chi square | 47.12 *** | 209.45 *** | 52.36 *** |
R2 | 0.2475 | 0.2804 | 0.3327 |
Explained Variable | |||
---|---|---|---|
Variables | Degree of Technology Adoption (4) | Economic Vulnerability (5) | Degree of Technology Adoption (6) |
External shocks | −1.0149 *** (0.3302) | 0.0076 ** (0.0036) | |
Economic vulnerability | - | - | −5.5532 ** (2.4104) |
social capital | 0.9471 *** (0.3378) | −0.0151 * (0.0079) | 3.4129 *** (1.1797) |
Formal insurance | 0.8039 ** (0.3568) | −0.0196 ** (0.0096) | 0.8471 ** (0.3611) |
External shock * social capital | 0.5843 ** (0.2607) | −0.0125 *** (0.0046) | - |
External shock * formal insurance | 0.7377 ** (0.3596) | −0.0111 * (0.0066) | - |
Economic vulnerability * social capital | - | - | 6.2363 *** (2.2249) |
Economic vulnerability * formal insurance | - | - | 2.1413 *** (0.7565) |
Intercept term | −4.5210 *** (1.1820) | 0.6048 *** (0.0287) | −6.5661 *** (1.8207) |
Control variable | Yes | Yes | Yes |
WaldThe square value | 64.47 *** | 206.83 *** | 68.42 *** |
R2 | 0.2670 | 0.2769 | 0.3090 |
References
- Burnham, M.; Ma, Z.; Zhu, D. The Human Dimensions of Water Saving Irrigation: Lessons Learned from Chinese Smallholder Farmers. Agric. Hum. Values 2015, 32, 347–360. [Google Scholar] [CrossRef]
- Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T.; et al. Pollution Exacerbates China’s Water Scarcity and Its Regional Inequality. Nat. Commun. 2020, 11, 650. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Su, K.; Zhang, M. Water Disclosure and Financial Reporting Quality for Social Changes: Empirical Evidence from China. Technol. Forecast. Soc. Chang. 2021, 166, 120571. [Google Scholar] [CrossRef]
- Zhang, J. Barriers to Water Markets in the Heihe River Basin in Northwest China. Agric. Water Manag. 2007, 87, 32–40. [Google Scholar] [CrossRef]
- Alcon, F.; de Miguel, M.D.; Burton, M. Duration Analysis of Adoption of Drip Irrigation Technology in Southeastern Spain. Technol. Forecast. Soc. Chang. 2011, 78, 991–1001. [Google Scholar] [CrossRef]
- Koundouri, P.; Nauges, C.; Tzouvelekas, V. Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology. Am. J. Agric. Econ. 2006, 88, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Water Saving Irrigation in China. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2006, 55, 327–336. [Google Scholar] [CrossRef]
- Liu, M.; Xu, X.; Jiang, Y.; Huang, Q.; Huo, Z.; Liu, L.; Huang, G. Responses of Crop Growth and Water Productivity to Climate Change and Agricultural Water-Saving in Arid Region. Sci. Total. Environ. 2020, 703, 134621. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, A.; Ullah, S.; Dar, A.A.; Sardar, M.F.; Mehmood, T.; Tufail, M.A.; Shakoor, A.; Haris, M. Nexus on Climate Change: Agriculture and Possible Solution to Cope Future Climate Change Stresses. Environ. Sci. Pollut. Res. 2021, 28, 14211–14232. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.; Abate, T.; Lunduka, R.W.; Asnake, W.; Alemayehu, Y.; Madulu, R.B. Drought Tolerant Maize for Farmer Adaptation to Drought in Sub-Saharan Africa: Determinants of Adoption in Eastern and Southern Africa. Clim. Chang. 2015, 133, 283–299. [Google Scholar] [CrossRef] [Green Version]
- Shams, S.; Newaz, S.S.; Karri, R.R. Information and Communication Technology for Small-Scale Farmers: Challenges and Opportunities. In Smart Village Technology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 159–179. [Google Scholar]
- Tang, L.; Luo, X.; Zhang, J. Social Supervision, Group Identity and Farmers’ Behavior in Disposing Domestic Waste: An Analysis Based on Mediating and Moderating Effects of the Face Consciousness. China Rural. Surv. 2019, 2, 18–33. [Google Scholar]
- Genius, M.; Koundouri, P.; Nauges, C.; Tzouvelekas, V. Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects. Am. J. Agric. Econ. 2014, 96, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yu, F.; Reardon, T.; Huang, J.; Rozelle, S. Social Learning and Parameter Uncertainty in Irreversible Investments: Evidence from Greenhouse Adoption in Northern China. China Econ. Rev. 2013, 27, 104–120. [Google Scholar] [CrossRef]
- Di Falco, S.; Doku, A.; Mahajan, A. Peer Effects and the Choice of Adaptation Strategies. Agric. Econ. 2020, 51, 17–30. [Google Scholar] [CrossRef]
- Liu, E.M.; Huang, J. Risk Preferences and Pesticide Use by Cotton Farmers in China. J. Dev. Econ. 2013, 103, 202–215. [Google Scholar] [CrossRef] [Green Version]
- Omotilewa, O.J.; Ricker-Gilbert, J.; Ainembabazi, J.H. Subsidies for Agricultural Technology Adoption: Evidence from a Randomized Experiment with Improved Grain Storage Bags in Uganda. Am. J. Agric. Econ. 2019, 101, 753–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghadim, A.K.A.; Pannell, D.J.; Burton, M.P. Risk, Uncertainty, and Learning in Adoption of a Crop Innovation. Agric. Econ. 2005, 33, 1–9. [Google Scholar] [CrossRef]
- Shi, P.; Xu, W. Natural disaster system in China. In Natural Disasters in China; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–36. [Google Scholar]
- Soltani, A.; Angelsen, A.; Eid, T.; Naieni, M.S.N.; Shamekhi, T. Poverty, Sustainability, and Household Livelihood Strategies in Zagros, Iran. Ecol. Econ. 2012, 79, 60–70. [Google Scholar] [CrossRef]
- Eakin, H.; Appendini, K. Livelihood Change, Farming, and Managing Flood Risk in the Lerma Valley, Mexico. Agric. Hum. Values 2008, 25, 555. [Google Scholar] [CrossRef]
- Isham, J.; Kähkönen, S. Institutional Determinants of the Impact of Community-Based Water Services: Evidence from Sri Lanka and India. Econ. Dev. Cult. Chang. 2002, 50, 667–691. [Google Scholar] [CrossRef]
- Karlan, D.; Osei, R.; Osei-Akoto, I.; Udry, C. Agricultural Decisions after Relaxing Credit and Risk Constraints *. Q. J. Econ. 2014, 129, 597–652. [Google Scholar] [CrossRef] [Green Version]
- Brick, K.; Visser, M. Risk Preferences, Technology Adoption and Insurance Uptake: A Framed Experiment. J. Econ. Behav. Organ. 2015, 118, 383–396. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, D.; Yu, L.; Yang, H. Duration Analysis on the Adoption Behavior of Green Control Techniques. Environ. Sci. Pollut. Res. 2019, 26, 6319–6327. [Google Scholar] [CrossRef]
- Magruder, J.R. An Assessment of Experimental Evidence on Agricultural Technology Adoption in Developing Countries. Annu. Rev. Resour. Econ. 2018, 10, 299–316. [Google Scholar] [CrossRef]
- Ullah, R.; Shivakoti, G.P.; Zulfiqar, F.; Kamran, M.A. Farm Risks and Uncertainties: Sources, Impacts and Management. Outlook Agric. 2016, 45, 199–205. [Google Scholar] [CrossRef]
- Fafchamps, M.; Lund, S. Risk-Sharing Networks in Rural Philippines. J. Dev. Econ. 2003, 71, 261–287. [Google Scholar] [CrossRef] [Green Version]
- Alem, Y.; Broussard, N.H. The Impact of Safety Nets on Technology Adoption: A Difference-in-differences Analysis. Agric. Econ. 2018, 49, 13–24. [Google Scholar] [CrossRef]
- Fukuyama, M.F. Social Capital and Civil. Society; International monetary fund: Rochester, NY, USA, 2000. [Google Scholar]
- Sseguya, H.; Mazur, R.E.; Flora, C.B. Social Capital Dimensions in Household Food Security Interventions: Implications for Rural Uganda. Agric. Hum. Values 2018, 35, 117–129. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, Y.; Ge, J. Can Inter-Linked Index Insurance and Credit Contract Promote Farmers’Technology Adoption?Evidence from a Field Experiment. China Rural. Econ. 2019, 1, 127–142. [Google Scholar]
- Zhang, J.; Zhao, Z. Social-Family Network and Self-Employment: Evidence from Temporary Rural–Urban Migrants in China. IZA J. Labor Dev. 2015, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Andersson, C.; Mekonnen, A.; Stage, J. Impacts of the Productive Safety Net Program in Ethiopia on Livestock and Tree Holdings of Rural Households. J. Dev. Econ. 2011, 94, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Si, Z.; Schumilas, T.; Scott, S. Characterizing Alternative Food Networks in China. Agric. Hum. Values 2015, 32, 299–313. [Google Scholar] [CrossRef]
- Arcuri, S. Food Poverty, Food Waste and the Consensus Frame on Charitable Food Redistribution in Italy. Agric. Hum. Values 2019, 36, 263–275. [Google Scholar] [CrossRef]
- Bhargava, A.K. Do Labor Market Interventions Incentivize Technology Adoption? Impacts of the World’s Largest Rural Poverty Program. Econ. Dev. Cult. Chang. 2021. [Google Scholar] [CrossRef]
- Abate, G.T.; Rashid, S.; Borzaga, C.; Getnet, K. Rural Finance and Agricultural Technology Adoption in Ethiopia: Does the Institutional Design of Lending Organizations Matter? World Dev. 2016, 84, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Abay, K.A.; Blalock, G.; Berhane, G. Locus of Control and Technology Adoption in Developing Country Agriculture: Evidence from Ethiopia. J. Econ. Behav. Organ. 2017, 143, 98–115. [Google Scholar] [CrossRef]
- Bensch, G.; Grimm, M.; Peters, J. Why Do Households Forego High Returns from Technology Adoption? Evidence from Improved Cooking Stoves in Burkina Faso. J. Econ. Behav. Organ. 2015, 116, 187–205. [Google Scholar] [CrossRef]
- Roncoli, C.; Orlove, B.S.; Kabugo, M.R.; Waiswa, M.M. Cultural Styles of Participation in Farmers’ Discussions of Seasonal Climate Forecasts in Uganda. Agric. Hum. Values 2011, 28, 123–138. [Google Scholar] [CrossRef]
- Castillo, G.M.L.; Engler, A.; Wollni, M. Planned Behavior and Social Capital: Understanding Farmers’ Behavior toward Pressurized Irrigation Technologies. Agric. Water Manag. 2021, 243, 106524. [Google Scholar] [CrossRef]
- Clapp, J. Responsibility to the Rescue? Governing Private Financial Investment in Global Agriculture. Agric. Hum. Values 2017, 34, 223–235. [Google Scholar] [CrossRef]
- Bell, A.R.; Zavaleta Cheek, J.; Mataya, F.; Ward, P.S. Do As They Did: Peer Effects Explain Adoption of Conservation Agriculture in Malawi. Water 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Fufa, B.; Hasan, R.M. Stochastic Technology and Crop Production Risk: The Case of Small-Scale Farmers in East Hararghe Zone of Oromiya Regional State in Ethiopia. Shar. Growth Afr. Organ. ISSERCornell Univ. Bank Be Conduct. July 21–22 2005 Accra Ghana 2005, 1–19. [Google Scholar]
- Schneiderbauer, S.; Pisa, P.F.; Delves, J.L.; Pedoth, L.; Rufat, S.; Erschbamer, M.; Thaler, T.; Carnelli, F.; Granados-Chahin, S. Risk Perception of Climate Change and Natural Hazards in Global Mountain Regions: A Critical Review. Sci. Total. Environ. 2021, 146957. [Google Scholar] [CrossRef]
- Anbari, M.J.; Zarghami, M.; Nadiri, A.-A. An Uncertain Agent-Based Model for Socio-Ecological Simulation of Groundwater Use in Irrigation: A Case Study of Lake Urmia Basin, Iran. Agric. Water Manag. 2021, 249, 106796. [Google Scholar] [CrossRef]
- Khataza, R.R.B.; Doole, G.J.; Kragt, M.E.; Hailu, A. Information Acquisition, Learning and the Adoption of Conservation Agriculture in Malawi: A Discrete-Time Duration Analysis. Technol. Forecast. Soc. Chang. 2018, 132, 299–307. [Google Scholar] [CrossRef]
- Hazell, P.B.; Poulton, C.; Wiggins, S.; Dorward, A. The Future of Small Farms for Poverty Reduction and Growth; Intl Food Policy Res Inst: Washington, DC, USA, 2007; Volume 42, ISBN 0-89629-764-0. [Google Scholar]
- Zeleke, T.; Beyene, F.; Deressa, T.; Yousuf, J.; Kebede, T. Vulnerability of Smallholder Farmers to Climate Change-Induced Shocks in East Hararghe Zone, Ethiopia. Sustainability 2021, 13, 2162. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Jalan, J.; Suryahadi, A. Assessing Household Vulnerability to Poverty from Cross-Sectional Data: A Methodology and Estimates from Indonesia; Department of Economics, Columbia University: New York, NY, USA, 2002. [Google Scholar]
- Ma, C.; Smith, T. Vulnerability of Renters and Low-Income Households to Storm Damage: Evidence From Hurricane Maria in Puerto Rico. Am. J. Public Health 2019, 110, 196–202. [Google Scholar] [CrossRef]
- Owusu, V.; Ma, W.; Emuah, D.; Renwick, A. Perceptions and Vulnerability of Farming Households to Climate Change in Three Agro-Ecological Zones of Ghana. J. Clean. Prod. 2021, 293, 126154. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, W.; Wang, Y. Household Economic Fragility and Risk Aversion. Econ. Res. J. 2016, 51, 157–171. [Google Scholar]
- Cafer, A.M.; Rikoon, J.S. Adoption of New Technologies by Smallholder Farmers: The Contributions of Extension, Research Institutes, Cooperatives, and Access to Cash for Improving Tef Production in Ethiopia. Agric. Hum. Values 2018, 35, 685–699. [Google Scholar] [CrossRef]
- Chakma, S.; Paul, A.K.; Rahman, M.A.; Mithun, M.H.; Sunny, A.R. Impact of Climate Change and Ongoing Adaptation Measures in The Bangladesh Sundarbans. Preprints 2021, 2021020321. [Google Scholar] [CrossRef]
- Helgeson, J.F.; Dietz, S.; Hochrainer-Stigler, S. Vulnerability to Weather Disasters: The Choice of Coping Strategies in Rural Uganda. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.R.; Lybbert, T.J. Consumption versus Asset Smoothing: Testing the Implications of Poverty Trap Theory in Burkina Faso. J. Dev. Econ. 2012, 99, 255–264. [Google Scholar] [CrossRef]
- Wood, A.L.; Ansah, P.; III, L.R.; Ligmann-Zielinska, A. Examining Climate Change and Food Security in Ghana through an Intersectional Framework. J. Peasant. Stud. 2021, 48, 329–348. [Google Scholar] [CrossRef]
- Liverpool, L.S.O.; Winter-Nelson, A. Poverty Status and the Impact of Formal Credit on Technology Use and Wellbeing among Ethiopian Smallholders. World Dev. 2010, 38, 541–554. [Google Scholar] [CrossRef]
- Tesfaye, M.Z.; Balana, B.B.; Bizimana, J.-C. Assessment of Smallholder Farmers’ Demand for and Adoption Constraints to Small-Scale Irrigation Technologies: Evidence from Ethiopia. Agric. Water Manag. 2021, 250, 106855. [Google Scholar] [CrossRef]
- Ali, S.; Ghosh, B.C.; Osmani, A.G.; Hossain, E.; Fogarassy, C. Farmers’ Climate Change Adaptation Strategies for Reducing the Risk of Rice Production: Evidence from Rajshahi District in Bangladesh. Agronomy 2021, 11, 600. [Google Scholar] [CrossRef]
- Foster, A.D.; Rosenzweig, M.R. Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture. J. Polit. Econ. 1995, 103, 1176–1209. [Google Scholar] [CrossRef]
- Griffin, T.W.; Harris, K.D.; Ward, J.K.; Goeringer, P.; Richard, J.A. Three Digital Agriculture Problems in Cotton Solved by Distributed Ledger Technology. Appl. Econ. Perspect. Policy n/a 2021, 1–16. [Google Scholar] [CrossRef]
- Ma, X.; Shi, G. A Dynamic Adoption Model with Bayesian Learning: An Application to U.S. Soybean Farmers. Agric. Econ. 2015, 46, 25–38. [Google Scholar] [CrossRef]
- Kamwamba-Mtethiwa, J.; Wiyo, K.; Knox, J.; Weatherhead, K. Diffusion of Small-Scale Pumped Irrigation Technologies and Their Association with Farmer-Led Irrigation Development in Malawi. Water Int. 2021, 46, 397–416. [Google Scholar] [CrossRef]
- Narayan, D.; Pritchett, L. Cents and Sociability: Household Income and Social Capital in Rural Tanzania. Econ. Dev. Cult. Chang. 1999, 47, 871–897. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.S.; Pede, V.O. Capturing Social Network Effects in Technology Adoption: The Spatial Diffusion of Hybrid Rice in Bangladesh. Aust. J. Agric. Resour. Econ. 2015, 59, 225–241. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of Interrelated Sustainable Agricultural Practices in Smallholder Systems: Evidence from Rural Tanzania. Future-Oriented Technol. Anal. 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Zhang, R.; Fan, D.; Lai, G.; Wu, J.; Li, J. Rank-Dependent Preferences, Social Network and Crop Insurance Uptake: Field Experimental Evidence from Rural China. Agric. Finance Rev. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Lin, N. Building a network theory of social capital. In Social Capital; Routledge: Boca Raton, FL, USA, 2017; pp. 3–28. [Google Scholar]
- Gallenstein, R.A.; Flatnes, J.E.; Dougherty, J.P.; Sam, A.G.; Mishra, K. The Impact of Index-Insured Loans on Credit Market Participation and Risk-Taking. Agric. Econ. 2021, 52, 141–156. [Google Scholar] [CrossRef]
- Zequan, P.; Yuxiang, L. Research on Vulnerability Risk, Risk Taking Network and Rural Poverty——Based on Data Analysis on 10 Villages in Hunan Province. China Agric. Univ. J. Soc. Sci. Ed. 2015, 15, 23–43. [Google Scholar]
- Mobarak, A.M.; Rosenzweig, M.R. Informal Risk Sharing, Index Insurance, and Risk Taking in Developing Countries. Am. Econ. Rev. 2013, 103, 375–380. [Google Scholar] [CrossRef]
- Klärner, A.; Knabe, A. Social Networks and Coping with Poverty in Rural Areas. Sociol. Rural. 2019, 59, 447–473. [Google Scholar] [CrossRef]
- Nie, X.; Zhou, J.; Cheng, P.; Wang, H. Exploring the Differences between Coastal Farmers’ Subjective and Objective Risk Preferences in China Using an Agent-Based Model. J. Rural. Stud. 2021, 82, 417–429. [Google Scholar] [CrossRef]
- Chaters, G.L.; Johnson, P.C.D.; Cleaveland, S.; Crispell, J.; de Glanville, W.A.; Doherty, T.; Matthews, L.; Mohr, S.; Nyasebwa, O.M.; Rossi, G.; et al. Analysing Livestock Network Data for Infectious Disease Control: An Argument for Routine Data Collection in Emerging Economies. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180264. [Google Scholar] [CrossRef] [Green Version]
- Hample, K.C. Foral Insurance for the Informally Insured: Experimental Evidence from Kenya. World Dev. Perspect. 2021, 22, 100300. [Google Scholar] [CrossRef]
- Aravindakshan, S.; Krupnik, T.J.; Amjath-Babu, T.S.; Speelman, S.; Tur-Cardona, J.; Tittonell, P.; Groot, J.C.J. Quantifying Farmers’ Preferences for Cropping Systems Intensification: A Choice Experiment Approach Applied in Coastal Bangladesh’s Risk Prone Farming Systems. Agric. Syst. 2021, 189, 103069. [Google Scholar] [CrossRef]
- Morrow, V.; Vennam, U. ‘Those who are good to us, we call them friends’: Social support and social networks for children growing up in poverty in rural Andhra Pradesh, India. In Childhood with Bourdieu; Springer: Berlin/Heidelberg, Germany, 2015; pp. 142–164. [Google Scholar]
- Etikan, I.; Bala, K. Sampling and Sampling Methods. Biom. Biostat. Int. J. 2017, 5, 00149. [Google Scholar] [CrossRef] [Green Version]
- Biesanz, J.C.; Falk, C.F.; Savalei, V. Assessing Mediational Models: Testing and Interval Estimation for Indirect Effects. Multivar. Behav. Res. 2010, 45, 661–701. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Analyses of Mediating Effects: The Development of Methods and Models. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Gebremariam, G.; Tesfaye, W. The Heterogeneous Effect of Shocks on Agricultural Innovations Adoption: Microeconometric Evidence from Rural Ethiopia. Food Policy 2018, 74, 154–161. [Google Scholar] [CrossRef]
- Salazar, C.; Rand, J. Production Risk and Adoption of Irrigation Technology: Evidence from Small-Scale Farmers in Chile. Lat. Am. Econ. Rev. 2016, 25, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Rao, F.; Abudikeranmu, A.; Shi, X.; Heerink, N.; Ma, X. Impact of Participatory Irrigation Management on Mulched Drip Irrigation Technology Adoption in Rural Xinjiang, China. Water Resour. Econ. 2021, 33, 100170. [Google Scholar] [CrossRef]
- Singh, N.P.; Srivastava, S.K.; Sharma, S.; Anand, B.; Singh, S. Dynamics of Socio-Economic Factors Affecting Climate Vulnerability and Technology Adoption: Evidence from Jodhpur District of Rajasthan. Indian J. Tradit. Knowl. IJTK 2019, 19, 192–196. [Google Scholar]
- Rouzaneh, D.; Yazdanpanah, M.; Jahromi, A.B. Evaluating Micro-Irrigation System Performance through Assessment of Farmers’ Satisfaction: Implications for Adoption, Longevity, and Water Use Efficiency. Agric. Water Manag. 2021, 246, 106655. [Google Scholar] [CrossRef]
- Yang, Z. Ageing, Social Network and the Adoption of Green Production Technology: Evidence from Farm Households in Six Provinces in the Yangtze River Basin. China Rural. Surv 2018, 4, 44–58. [Google Scholar]
- Bandiera, O.; Rasul, I. Social Networks and Technology Adoption in Northern Mozambique. Econ. J. 2006, 116, 869–902. [Google Scholar] [CrossRef] [Green Version]
- Breza, E.; Chandrasekhar, A.G. Social Networks, Reputation, and Commitment: Evidence From a Savings Monitors Experiment. Econometrica 2019, 87, 175–216. [Google Scholar] [CrossRef]
Variable | Explained Variable | ||
---|---|---|---|
Degree of Technology Adoption (1) | Economic Vulnerability (2) | Degree of Technology Adoption (3) | |
External shocks | −0.0762 *** (0.0210) | 0.0813 ** (0.0362) | −0.0727 *** (0.0210) |
Economic vulnerability | −0.3428 ** (0.1648) | ||
Gender | 0.1311 *** (0.0443) | −0.0529 *** (0.0092) | 0.1119 *** (0.0420) |
Years of Education | 0.0171 *** (0.0061) | −0.0018 (0.0013) | 0.0103 * (0.0055) |
Family size | 0.0135 (0.0133) | 0.0332 *** (0.0028) | 0.0050 (0.0141) |
Land scale | 0.0031 (0.0023) | −0.0025 *** (0.0005) | 0.0042 * (0.0023) |
The proportion of agricultural income | 0.2855 ** (0.1105) | 0.0138 (0.0230) | 0.2684 ** (0.1105) |
Government subsidy | 0.0493 (0.0461) | −0.0110 (0.0095) | 0.0502 (0.0460) |
Availability of credit | 0.1364 *** (0.0503) | −0.0109 (0.0105) | 0.1476 *** (0.0503) |
Distance from home to the nearest market | 0.0036 (0.0046) | −0.0015 (0.0010) | 0.0038 (0.0046) |
Intercept term | −0.2642 (0.1859) | 0.4809 *** (0.0387) | 0.1809 (0.1677) |
F | 10.01 *** | 25.42 *** | 14.15 *** |
R2 | 0.2114 | 0.3379 | 0.2856 |
Variable | Explained Variable | ||
---|---|---|---|
Degree of Technology Adoption (4) | Economic Vulnerability (5) | Degree of Technology Adoption (6) | |
External shocks | −0.1385 *** (0.0410) | 0.0075 ** (0.0036) | |
Economic vulnerability | - | - | −0.3426 ** (0.1551) |
Social capital | 0.0942 ** (0.0377) | −0.0151 * (0.0079) | 0.2850 *** (0.1020) |
Formal insurance | 0.1061 ** (0.0453) | −0.0193 ** (0.0097) | 0.0986 ** (0.0452) |
External shock * social capital | 0.0502 ** (0.0254) | −0.0124 *** (0.0046) | - |
External shock * formal insurance | 0.1038 ** (0.0459) | −0.0110 * (0.0067) | - |
Economic vulnerability * social capital | - | - | 0.4919 *** (0.1826) |
Economic vulnerability * formal insurance | 0.1349 ** (0.0643) | ||
Gender | 0.0890 ** (0.0416) | −0.0474 *** (0.0090) | 0.0934 ** (0.0429) |
Years of Education | 0.0124 ** (0.0054) | −0.0039 *** (0.0011) | 0.0106 * (0.0055) |
Family size | 0.0154 (0.0132) | −0.0333 *** (0.0028) | 0.0161 (0.0143) |
Land scale | 0.0030 (0.0023) | −0.0026 *** (0.0005) | 0.0031 (0.0023) |
The proportion of agricultural income | 0.3067 *** (0.1096) | 0.0230 (0.0236) | 0.2809 ** (0.1101) |
Government subsidy | 0.0835 * (0.0455) | −0.0131 (0.0098) | 0.0729 (0.0456) |
Availability of credit | 0.0985 * (0.0508) | −0.0076(0.0108) | 0.1111 ** (0.0508) |
Distance from home to the nearest market | 0.0020 (0.0046) | −0.0023 ** (0.0010) | 0.0019 (0.0046) |
Intercept term | −0.3678 ** (0.1855) | 0.4836 *** (0.0390) | −0.4537 ** (0.2048) |
F | 9.45 *** | 19.26 *** | 16.24 *** |
R2 | 0.1752 | 0.3359 | 0.2394 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.; Sarkar, A.; Rahman, A.; Qian, L.; Hussain Memon, W.; Magzhan, Z. Does External Shock Influence Farmer’s Adoption of Modern Irrigation Technology?—A Case of Gansu Province, China. Land 2021, 10, 882. https://doi.org/10.3390/land10080882
Tan Y, Sarkar A, Rahman A, Qian L, Hussain Memon W, Magzhan Z. Does External Shock Influence Farmer’s Adoption of Modern Irrigation Technology?—A Case of Gansu Province, China. Land. 2021; 10(8):882. https://doi.org/10.3390/land10080882
Chicago/Turabian StyleTan, Yongfeng, Apurbo Sarkar, Airin Rahman, Lu Qian, Waqar Hussain Memon, and Zharkyn Magzhan. 2021. "Does External Shock Influence Farmer’s Adoption of Modern Irrigation Technology?—A Case of Gansu Province, China" Land 10, no. 8: 882. https://doi.org/10.3390/land10080882
APA StyleTan, Y., Sarkar, A., Rahman, A., Qian, L., Hussain Memon, W., & Magzhan, Z. (2021). Does External Shock Influence Farmer’s Adoption of Modern Irrigation Technology?—A Case of Gansu Province, China. Land, 10(8), 882. https://doi.org/10.3390/land10080882