Global Trends in Urban Agriculture Research: A Pathway toward Urban Resilience and Sustainability
Abstract
:1. Introduction
2. Methodology
2.1. Date Source
2.2. Methods
3. Popular Research Topics and Frontiers in Urban Agriculture
3.1. General Information and Annual Publications
- Slow development (2001–2008): At this stage, UA slowly attracted the attention of scholars. The number of papers published each year was less than 10, but followed a slightly increasing trend.
- Steady development (2009–2014): The number of peer-reviewed papers published in the field of UA showed a steady increase during 2009–2014. For each year, the annual number of published papers was about 20–40.
- Rapid development (2015–2021): The number of papers published during this period grew rapidly, of which 79 papers were published in 2020, and 23 articles were published in the first quarter of 2021. It is expected that there will be more publications in the future. As a popular emerging topic in agricultural research, UA is gradually attracting the attention of scholars. A large gap still exists, however, between UA and many traditional research topics.
3.2. Active Countries, Institutions, and Authors
3.2.1. Active Countries
3.2.2. Active Institutions
3.2.3. Active Authors
3.2.4. Active Journals
3.3. Keywords in Urban Agriculture Research
3.3.1. Keywords Network Analysis
3.3.2. Keyword Co-Occurrence Analysis
3.4. Cluster Analysis
3.4.1. Long-Term Research Topics
3.4.2. Short-Term Research Topics
3.4.3. Emerging Research Topics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lawson, L. Agriculture: Sowing the city. Nature 2016, 540, 522–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, H.; Wang, R.; Murayama, Y. Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Sci. Total Environ. 2019, 661, 422–431. [Google Scholar] [CrossRef]
- McClintock, N. Radical, reformist, and garden-variety neoliberal: Coming to terms with urban agriculture’s contradictions. Local Environ. 2014, 19, 147–171. [Google Scholar] [CrossRef] [Green Version]
- Pearson, L.J.; Pearson, L.; Pearson, C.J. Sustainable urban agriculture: Stocktake and opportunities. Int. J. Agr. Sustain. 2010, 8, 7–19. [Google Scholar] [CrossRef]
- Van der Schans, J.W.; Wiskerke, J.S. Urban Agriculture in Developed Economies; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; pp. 245–258. [Google Scholar]
- Langemeyer, J.; Madrid-Lopez, C.; Beltran, A.M.; Mendez, G.V. Urban agriculture? A necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 2021, 210, 104055. [Google Scholar] [CrossRef]
- Ackerman, K.; Conard, M.; Culligan, P.; Plunz, R.; Sutto, M.P.; Whittinghill, L. Sustainable food systems for future cities: The potential of urban agriculture. Econ. Soc. Rev. 2014, 45, 189–206. [Google Scholar]
- Krikser, T.; Piorr, A.; Berges, R.; Opitz, I. Urban Agriculture oriented towards self-supply, social and commercial purpose: A typology. Land 2016, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Opitz, I.; Berges, R.; Piorr, A.; Krikser, T. Contributing to food security in urban areas: Differences between urban agriculture and peri-urban agriculture in the Global North. Agric. Hum. Values 2016, 33, 341–358. [Google Scholar] [CrossRef] [Green Version]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Barthel, S.; Isendahl, C. Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities. Ecol. Econ. 2013, 86, 224–234. [Google Scholar] [CrossRef]
- Costello, C.; Oveysi, Z.; Dundar, B.; McGarvey, R. Assessment of the effect of urban agriculture on achieving a localized food system centered on Chicago, IL using robust optimization. Environ. Sci. Technol. 2021, 55, 2684–2694. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Hu, R.F.; Wang, M.Y.; Xue, W.H.; He, L.F. The impact of urbanization on urban agriculture: Evidence from China. J. Clean. Prod. 2020, 276, 122686. [Google Scholar] [CrossRef]
- FAO. FAO COVID-19 Response and recovery programme: Food systems transformation: Building to transform during response and recovery. FAO 2020, 1–5. [Google Scholar] [CrossRef]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Chhetri, N.B. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Warren, E.; Hawkesworth, S.; Knai, C. Investigating the association between urban agriculture and food security, dietary diversity, and nutritional status: A systematic literature review. Food Policy 2015, 53, 54–66. [Google Scholar] [CrossRef]
- Florke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Aubry, C.; Kebir, L. Shortening food supply chains: A means for maintaining agriculture close to urban areas? The case of the French metropolitan area of Paris. Food Policy 2013, 41, 85–93. [Google Scholar] [CrossRef]
- Dieleman, H. Urban agriculture in Mexico City; balancing between ecological, economic, social and symbolic value. J. Clean. Prod. 2017, 163, S156–S163. [Google Scholar] [CrossRef]
- Kingsley, J.; Egerer, M.; Nuttman, S.; Keniger, L.; Pettitt, P.; Frantzeskaki, N.; Gray, T.; Ossola, A.; Lin, B.; Bailey, A.; et al. Urban agriculture as a nature-based solution to address socio-ecological challenges in Australian cities. Urban For. Urban Green. 2021, 60, 127059. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, J.; Kong, X.; Sun, J.; Li, Y. Carbon footprint and economic efficiency of urban agriculture in Beijing—A comparative case study of conventional and home-delivery agriculture. J. Clean. Prod. 2019, 234, 615–625. [Google Scholar] [CrossRef]
- Pribadi, D.O.; Pauleit, S. Peri-urban agriculture in Jabodetabek Metropolitan Area and its relationship with the urban socioeconomic system. Land Use Policy 2016, 55, 265–274. [Google Scholar] [CrossRef]
- Lal, R. Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Secur. 2020, 12, 871–876. [Google Scholar] [CrossRef]
- Pulighe, G.; Lupia, F. Food First: COVID-19 Outbreak and cities lockdown a booster for a wider vision on urban agriculture. Sustainability 2020, 12, 5012. [Google Scholar] [CrossRef]
- Marsh, P.; Diekmann, L.O.; Egerer, M.; Lin, B.; Ossola, A.; Kingsley, J. Where birds felt louder: The garden as a refuge during COVID-19. Wellbeing Space Soc. 2021, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Inwood, S. Agriculture, health insurance, human capital and economic development at the rural-urban-interface. J. Rural Stud. 2017, 54, 1–14. [Google Scholar] [CrossRef]
- Cederlof, G. Low-carbon food supply: The ecological geography of Cuban urban agriculture and agroecological theory. Agric. Hum. Values 2016, 33, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Martellozzo, F.; Landry, J.S.; Plouffe, D.; Seufert, V.; Rowhani, P.; Ramankutty, N. Urban agriculture: A global analysis of the space constraint to meet urban vegetable demand. Environ. Res. Lett. 2014, 9, 064025. [Google Scholar] [CrossRef]
- Rufi-Salis, M.; Petit-Boix, A.; Villalba, G.; Sanjuan-Delmas, D.; Parada, F.; Ercilla-Montserrat, M.; Arcas-Pilz, V.; Munoz-Liesa, J.; Rieradevall, J.; Gabarrell, X. Recirculating water and nutrients in urban agriculture: An opportunity towards environmental sustainability and water use efficiency? J. Clean. Prod. 2020, 261, 121213. [Google Scholar] [CrossRef]
- Contesse, M.; van Vliet, B.J.M.; Lenhart, J. Is urban agriculture urban green space? A comparison of policy arrangements for urban green space and urban agriculture in Santiago de Chile. Land Use Policy 2018, 71, 566–577. [Google Scholar] [CrossRef]
- Ayambire, R.A.; Amponsah, O.; Peprah, C.; Takyi, S.A. A review of practices for sustaining urban and peri-urban agriculture: Implications for land use planning in rapidly urbanising Ghanaian cities. Land Use Policy 2019, 84, 260–277. [Google Scholar] [CrossRef]
- Gorna, A.; Gorny, K. Singapore vs. the ‘Singapore of Africa’-different approaches to managing urban agriculture. Land 2021, 10, 987. [Google Scholar] [CrossRef]
- Yoshida, S. Effects of urbanization on farmland size and diversified farm activities in Japan: An analysis based on the land parcel database. Land 2020, 9, 315. [Google Scholar] [CrossRef]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef] [Green Version]
- Appolloni, E.; Orsini, F.; Specht, K.; Thomaier, S.; Sanyé-Mengual, E.; Pennisi, G.; Gianquinto, G. The global rise of urban rooftop agriculture: A review of worldwide cases. J. Clean. Prod. 2021, 296, 126556. [Google Scholar] [CrossRef]
- Pinheiro, A.; Govind, M. Emerging global trends in urban agriculture research: A scientometric analysis of peer-reviewed journals. J. Scientometr. Res. 2020, 9, 163–173. [Google Scholar] [CrossRef]
- Follmann, A.; Willkomm, M.; Dannenberg, P. As the city grows, what do farmers do? A systematic review of urban and peri-urban agriculture under rapid urban growth across the Global South. Landsc. Urban Plan. 2021, 215, 104186. [Google Scholar] [CrossRef]
- Lwasa, S.; Mugagga, F.; Wahab, B.; Simon, D.; Connors, J.P.; Griffith, C. A meta-analysis of urban and peri-urban agriculture and forestry in mediating climate change. Curr. Opin. Environ. Sustain. 2015, 13, 68–73. [Google Scholar] [CrossRef]
- Azunre, G.A.; Amponsah, O.; Peprah, C.; Takyi, S.A.; Braimah, I. A review of the role of urban agriculture in the sustainable city discourse. Cities 2019, 93, 104–119. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Moral Muñoz, J.A.; Herrera Viedma, E.; Santisteban Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29, 4. [Google Scholar] [CrossRef] [Green Version]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, J.; Zhang, Y.; Wang, J.; He, S.; Zhou, X. Study on sustainable urbanization literature based on Web of Science, scopus, and China national knowledge infrastructure: A scientometric analysis in CiteSpace. J. Clean. Prod. 2020, 264, 121537. [Google Scholar] [CrossRef]
- Borrelle, S.B.; Ringma, J.; Law, K.L.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A.; et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Ann. N. Y. Acad. Sci. 2020, 369, 1515–1518. [Google Scholar] [CrossRef]
- Smallwood, T.B.; Giacomin, P.R.; Loukas, A.; Mulvenna, J.P.; Clark, R.J.; Miles, J.J. Helminth immunomodulation in autoimmune disease. Front. Immunol. 2017, 8, 453. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A Bibliometric analysis and visualization of medical big data research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Nadal, A.; Alamus, R.; Pipia, L.; Ruiz, A.; Corbera, J.; Cuerva, E.; Rieradevall, J.; Josa, A. Urban planning and agriculture. Methodology for assessing rooftop greenhouse potential of non-residential areas using airborne sensors. Sci. Total Environ. 2017, 601, 493–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadal, A.; Pons, O.; Cuerva, E.; Rieradevall, J.; Josa, A. Rooftop greenhouses in educational centers: A sustainability assessment of urban agriculture in compact cities. Sci. Total Environ. 2018, 626, 1319–1331. [Google Scholar] [CrossRef] [Green Version]
- Sanye-Mengual, E.; Oliver-Sola, J.; Montero, J.I.; Rieradevall, J. The role of interdisciplinarity in evaluating the sustainability of urban rooftop agriculture. Future Food J. Food Agric. Soc. 2017, 5, 46–58. [Google Scholar]
- Specht, K.; Sanye-Mengual, E. Risks in urban rooftop agriculture: Assessing stakeholders’ perceptions to ensure efficient policymaking. Environ. Sci. Policy 2017, 69, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Sanye-Mengual, E.; Anguelovski, I.; Oliver-Sola, J.; Montero, J.I.; Rieradevall, J. Resolving differing stakeholder perceptions of urban rooftop farming in Mediterranean cities: Promoting food production as a driver for innovative forms of urban agriculture. Agric. Hum. Values 2016, 33, 101–120. [Google Scholar] [CrossRef] [Green Version]
- Saha, M.; Eckelman, M.J. Growing fresh fruits and vegetables in an urban landscape: A geospatial assessment of ground level and rooftop urban agriculture potential in Boston, USA. Landsc. Urban Plan. 2017, 165, 130–141. [Google Scholar] [CrossRef]
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.; Gianquinto, G. Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: The potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Secur. 2014, 6, 781–792. [Google Scholar] [CrossRef]
- Sanye-Mengual, E.; Oliver-Sola, J.; Montero, J.I.; Rieradevall, J. An environmental and economic life cycle assessment of rooftop greenhouse (RTG) implementation in Barcelona, Spain. Assessing new forms of urban agriculture from the greenhouse structure to the final product level. Int. J. Life Cycle Assess. 2015, 20, 350–366. [Google Scholar] [CrossRef] [Green Version]
- Manriquez-Altamirano, A.; Sierra-Perez, J.; Munoz, P.; Gabarrell, X. Analysis of urban agriculture solid waste in the frame of circular economy: Case study of tomato crop in integrated rooftop greenhouse. Sci. Total Environ. 2020, 734, 139375. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.; Hauschild, M.; Fernandez, J.; Birkved, M. Testing the environmental performance of urban agriculture as a food supply in northern climates. J. Clean. Prod. 2016, 135, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Niemitalo, O.; Koskinen, E.; Hyvaluoma, J.; Tahvonen, O.; Lientola, E.; Lindberg, H.; Koskela, O.; Kunttu, I. A Year acquiring and publishing drone aerial images in research on agriculture, forestry, and private urban gardens. Technol. Innov. Manag. Rev. 2021, 11, 5–16. [Google Scholar] [CrossRef]
- Classens, M. The nature of urban gardens: Toward a political ecology of urban agriculture. Agric. Hum. Values 2015, 32, 229–239. [Google Scholar] [CrossRef]
- Metson, G.S.; Bennett, E.M. Phosphorus cycling in Montreal’s food and urban agriculture systems. PLoS ONE 2015, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Cohen, N.; Reynolds, K. Resource needs for a socially just and sustainable urban agriculture system: Lessons from New York City. Renew. Agric. Food Syst. 2015, 30, 103–114. [Google Scholar] [CrossRef]
- White, J.T.; Bunn, C. Growing in Glasgow: Innovative practices and emerging policy pathways for urban agriculture. Land Use Policy 2017, 68, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Frayne, B.; McCordic, C.; Shilomboleni, H. Growing out of poverty: Does urban agriculture contribute to household food security in southern african cities? Urban Forum 2014, 25, 177–189. [Google Scholar] [CrossRef]
- Zezza, A.; Tasciotti, L. Urban agriculture, poverty, and food security: Empirical evidence from a sample of developing countries. Food Policy 2010, 35, 265–273. [Google Scholar] [CrossRef]
- Benis, K.; Turan, I.; Reinhart, C.; Ferrão, P. Putting rooftops to use—A Cost-Benefit Analysis of food production vs. energy generation under Mediterranean climates. Cities 2018, 78, 166–179. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.R. Modeling the potential productivity of urban agriculture and its impacts on soil quality through experimental research on scale-appropriate systems. Front. Sustain. Food Syst. 2020, 4, 1–18. [Google Scholar] [CrossRef]
- Simatele, D.; Binns, T.; Simatele, M. Urban livelihoods under a changing climate: Perspectives on urban agriculture and planning in Lusaka, Zambia. J. Hum. Dev. Capab. 2012, 13, 269–293. [Google Scholar] [CrossRef]
- Olivier, D.W. Urban agriculture promotes sustainable livelihoods in Cape Town. Dev. South. Afr. 2019, 36, 17–32. [Google Scholar] [CrossRef]
- Adeoti, A.I.; Oladele, O.I.; Cofie, O. Sustainability of livelihoods through Urban Agriculture: Gender dimensions in Accra, Ghana. Life Sci. J. 2011, 8, 840–848. [Google Scholar]
- Goodchild, M.F. Geographical information science. Int. J. Geogr. Inf. Syst. 1992, 6, 31–45. [Google Scholar] [CrossRef]
- Addo, K.A. Urban and peri-urban agriculture in developing countries studied using remote sensing and in situ methods. Remote Sens. 2010, 2, 497–513. [Google Scholar] [CrossRef] [Green Version]
- Thapa, R.B.; Murayama, Y. Land evaluation for peri-urban agriculture using analytical hierarchical process and geographic information system techniques: A case study of Hanoi. Land Use Policy 2008, 25, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Pulighe, G.; Lupia, F. Mapping spatial patterns of urban agriculture in Rome (Italy) using Google Earth and web-mapping services. Land Use Policy 2016, 59, 49–58. [Google Scholar] [CrossRef]
- Sotamenou, J.; Parrot, L. Sustainable urban agriculture and the adoption of composts in Cameroon. Int. J. Agric. Sustain. 2013, 11, 282–295. [Google Scholar] [CrossRef]
- McDougall, R.; Kristiansen, P.; Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl. Acad. Sci. USA 2019, 116, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Nogeire-McRae, T.; Ryan, E.P.; Jablonski, B.B.R.; Carolan, M.; Arathi, H.S.; Brown, C.S.; Saki, H.H.; McKeen, S.; Lapansky, E.; Schipanski, M.E. The Role of Urban Agriculture in a Secure, Healthy, and Sustainable Food System. Bioscience 2018, 68, 748–759. [Google Scholar] [CrossRef]
- Gomez-Villarino, M.T.; Ruiz-Garcia, L. Adaptive design model for the integration of urban agriculture in the sustainable development of cities. A case study in northern Spain. Sustain. Cities Soc. 2021, 65, 102595. [Google Scholar] [CrossRef]
- Hunold, C.; Sorunmu, Y.; Lindy, R.; Spatari, S.; Gurian, P.L. Is urban agriculture financially sustainable? An exploratory study of small-scale market farming in Philadelphia, Pennsylvania. JAFSCD 2016, 7, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, P.; Casazza, M. Evaluating the energy sustainability of urban agriculture towards more resilient urban systems. J. Environ. Account. Manag. 2016, 4, 175–193. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Cudennec, C.; Gain, A.K.; Hoff, H.; Lawford, R.; Qi, J.; Strasser, L.d.; Yillia, P.T.; Zheng, C. Challenges in operationalizing the water–energy–food nexus. Hydrol. Sci. J. 2017, 62, 1714–1720. [Google Scholar] [CrossRef] [Green Version]
- Weidner, T.; Yang, A.; Hamm, M.W. Consolidating the current knowledge on urban agriculture in productive urban food systems: Learnings, gaps and outlook. J. Clean. Prod. 2019, 209, 1637–1655. [Google Scholar] [CrossRef]
- Caputo, P.; Zagarella, F.; Cusenza, M.A.; Mistretta, M.; Cellura, M. Energy-environmental assessment of the UIA-OpenAgri case study as urban regeneration project through agriculture. Sci. Total Environ. 2020, 729, 138819. [Google Scholar] [CrossRef]
- Caputo, S.; Schoen, V.; Specht, K.; Grard, B.; Blythe, C.; Cohen, N.; Fox-Kamper, R.; Hawes, J.; Newell, J.; Ponizy, L. Applying the food-energy-water nexus approach to urban agriculture: From FEW to FEWP (Food-Energy-Water-People). Urban For. Urban Green. 2021, 58, 126934. [Google Scholar] [CrossRef]
- McClintock, N.; Cooper, J.; Khandeshi, S. Assessing the potential contribution of vacant land to urban vegetable production and consumption in Oakland, California. Landsc. Urban Plan. 2013, 111, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Yagi, H.; Kiminami, A.; Garrod, G. Farm diversification and sustainability of multifunctional peri-urban agriculture: Entrepreneurial attributes of advanced diversification in Japan. Sustainability 2019, 11, 2887. [Google Scholar] [CrossRef] [Green Version]
Countries | Number of Papers | Frequency | SCP | MCP | Total Number of Citations | Average Citations for Each Paper |
---|---|---|---|---|---|---|
USA | 132 | 22.0 | 116 | 16 | 2372 | 18.0 |
Germany | 40 | 6.7 | 17 | 23 | 812 | 20.3 |
UK | 34 | 5.7 | 21 | 13 | 611 | 18.0 |
Italy | 31 | 5.1 | 21 | 10 | 825 | 26.6 |
China | 30 | 5.0 | 19 | 11 | 293 | 9.8 |
Canada | 27 | 4.5 | 21 | 6 | 608 | 22.5 |
France | 27 | 4.5 | 17 | 10 | 439 | 16.2 |
Brazil | 25 | 4.2 | 17 | 8 | 68 | 2.7 |
South Africa | 25 | 4.2 | 19 | 6 | 202 | 8.1 |
Australia | 24 | 4.1 | 19 | 5 | 500 | 20.8 |
Journals | Numbers of Paper | IF | Quartiles | h-Index | Average Citations for Each Paper | Countries |
---|---|---|---|---|---|---|
Sustainability | 29 | 3.251 | Q2 | 85 | 5 | Switzerland |
Land Use Policy | 24 | 5.398 | Q1 | 115 | 24 | Netherlands |
Agriculture and Human Values | 18 | 3.295 | Q1 | 76 | 34.5 | Netherlands |
Science of The Total Environment | 13 | 7.963 | Q1 | 244 | 15.9 | Netherlands |
Journal of Cleaner Production | 12 | 9.297 | Q1 | 200 | 15.6 | USA |
International Journal of Agricultural Sustainability | 8 | 2.905 | Q1 | 39 | 31.3 | UK |
Landscape and Urban Planning | 8 | 6.142 | Q1 | 161 | 29.4 | Netherlands |
Renewable Agriculture and Food Systems | 8 | 2.657 | Q2 | 53 | 19 | UK |
Future of Food: Journal on Food Agriculture and Society | 7 | — | — | 6 | 2.9 | Germany |
Cahiers Agricultures | 6 | — | — | 19 | 2.8 | France |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, D.; Liu, L.; Liu, X.; Zhang, M. Global Trends in Urban Agriculture Research: A Pathway toward Urban Resilience and Sustainability. Land 2022, 11, 117. https://doi.org/10.3390/land11010117
Yan D, Liu L, Liu X, Zhang M. Global Trends in Urban Agriculture Research: A Pathway toward Urban Resilience and Sustainability. Land. 2022; 11(1):117. https://doi.org/10.3390/land11010117
Chicago/Turabian StyleYan, Dan, Litao Liu, Xiaojie Liu, and Ming Zhang. 2022. "Global Trends in Urban Agriculture Research: A Pathway toward Urban Resilience and Sustainability" Land 11, no. 1: 117. https://doi.org/10.3390/land11010117
APA StyleYan, D., Liu, L., Liu, X., & Zhang, M. (2022). Global Trends in Urban Agriculture Research: A Pathway toward Urban Resilience and Sustainability. Land, 11(1), 117. https://doi.org/10.3390/land11010117