Does Polycentric Development Improve Green Utilization Efficiency of Urban Land? An Empirical Study Based on Panel Threshold Model Approach
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Effects of Polycentric Development on GUEUL
2.2. Research Hypotheses
3. Methodology and Data
3.1. Empirical Methodology
3.1.1. The Measurement of GUEUL
3.1.2. The Measurement of the Degree of Polycentricity
3.1.3. The Models of Determinants of GUEUL
3.2. Study Area and Data
3.2.1. Study Area
3.2.2. Data
4. Results
4.1. Estimates of GUEUL and Extent of Polycentricity
4.2. Estimation Results of Models of Determinants of GUEUL
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hickel, J.; Kallis, G. Is Green Growth Possible? New Polit. Econ. 2020, 25, 469–486. [Google Scholar] [CrossRef]
- Jänicke, M. “Green growth”: From a growing eco-industry to economic sustainability. Energy Policy 2012, 48, 13–21. [Google Scholar] [CrossRef]
- Reilly, J.M. Green growth and the efficient use of natural resources. Energy Econ. 2012, 34, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Long, H.; Chen, K.; Tu, S.; Zhang, Y.; Liao, L. Green growth efficiency of Chinese cities and its spatio-temporal pattern. Resour. Conserv. Recycl. 2019, 146, 441–451. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, K.; Ji, X.; Xu, H.; Xiao, Y. Assessment and spatial-temporal evolution analysis of urban land use efficiency under green development orientation: Case of the yangtze river delta urban agglomerations. Land 2021, 10, 715. [Google Scholar] [CrossRef]
- Chen, W.; Ning, S.; Chen, W.; Liu, E.-N.; Wang, Y.; Zhao, M. Spatial-temporal characteristics of industrial land green efficiency in China: Evidence from prefecture-level cities. Ecol. Indic. 2020, 113, 106256. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, P.; Wei, Y.; Li, Y.; Zhao, H. Measuring the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model—A case study of 35 large and medium-sized cities in China. Sustain. Cities Soc. 2019, 50, 101646. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Lu, F.; Wang, W.; Yao, G.; Yu, J. Spatial-temporal disparities and influencing factors of total-factor green use efficiency of industrial land in China. J. Clean. Prod. 2019, 207, 1047–1058. [Google Scholar] [CrossRef]
- Wang, A.; Lin, W.; Liu, B.; Wang, H.; Xu, H. Does smart city construction improve the green utilization efficiency of urban land? Land 2021, 10, 657. [Google Scholar] [CrossRef]
- Lu, X.; Kuang, B.; Li, J. Regional difference decomposition and policy implications of China’s urban land use efficiency under the environmental restriction. Habitat Int. 2018, 77, 32–39. [Google Scholar] [CrossRef]
- Chatzimentor, A.; Apostolopoulou, E.; Mazaris, A.D. A review of green infrastructure research in Europe: Challenges and opportunities. Landsc. Urban Plan. 2020, 198, 103775. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Kati, V.; Jari, N. Bottom-up thinking—Identifying socio-cultural values of ecosystem services in local blue-green infrastructure planning in Helsinki, Finland. Land Use Policy 2016, 50, 537–547. [Google Scholar] [CrossRef]
- Burger, M.J.; Meijers, E.J. Agglomerations and the rise of urban network externalities. Pap. Reg. Sci. 2016, 95, 5–15. [Google Scholar] [CrossRef]
- van Oort, F.; Burger, M.; Raspe, O. On the economic foundation of the Urban network paradigm: Spatial integration, functional integration and economic complementarities within the Dutch Randstad. Urban Stud. 2010, 47, 725–748. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Kloosterman, R.C.; Musterd, S. The polycentric urban region: Towards a research agenda. Urban Stud. 2001, 38, 623–633. [Google Scholar] [CrossRef]
- Meijers, E. Polycentric urban regions and the quest for synergy: Is a network of cities more than the sum of the parts? Urban Stud. 2005, 42, 765–781. [Google Scholar] [CrossRef]
- Parr, J.B. The polycentric urban region: A closer inspection. Reg. Stud. 2004, 38, 231–240. [Google Scholar] [CrossRef]
- Meijers, E. Summing small cities does not make a large city: Polycentric urban regions and the provision of cultural, leisure and sports amenities. Urban Stud. 2008, 45, 2323–2342. [Google Scholar] [CrossRef]
- Zheng, S.; Du, R. How does urban agglomeration integration promote entrepreneurship in China? Evidence from regional human capital spillovers and market integration. Cities 2020, 97, 102529. [Google Scholar] [CrossRef]
- Wang, M.; Derudder, B.; Liu, X. Polycentric urban development and economic productivity in China: A multiscalar analysis. Environ. Plan. A 2019, 51, 1622–1643. [Google Scholar] [CrossRef]
- Florida, R.; Gulden, T.; Mellander, C. The rise of the mega-region. Camb. J. Reg. Econ. Soc. 2008, 1, 459–476. [Google Scholar] [CrossRef]
- Meijers, E.; Hoogerbrugge, M.; Cardoso, R. Beyond Polycentricity: Does Stronger Integration Between Cities in Polycentric Urban Regions Improve Performance? Tijdschr. Econ. Soc. Geogr. 2018, 109, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Veneri, P.; Burgalassi, D. Questioning polycentric development and its effects. Issues of definition and measurement for the Italian NUTS-2 regions. Eur. Plan. Stud. 2012, 20, 1017–1037. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Brezzi, M.; Veneri, P. Assessing Polycentric Urban Systems in the OECD: Country, Regional and Metropolitan Perspectives. Eur. Plan. Stud. 2015, 23, 1128–1145. [Google Scholar] [CrossRef]
- Li, W.; Sun, B.; Zhang, T. Spatial structure and labour productivity: Evidence from prefectures in China. Urban Stud. 2019, 56, 1516–1532. [Google Scholar] [CrossRef]
- Meijers, E.J.; Burger, M.J. Spatial structure and productivity in US metropolitan areas. Environ. Plan. A 2010, 42, 1383–1402. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, X. How did urban polycentricity and dispersion affect economic productivity? A case study of 306 Chinese cities. Landsc. Urban Plan. 2018, 173, 51–59. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, B.; Li, W. The economic performance of urban structure: From the perspective of Polycentricity and Monocentricity. Cities 2017, 68, 18–24. [Google Scholar] [CrossRef]
- Liu, X.; Derudder, B.; Wu, K. Measuring Polycentric Urban Development in China: An Intercity Transportation Network Perspective. Reg. Stud. 2016, 50, 1302–1315. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. How polycentric is urban China and why? A case study of 318 cities. Landsc. Urban Plan. 2016, 151, 10–20. [Google Scholar] [CrossRef]
- Riguelle, F.; Thomas, I.; Verhetsel, A. Measuring urban polycentrism: A European case study and its implications. J. Econ. Geogr. 2007, 7, 193–215. [Google Scholar] [CrossRef]
- Garcia-López, M.À.; Muñiz, I. Urban spatial structure, agglomeration economies, and economic growth in Barcelona: An intra-metropolitan perspective. Pap. Reg. Sci. 2013, 92, 515–534. [Google Scholar] [CrossRef]
- Duranton, G.; Puga, D. Micro-foundations of urban agglomeration economies. In Handbook of Regional and Urban Economics; Henderson, J.V., Thisse, J.-F., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 4, pp. 2063–2117. [Google Scholar]
- Capello, R. The city network paradigm: Measuring urban network externalities. Urban Stud. 2000, 37, 1925–1945. [Google Scholar] [CrossRef]
- Parr, J.B. Agglomeration economies: Ambiguities and confusions. Environ. Plan. A 2002, 34, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Meijers, E.J.; Burger, M.J.; Hoogerbrugge, M.M. Borrowing size in networks of cities: City size, network connectivity and metropolitan functions in Europe. Pap. Reg. Sci. 2016, 95, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Alonso, W. Urban zero population growth. Daedalus 1973, 102, 191–206. [Google Scholar] [CrossRef]
- Quigley, J.M. Agglomeration and networks in spatial economies. Fifty Years Reg. Sci. 2004, 83, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Meijers, E.J.; Burger, M.J. Stretching the concept of ‘borrowed size’. Urban Stud. 2017, 54, 269–291. [Google Scholar] [CrossRef]
- Brinkman, J.C. Congestion, agglomeration, and the structure of cities. J. Urban Econ. 2016, 94, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhou, Q. City size and urban labor productivity in China: New evidence from spatial city-level panel data analysis. Econ. Syst. 2017, 41, 165–178. [Google Scholar] [CrossRef]
- Duranton, G.; Puga, D. Nursery cities: Urban diversity, process innovation, and the life cycle of products. Am. Econ. Rev. 2001, 91, 1454–1477. [Google Scholar] [CrossRef] [Green Version]
- Capello, R.; Camagni, R. Beyond optimal city size: An evaluation of alternative urban growth patterns. Urban Stud. 2000, 37, 1479–1496. [Google Scholar] [CrossRef]
- Bailey, N.; Turok, I. Central Scotland as a polycentric urban region: Useful planning concept or chimera? Urban Stud. 2001, 38, 697–715. [Google Scholar] [CrossRef]
- Brülhart, M.; Sbergami, F. Agglomeration and growth: Cross-country evidence. J. Urban Econ. 2009, 65, 48–63. [Google Scholar] [CrossRef] [Green Version]
- Lambregts, B. Polycentrism: Boon or barrier to metropolitan competitiveness? The case of the Randstad Holland. Built Environ. 2006, 32, 114–123. [Google Scholar] [CrossRef]
- Castells-Quintana, D. Malthus living in a slum: Urban concentration, infrastructure and economic growth. J. Urban Econ. 2017, 98, 158–173. [Google Scholar] [CrossRef]
- Lampe, H.W.; Hilgers, D. Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA. Eur. J. Oper. Res. 2015, 240, 1–21. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, Y.; Wang, C.; Zhang, L. The green efficiency of industrial sectors in China: A comparative analysis based on sectoral and supply-chain quantifications. Resour. Conserv. Recycl. 2018, 132, 269–277. [Google Scholar] [CrossRef]
- Ramanathan, R. An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa. Energy 2005, 30, 2831–2842. [Google Scholar] [CrossRef]
- Reinhard, S.; Lovell, C.A.K.; Thijssen, G. Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms. Am. J. Agric. Econ. 1999, 81, 44–60. [Google Scholar] [CrossRef]
- Hua, Z.; Bian, Y.; Liang, L. Eco-efficiency analysis of paper mills along the Huai River: An extended DEA approach. Omega 2007, 35, 578–587. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model. Appl. Energy 2016, 168, 351–363. [Google Scholar] [CrossRef]
- Song, M.; An, Q.; Zhang, W.; Wang, Z.; Wu, J. Environmental efficiency evaluation based on data envelopment analysis: A review. Renew. Sustain. Energy Rev. 2012, 16, 4465–4469. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Manage. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Halkos, G.E.; Polemis, M.L. The impact of economic growth on environmental efficiency of the electricity sector: A hybrid window DEA methodology for the USA. J. Environ. Manag. 2018, 211, 334–346. [Google Scholar] [CrossRef]
- Pulina, M.; Detotto, C.; Paba, A. An investigation into the relationship between size and efficiency of the Italian hospitality sector: A window DEA approach. Eur. J. Oper. Res. 2010, 204, 613–620. [Google Scholar] [CrossRef]
- Li, W.; Sun, B.; Zhao, J.; Zhang, T. Economic performance of spatial structure in Chinese prefecture regions: Evidence from night-time satellite imagery. Habitat Int. 2018, 76, 29–39. [Google Scholar] [CrossRef]
- Batty, M. The size, scale, and shape of cities. Science 2008, 319, 769–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabaix, X.; Ibragimov, R. Rank−1/2: A Simple Way to Improve the OLS Estimation of Tail Exponents. J. Bus. Econ. Stat. 2011, 29, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Meijers, E. Measuring Polycentricity and its Promises. Eur. Plan. Stud. 2008, 16, 1313–1323. [Google Scholar] [CrossRef]
- Cheshire, P. Trends in sizes and structures of urban areas. In Handbook of Regional and Urban Economics; Cheshire, P., Mills, E.S., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; Volume 3, pp. 1339–1373. [Google Scholar]
- Burger, M.J.; Meijers, E. Form follows function? linking morphological and functional polycentricity. Urban Stud. 2012, 49, 1127–1149. [Google Scholar] [CrossRef]
- Wang, F.; Ning, L.; Zhang, J. FDI pace, rhythm and host region technological upgrading: Intra- and interregional evidence from Chinese cities. China Econ. Rev. 2017, 46, S65–S76. [Google Scholar] [CrossRef]
- Yan, S.; Peng, J.; Wu, Q. Exploring the non-linear effects of city size on urban industrial land use efficiency: A spatial econometric analysis of cities in eastern China. Land Use Policy 2020, 99, 104944. [Google Scholar] [CrossRef]
- Knowles, S.; Garces-Ozanne, A. Government intervention and economic performance in East Asia. Econ. Dev. Cult. Chang. 2003, 51, 451–477. [Google Scholar] [CrossRef]
- Lin, C.; Wong, S.M.-L. Government intervention and firm investment: Evidence from international micro-data. J. Int. Money Financ. 2013, 32, 637–653. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.-E.; Hsieh, C.-T.; Qian, Y. The Return to Capital in China. Brook. Pap. Econ. Act. 2006, 37, 61–88. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.; Zhang, J. The Estimation of China’s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
Variable | Definition | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Y | Value added of secondary and tertiary industries (unit: 1 billion CNY) | 2370.78 | 2472.05 | 106.58 | 14,233.58 |
LABOR | The number of employees in urban sectors (unit: 10,000 persons) | 1572.89 | 1476.76 | 170.87 | 8138.95 |
CAPITAL | The capital stock in urban sectors (unit: 1 billion CNY) | 7075.45 | 7621.54 | 244.70 | 41,888.90 |
LAND | The area of built-up land (unit: square kilometer) | 2355.85 | 2047.62 | 284.29 | 9582.17 |
WWATER | Industrial wastewater discharge (unit: 10,000 tons) | 101,395.60 | 105,041 | 7564 | 511,642 |
SD | Emissions of sulfur dioxide (unit: ton) | 690,987.40 | 551,067.30 | 48,961 | 2,335,005 |
SOOT | Emissions of soot (dust) (unit: ton) | 405,314.30 | 480,674.10 | 47,989 | 5,306,546 |
PCGDP | Per capita GDP (unit: 10,000 CNY) | 3.98 | 2.30 | 0.75 | 11.39 |
FDI | The ratio of the quantity of foreign capital utilized to GDP | 0.0240 | 0.0141 | 0.0010 | 0.0740 |
GEXP | The ratio of local governments’ budgetary expenditure to GDP | 0.1442 | 0.0400 | 0.0666 | 0.2390 |
STEXP | The proportion of expenditure on science and technology in local governments’ budgetary expenditure | 0.0181 | 0.0146 | 0.0019 | 0.0900 |
(1) | (2) | (3) | |
---|---|---|---|
Pooled OLS Estimation | Fixed-Effects Estimation | Random-Effects Estimation | |
0.037 *** | 0.277 *** | 0.109 *** | |
(0.013) | (0.084) | (0.029) | |
0.167 ** | 1.055 *** | 0.429 *** | |
(0.070) | (0.305) | (0.135) | |
0.072 *** | 0.103 *** | 0.101 *** | |
(0.004) | (0.010) | (0.008) | |
1.278 ** | −0.397 | −0.606 | |
(0.525) | (0.508) | (0.451) | |
−0.896 *** | 0.616 | 0.688 | |
(0.197) | (0.447) | (0.414) | |
0.802 | 4.021 *** | 3.366 *** | |
(0.642) | (0.705) | (0.691) | |
Constant | 0.258 *** | −0.634 *** | −0.142 |
(0.052) | (0.228) | (0.100) | |
UA-specific effects | No | Yes | Yes |
Year dummies | No | Yes | Yes |
Number of observations | 224 | 224 | 224 |
R-squared | 0.804 | 0.771 | 0.763 |
Threshold | F-Statistics | p-Value | 10% Critical Value | 5% Critical Value | 1% Critical Value |
---|---|---|---|---|---|
Single threshold | 43.010 *** | 0.030 | 31.030 | 38.603 | 49.482 |
Double threshold | 18.930 | 0.400 | 58.679 | 76.200 | 95.336 |
Estimate | 95% Confidence Interval | |
---|---|---|
8.925 | [8.876, 9.322] |
Variables | Coefficient Estimates | Standard Errors | t-Statistics | p-Value |
---|---|---|---|---|
0.103 *** | 0.010 | 9.920 | 0.000 | |
−0.605 | 0.502 | −1.210 | 0.229 | |
0.979 | 0.644 | 1.520 | 0.131 | |
2.619 *** | 0.845 | 3.100 | 0.002 | |
0.253 *** | 0.083 | 3.030 | 0.003 | |
0.348 *** | 0.092 | 3.800 | 0.000 | |
1.109 *** | 0.307 | 3.610 | 0.000 | |
0.584 * | 0.337 | 1.730 | 0.085 | |
Constant | −0.653 | 0.225 | −2.910 | 0.004 |
UA-specific effects | Yes | |||
Year dummies | Yes | |||
Number of observations | 224 | |||
R-squared | 0.783 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Wang, J. Does Polycentric Development Improve Green Utilization Efficiency of Urban Land? An Empirical Study Based on Panel Threshold Model Approach. Land 2022, 11, 124. https://doi.org/10.3390/land11010124
Yan S, Wang J. Does Polycentric Development Improve Green Utilization Efficiency of Urban Land? An Empirical Study Based on Panel Threshold Model Approach. Land. 2022; 11(1):124. https://doi.org/10.3390/land11010124
Chicago/Turabian StyleYan, Siqi, and Jian Wang. 2022. "Does Polycentric Development Improve Green Utilization Efficiency of Urban Land? An Empirical Study Based on Panel Threshold Model Approach" Land 11, no. 1: 124. https://doi.org/10.3390/land11010124
APA StyleYan, S., & Wang, J. (2022). Does Polycentric Development Improve Green Utilization Efficiency of Urban Land? An Empirical Study Based on Panel Threshold Model Approach. Land, 11(1), 124. https://doi.org/10.3390/land11010124