Ecosystem Services from Ecological Agroforestry in Brazil: A Systematic Map of Scientific Evidence
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Biogeographical Distribution of Evidence and Types of Agroforestry Systems
3.2. Agroforestry Effects on Ecosystem Services
3.3. Soil Quality
3.4. Habitat & Gene Pool
3.5. Evidence Gaps
4. Discussion
4.1. Trends in the Agroforestry Literature
4.2. Effects on Ecosystem Services
4.3. Implications for Future Research
4.4. Limitations of the Map and Potential Applicability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Bommarco, R.; Miranda, F.; Bylund, H.; Björkman, C. Insecticides Suppress Natural Enemies and Increase Pest Damage in Cabbage. J. Econ. Èntomol. 2011, 104, 782–791. [Google Scholar] [CrossRef]
- Tomasetto, F.; Tylianakis, J.M.; Reale, M.; Wratten, S.; Goldson, S.L. Intensified agriculture favors evolved resistance to biological control. Proc. Natl. Acad. Sci. USA 2017, 114, 3885–3890. [Google Scholar] [CrossRef]
- Gonthier, D.J.; Ennis, K.K.; Farinas, S.; Hsieh, H.Y.; Iverson, A.L.; Batáry, P.; Rudolphi, J.; Tscharntke, T.; Cardinale, B.J.; Perfecto, I. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141358. [Google Scholar]
- Newbold, T.; Hudson, L.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.; Borger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nat. Cell Biol. 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Lanz, B.; Dietz, S.; Swanson, T. The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment. Ecol. Econ. 2018, 144, 260–277. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Dalal, R.; Finn, D.; Menzies, N. Global changes in soil stocks of carbon, nitrogen, phosphorus, and sulphur as influenced by long-term agricultural production. Glob. Chang. Biol. 2017, 23, 2509–2519. [Google Scholar] [CrossRef]
- Sainju, U.M. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils. PLoS ONE 2016, 11, e0148527. [Google Scholar] [CrossRef]
- Santos, G.; Teixeira, L.J.; Pereira, O.S.; Santos, A.R.; Fronza, M.; Silva, A.G.; Scherer, R. Pesticide residues in conventionally and organically grown tomatoes in Espírito Santo (Brazil). Quim. Nova 2015, 38, 848–851. [Google Scholar]
- Albuquerque, A.F.; Ribeiro, J.S.; Kummrow, F.; Nogueira, A.J.A.; Montagner, C.C.; Umbuzeiro, G.A. Pesticides in Brazilian freshwaters: A critical review. Environ. Sci. Process. Impacts 2016, 18, 779–787. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; De Clerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar]
- Iverson, A.L.; Marín, L.E.; Ennis, K.K.; Gonthier, D.J.; Connor-Barrie, B.T.; Remfert, J.L.; Cardinale, B.J.; Perfecto, I. Review: Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis. J. Appl. Ecol. 2014, 51, 1593–1602. [Google Scholar] [CrossRef]
- Ponisio, L.C.; M’Gonigle, L.K.; Mace, K.C.; Palomino, J.; De Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B Biol. Sci. 2014, 282, 20141396. [Google Scholar]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.; Quijas, S.; et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef]
- Rosa-Schleich, J.; Loos, J.; Mußhoff, O.; Tscharntke, T. Ecological-economic trade-offs of Diversified Farming Systems—A review. Ecol. Econ. 2019, 160, 251–263. [Google Scholar] [CrossRef]
- Sileshi, G.; Akinnifesi, F.K.; Ajayi, O.C.; Place, F. Meta-analysis of maize yield response to woody and herbaceous legumes in sub-Saharan Africa. Plant Soil 2008, 307, 1–19. [Google Scholar] [CrossRef]
- Clough, Y.; Barkmann, J.; Juhrbandt, J.; Kessler, M.; Wanger, T.C.; Anshary, A.; Buchori, D.; Cicuzza, D.; Darras, K.; Putra, D.D.; et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl. Acad. Sci. USA 2011, 108, 8311–8316. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Dev. 2014, 34, 443–454. [Google Scholar] [CrossRef]
- Chatterjee, N.; Nair, P.K.R.; Chakraborty, S.; Nair, V.D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 2018, 266, 55–67. [Google Scholar]
- Bhagwat, S.A.; Willis, K.; Birks, H.J.B.; Whittaker, R. Agroforestry: A refuge for tropical biodiversity? Trends Ecol. Evol. 2008, 23, 261–267. [Google Scholar] [CrossRef]
- Santos PZ, F.; Crouzeilles, R.; Sansevero, J.; Boelsums, B.; Scaramuzza, C.A. Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. Forest Ecol. Manag. 2019, 433, 14–145. [Google Scholar]
- Basche, A.; DeLonge, M. The Impact of Continuous Living Cover on Soil Hydrologic Properties: A Meta-Analysis. Soil Sci. Soc. Am. J. 2017, 81, 1179–1190. [Google Scholar] [CrossRef]
- Dollinger, J.; Shibu, J. Agroforestry for soil health. Agrofor. Syst. 2018, 92, 213–219. [Google Scholar]
- Pumariño, L.; Sileshi, G.W.; Gripenberg, S.; Kaartinen, R.; Barrios, E.; Muchane, M.N.; Midega, C.; Jonsson, M. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 2015, 16, 573–582. [Google Scholar] [CrossRef]
- De Souza, S.E.X.F.; Vidal, E.; Chagas, G.D.F.; Elgar, A.T.; Brancalion, P. Ecological outcomes and livelihood benefits of community-managed agroforests and second growth forests in Southeast Brazil. Biotropica 2016, 48, 868–881. [Google Scholar] [CrossRef]
- Pandey, D.N. Multifunctional agroforestry systems in India. Curr. Sci. 2007, 92, 455–463. [Google Scholar]
- Smith, J.; Pearce, B.D.; Wolfe, M.S. Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renew. Agric. Food Syst. 2013, 28, 80–92. [Google Scholar] [CrossRef]
- Casanova-Lugo, F.; Maya, T.; Ramírez-Avilés, L.; Parsons, D.; Caamal-Maldonado, A.; Piñeiro-Vázquez, A.T.; Díaz-Echeverría, V. Environmental services from tropical agroforestry systems. Rev. Chapingo Ser. Cienc. For. Ambient. 2016, XXII, 269–284. [Google Scholar] [CrossRef]
- Reed, J.; van Vianen, J.; Foli, S.; Clendenning, J.; Yang, K.; MacDonald, M.; Petrokofsky, G.; Padoch, C.; Sunderland, T. Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics. For. Policy Econ. 2017, 84, 62–71. [Google Scholar]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Mortimer, R.; Saj, S.; David, C. Supporting and regulating ecosystem services in cacao agroforestry systems. Agrofor. Syst. 2017, 92, 1639–1657. [Google Scholar] [CrossRef]
- Nair, P.R.; Nair, V.D.; Kumar, B.M.; Haile, S.G. Soil carbon sequestration in tropical agroforestry systems: A feasibility appraisal. Environ. Sci. Policy 2009, 12, 1099–1111. [Google Scholar] [CrossRef]
- Sekercioglu, C.H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 2012, 153, 153–161. [Google Scholar] [CrossRef]
- Poch, T.J.; Simonetti, J.A. Ecosystem services in human-dominated landscapes: In sectivory in agroforestry systems. Agrofor. Syst. 2013, 87, 871–879. [Google Scholar] [CrossRef]
- Baah-Acheamfour, M.; Chang, S.X.; Bork, E.W.; Carlyle, C. The potential of agroforestry to reduce atmospheric greenhouse gases in Canada: Insight from pairwise comparisons with traditional agriculture, data gaps and future research. For. Chron. 2017, 93, 180–189. [Google Scholar] [CrossRef]
- De Stefano, A.; Jacobson, M.G. Soil carbon sequestration in agroforestry systems: A meta-analysis. Agrofor. Syst. 2017, 92, 285–299. [Google Scholar] [CrossRef]
- Gonçalves, C.B.Q.; Schlindwein, M.M.; Martinelli, G.C. Agroforestry Systems: A Systematic Review Focusing on Traditional Indigenous Practices, Food and Nutrition Security, Economic Viability, and the Role of Women. Sustainability 2021, 13, 11397. [Google Scholar]
- Tsonkova, P.; Böhm, C.; Quinkenstein, A.; Freese, D. Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: A review. Agrofor. Syst. 2012, 85, 133–152. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Bhagwat, S.A.; Buchori, D.; Faust, H.; Hertel, D.; Hölscher, D.; Juhrbandt, J.; Kessler, M.; Perfecto, I.; et al. Multifunctional shade-tree management in tropical agroforestry landscapes—A review. J. Appl. Ecol. 2011, 48, 619–629. [Google Scholar] [CrossRef]
- Obeng, E.A.; Aguilar, F. Marginal effects on biodiversity, carbon sequestration and nutrient cycling of transitions from tropical forests to cacao farming systems. Agrofor. Syst. 2015, 89, 19–35. [Google Scholar] [CrossRef]
- Jha, S.; Bacon, C.M.; Philpott, S.M.; Rice, R.A.; Méndez, V.E.; Läderach, P. A review of ecosystem services, farmer livelihoods, and value chains in shade coffee agroecosystems. In Integrating Agriculture, Conservation and Ecotourism: Examples from the Field; Springer: Cham, Switzerland, 2011; Méndez, V.E.; Volume 1, pp. 141–208. [Google Scholar] [CrossRef]
- De Beenhouwer, M.; Aerts, R.; Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Environ. 2013, 175, 1–7. [Google Scholar] [CrossRef]
- Munroe, J.W.; Isaac, M.E. N2-fixing trees and the transfer of fixed-N for sustainable agroforestry: A review. Agron. Sustain. Dev. 2013, 34, 417–427. [Google Scholar] [CrossRef]
- Cerda, R.; Allinne, C.; Gary, C.; Tixier, P.; Harvey, C.A.; Krolczyk, L.; Mathiot, C.; Clément, E.; Aubertot, J.-N.; Avelino, J. Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. Eur. J. Agron. 2017, 82, 308–319. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European agroforestry systems enhance bio-diversity and ecosystem services? A meta-analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar]
- Fagerholm, N.; Torralba, M.; Burgess, P.J.; Plieninger, T. A systematic map of ecosystem services assessments around European agroforestry. Ecol. Indic. 2016, 62, 47–65. [Google Scholar] [CrossRef]
- Gobel, A. Ecosystem Services in Agroforestry Systems of Europe: A Systematic Map. Master’s Thesis, Albert-Ludwigs-University, Freiburg, Germany, 2016. [Google Scholar]
- Carneiro, F.F.; Pignati, W.; Rigotto, R.M.; Friedrich, F.; Búrigo, A.C. Dossiê ABRASCO—Um Alerta Sobre os Impactos dos Agrotóxicos na Saúde, 1st ed.; ABRASCO: Rio de Janeiro, Brasil, 2012; Volume 1. [Google Scholar]
- Braga, A.R.C.; De Rosso, V.V.; Harayashiki, C.A.Y.; Jimenez, P.C.; Castro, Í.B. Global health risks from pesticide use in Brazil. Nat. Food 2020, 1, 312–314. [Google Scholar] [CrossRef]
- Arima, E.Y.; Barreto, P.; Araújo, E.; Soares-Filho, B. Public policies can reduce tropical deforestation: Lessons and challenges from Brazil. Land Use Policy 2014, 41, 465–473. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T.; Moran, D.; Schmidt, S.; Wood, R. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Chang. 2019, 56, 1–10. [Google Scholar]
- Margulis, S.; Hughes, G.; Gambrill, M.; Azevedo, L.G.T. Brazil: Managing Water Quality. Mainstreaming the Environment in the Water Sector. World Bank Technical Paper; n° 532; World Bank: Washington, DC, USA, 2002; Available online: https://openknowledge.worldbank.org/handle/10986/15219 (accessed on 30 October 2021).
- Lele, U.; Viana, V.; Verissimo, A.; Vosti, S.; Perkins, K.; Husain, S.A. Brazil—Forests in the Balance: Challenges of Conservation with Development; OED Evaluation Country Case Study Series; World Bank: Washington, DC, USA, 2010; Available online: https://openknowledge.worldbank.org/handle/10986/19907 (accessed on 28 October 2021).
- Lewinsohn, T.M.; Prado, P.I. How Many Species Are There in Brazil? Conserv. Biol. 2005, 19, 619–624. [Google Scholar] [CrossRef]
- FAO and UNEP. The State of the World’s Forests 2020. Forests, Biodiversity and People; FAO and UNEP: Rome, Italy, 2020; Available online: https://doi.org/10.4060/ca8642en (accessed on 27 October 2021). [CrossRef]
- Cacho, M.T.G.; Giraldo, O.F.; Aldasoro, M.; Morales, H.; Ferguson, B.G.; Rosset, P.; Khadse, A.; Campos, C. Bringing agroecology to scale: Key drivers and emblematic cases. Agroecol. Sustain. Food Syst. 2018, 42, 637–665. [Google Scholar] [CrossRef]
- Nair, P.K.R. An Introduction to Agroforestry, 1st ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Duru, M.; Therond, O.; Fares, M. Designing agroecological transitions; A review. Agron. Sustain. Dev. 2015, 35, 1237–1257. [Google Scholar] [CrossRef]
- Young, K.J. Mimicking Nature: A Review of Successional Agroforestry Systems as an Analogue to Natural Regeneration of Secondary Forest Stands. In Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty, 1st ed.; Montagnini, F., Ed.; Springer: Cham, Switzerland, 2017; pp. 179–209. [Google Scholar]
- Barrios, E.; Bayala, J.; Diby, L.; Donovan, J.; Graudal, L.; Gyau, A.; Jamnadass, R.; Kahia, J.; Kehlenbeck, K.; Kindt, R.; et al. Agroforestry: Realizing the promise of an agroecological approach. In Proceedings of the FAO International Symposium Agroecology for Food Security and Nutrition, Rome, Italy, 18–19 September 2014; FAO: Rome, Italy, 2015; pp. 201–224. [Google Scholar]
- Miccolis, A.; Peneireiro, F.M.; Vieira, D.L.M.; Marques, H.R.; Hoffmann, M.R.M. Restoration through Agroforestry: Options for Reconciling Livelihoods with Conservation in the Cerrado and Caatinga Biomes in Brazil. Exp. Agric. 2019, 55, 208–225. [Google Scholar] [CrossRef]
- Mapbiomas. Plataforma Brasil. 2020. Available online: https://plataforma.brasil.mapbiomas.org (accessed on 22 October 2021).
- Porro, R.; Miccolis, A. Políticas Públicas para o Desenvolvimento Agroflorestal no Brasil, 1st ed.; ICRAF: Belém, Brasil, 2011. [Google Scholar]
- Badari, C.G.; Bernardini, L.E.; de Almeida, D.R.A.; Brancalion, P.H.S.; Cesar, R.; Gutierrez, V.; Chazdon, R.L.; Gomes, H.B.; Viani, R.A.G. Ecological outcomes of agroforests and restoration 15 years after planting. Restor. Ecol. 2020, 28, 1135–1144. [Google Scholar] [CrossRef]
- De Sousa, W.A.; Vieira, T.A. Sistemas agroflorestais: Uma análise bibliométrica da produção científica de revistas brasileiras no período de 2005 a 2015. Rev. Espac. 2017, 38, 1–7. [Google Scholar]
- Miccolis, A.; Pereira, A.V.B.; Peneireiro, F.M.; Marques, H.R.; Vieira, D.L.M.; Arco-Verde, M.F.; Hoffmann, M.R.; Rehder, T.; Pereira, A.V.B. Agroforestry Systems for Ecological Restoration: How to Reconcile Conservation and Production. Options for Brazil’s Cerrado and Caatinga Biomes; ISPN/World Agroforestry Centre—ICRAF: Brasília, Brazil, 2016. [Google Scholar]
- Steenbock, W.; da Costa e Silva, L.; da Silva, R.O.; Perez-Cassarino, J. Agrofloresta, Ecologia e Sociedade, 1st ed.; Kairós: Curitiba, Brasil, 2013; Volume 1. [Google Scholar]
- Neto, N.E.C.; Messerschmidt, N.M.; Steenback, W.; Monnerat, P.F. Agroflorestando o Mundo de Facão a Trator: Gerando Praxis Agroflorestal em Rede; Cooperafloresta: Paraná, Brasil, 2016. [Google Scholar]
- Brasil. Lei n° 12651, de 25 de Maio de. 2012. Available online: http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei/L12651.htm (accessed on 11 November 2021).
- Brasil. Planaveg 2017: Plano Nacional de Recuperação da Vegetação Nativa/Ministério do Meio Ambiente, Ministério da Agricultura, Pecuária e Abastecimento, Ministério da Educação. MMA: Brasília, DF, Brazil. Available online: https://snif.florestal.gov.br/images/pdf/publicacoes/planaveg_publicacao.pdf (accessed on 2 November 2021).
- Cassano, C.R.; Schroth, G.; Faria, D.; Delabie, J.H.C.; Bede, L. Landscape and farm scale management to enhance biodiversity conservation in the cocoa producing region of southern Bahia, Brazil. Biodiver. Conserv. 2009, 18, 577–603. [Google Scholar]
- Schroth, G.; Faria, D.; Araujo, M.; Bede, L.; Van Bael, S.A.; Cassano, C.R.; Oliveira, L.; Delabie, J.H.C. Conservation in tropical landscape mosaics: The case of the cacao landscape of southern Bahia, Brazil. Biodivers. Conserv. 2011, 20, 1635–1654. [Google Scholar] [CrossRef]
- Torres, C.; Jacovine, L.A.G.; Neto, S.N.O.; Brianezi, D.; Alves, E.B.B.M. Sistemas Agroflorestais no Brasil: Uma abordagem sobre a estocagem de carbono. Pesqui. Florest. Bras. 2014, 34, 235–244. [Google Scholar] [CrossRef]
- Collaboration for Environmental Evidence. Guidelines for Systematic Review and Evidence Synthesis in Environmental Management 2013. Version 4.2. Available online: www.environmentalevidence.org/Documents/Guidelines/Guidelines4.2.pdf (accessed on 4 November 2021).
- James, K.L.; Randall, N.P.; Haddaway, N.R. A methodology for systematic mapping in environmental sciences. Environ. Évid. 2016, 5, 7. [Google Scholar] [CrossRef]
- Collaboration for Environmental Evidence. Collaboration for Environmental Evidence, Annual Report 2014. Serving Global Environmental Management for All. Available online: http://www.environmentalevidence.org/wp-content/uploads/2014/05/Annual-Report-2014-FINAL-2.pdf (accessed on 12 November 2021).
- Rosset, P.M.; Altieri, M.A. Agroecology versus input substitution: A fundamental contradiction of sustainable agriculture. Soc. Nat. Resour. 1997, 10, 283–295. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES): Version 5.1 and Guidance on the Application of the Revised Structure. 2018. Available online: https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (accessed on 5 November 2021).
- Watanabe, M.D.B.; Ortega, E. Dynamic energy accounting of water and carbon ecosystem services: A model to simulate the impacts of land-use change. Ecol. Model. 2014, 271, 113–131. [Google Scholar]
- Faria, D.; Baumgarten, J. Shade cacao plantations (Theobroma cacao) and bat conservation in southern Bahia, Brazil. Biodivers. Conserv. 2007, 16, 291–312. [Google Scholar] [CrossRef]
- Cassano, C.R.; Kierulff, M.C.M.; Chiarello, A.G. The cacao agroforests of the Brazilian Atlantic forest as habitat for the endangered maned sloth Bradypus torquatus. Mamm. Biol. 2011, 76, 243–250. [Google Scholar] [CrossRef]
- Morante-Filho, J.C.; Faria, D.; Mariano-Neto, E.; Rhodes, J. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest. PLoS ONE 2015, 10, e0128923. [Google Scholar]
- Tapia-Coral, S.C.; Luizão, F.J.; Wandelli, E.; Fernandes, E.C.M. Carbon and nutrient stocks in the litter layer of agro-forestry systems in central Amazonia, Brazil. Agrofor. Syst. 2005, 65, 33–42. [Google Scholar]
- da Silva Nogueira, R.; de Oliveira, T.S.; de Sá Mendonça Filho, E.; Filho, J.A.A. Formas de fosforo em Luvissolo Cromico Ortico sob sistemas agroflorestais no município de Sobral-CE. Rev. Ciênc. Agron. 2008, 39, 494–502. [Google Scholar]
- De Aguiar, M.I.; Maia, S.M.F.; Xavier, F.A.D.S.; Mendonca, E.; Filho, J.A.A.; De Oliveira, T.S. Sediment, nutrient and water losses by water erosion under agroforestry systems in the semi-arid region in northeastern Brazil. Agrofor. Syst. 2010, 79, 277–289. [Google Scholar] [CrossRef]
- Santana de Lima, S.; Leite, L.F.C.; Oliveira, F.D.C.; Costa, D.B. Chemical properties and carbon and nitrogen stocks in an acrisol under agroforestry system and slash and burn practices in northern Piaui state. Rev. Árvore 2011, 35, 51–60. [Google Scholar]
- de Carvalho, W.R.; Vasconcelos, S.S.; Kato, O.R.; Capela, C.J.B.; Castellani, D.C. Short-term changes in the soil carbon stocks of young oil palm-based agroforestry systems in the eastern Amazon. Agrofor. Syst. 2014, 88, 357–368. [Google Scholar] [CrossRef]
- Aguiar, M.I.; Fialho, J.S.; Campanha, M.M.; Oliveira, T.S. Carbon sequestration and nutrient reserves under different land use systems. Rev. Arvore 2014, 38, 81–93. [Google Scholar]
- Leite, L.F.C.; Iwata, B.D.F.; Araujo, A. Soil organic matter pools in a tropical savanna under agroforestry system in Northeastern Brazil. Rev. Árvore 2014, 38, 711–723. [Google Scholar] [CrossRef]
- Sacramento, J.A.A.S.D.; Santos, J.A.G.; Loureiro, D.C.; Costa, O.V.; Cova, A.M.W. Spatial variability and changes in carbon stocks of a Regosols (Psamments) cultivated with sisal. Rev. Bras. Eng. Agríc. Ambient. 2018, 22, 764–769. [Google Scholar] [CrossRef]
- Fialho, J.S.; Primo, A.A.; de Aguiar, M.I.; Magalhães, R.B.; Maia, L.D.S.; Correia, M.E.F.; Campanha, M.M.; de Oliveira, T.S. Pedofauna diversity in traditional and agroforestry systems of the Brazilian semi-arid region. J. Arid. Environ. 2021, 184, 104315. [Google Scholar] [CrossRef]
- Rangel-Vasconcelos, L.G.T.; Kato, O.R.; Vasconcelos, S.S. Matéria orgânica leve do solo em sistema agroflorestal de corte e trituração sob manejo de capoeira. Pesqui. Agropecu. Bras. 2012, 47, 1142–1149. [Google Scholar]
- Martins, J.C.R.; De Freitas, A.D.S.; Menezes, R.S.C.; Sampaio, E.V.D.S.B. Nitrogen symbiotically fixed by cowpea and gliricidia in traditional and agroforestry systems under semiarid conditions. Pesqu. Agropecu. Bras. 2015, 50, 178–184. [Google Scholar] [CrossRef]
- Junior, M.A.L.; Fracetto, F.J.C.; da Silva Ferreira, J.; Silva, M.B.; Fracetto, G.G.M. Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. Catena 2020, 189, 104508. [Google Scholar] [CrossRef]
- Cezar, R.M.; Vezzani, F.M.; Schwiderke, D.K.; Gaiad, S.; Brown, G.; Seoane, C.E.S.; Froufe, L.C.M. Soil biological properties in multistrata successional agroforestry systems and in natural regeneration. Agrofor. Syst. 2015, 89, 1035–1047. [Google Scholar] [CrossRef]
- Prado, M.R.V.; Ramos, F.T.; Weber, O.L.D.S.; Müller, C.B. Organic Carbon and Total Nitrogen in the Densimetric Fractions of Organic Matter under Different Soil Management. Rev. Caatinga 2016, 29, 263–273. [Google Scholar] [CrossRef]
- Silva, M.D.; Ramalho, M. The influence of habitat and species attributes on the density and nest spacing of a stingless bee (Meliponini) in the Atlantic Rainforest. Sociobiology 2016, 63, 991–997. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Peres, C.A.; Dodonov, P.; Cassano, C.R. Multi-scale mammal responses to agroforestry landscapes in the Brazilian Atlantic Forest: The conservation value of forest and traditional shade plantations. Agrofor. Syst. 2020, 94, 2331–2341. [Google Scholar] [CrossRef]
- Maia, S.M.F.; Xavier, F.A.S.; Oliveira, T.; Mendonca, E.; Filho, J.A.D.A. Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil. Agrofor. Syst. 2007, 71, 127–138. [Google Scholar] [CrossRef]
- Maia, S.M.F.; Xavier, F.A.D.S.; De Oliveira, T.S.; Mendonça, E.D.S.; Filho, J.A.A. Frações de nitrogênio em Luvissolo sob sistemas agroflorestais e convencional no semi-árido cearense. Rev. Bras. Ciênc. Solo 2008, 32, 381–392. [Google Scholar] [CrossRef]
- Stöcker, C.M.; Bamberg, A.L.; Stumpf, L.; Monteiro, A.B.; Cardoso, J.H.; de Lima, A.C.R. Short-term soil physical quality improvements promoted by an agroforestry system. Agrofor. Syst. 2020, 94, 2053–2064. [Google Scholar] [CrossRef]
- Ackerman, I.L.; Constantino, R.; Gauch, J.H.G.; Lehmann, J.; Riha, S.J.; Fernandes, E.C.M. Termite (Insecta: Isoptera) Species Composition in a Primary Rain Forest and Agroforests in Central Amazonia. Biotropica 2009, 41, 226–233. [Google Scholar] [CrossRef]
- Moço, M.K.S.; Gama-Rodrigues, E.F.; Gama-Rodrigues, A.; Machado, R.C.; Baligar, V.C. Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia, Brazil. Appl. Soil Ecol. 2010, 46, 347–354. [Google Scholar] [CrossRef]
- Francesconi, W.; Nair, P.K.R.; Levey, D.J.; Daniels, J.; Cullen, L. Butterfly distribution in fragmented landscapes containing agroforestry practices in Southeastern Brazil. Agrofor. Syst. 2013, 87, 1321–1338. [Google Scholar] [CrossRef]
- Albuquerque, U.; Andrade, L.; Caballero, J. Structure and floristics of homegardens in Northeastern Brazil. J. Arid. Environ. 2005, 62, 491–506. [Google Scholar] [CrossRef]
- Da Rocha, W.D.; Ribeiro, S.P.; Neves, F.S.; Fernandes, G.W.; Leponce, M.; Delabie, J.H. How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic forest agroecosystem? Myrmecol. News 2015, 21, 83–92. [Google Scholar]
- Novais, S.M.A.; Macedo-Reis, L.; Neves, F. Predatory beetles in cacao agroforestry systems in Brazilian Atlantic forest: A test of the natural enemy hypothesis. Agrofor. Syst. 2017, 91, 201–209. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Le Pendu, Y.; Martinez, R.A. The use of a mixed rubber landscape by tufted-ear marmosets. Primates 2017, 59, 293–300. [Google Scholar] [CrossRef]
- Castaño-Meneses, G.; Santos, R.D.J.; Dos Santos, J.R.M.; Delabie, J.H.C.; Lopes, L.L.; Mariano, C.S.F. Invertebrates associated to Ponerine ants nests in two cocoa farming systems in the southeast of the state of Bahia, Brazil. Trop. Ecol. 2019, 60, 52–61. [Google Scholar] [CrossRef]
- De Almeida-Rocha, J.M.; Monsalvo, J.A.B.; Oliveira, L.D.C. Diet specialisation reduces the occupancy of cocoa agroforests by diurnal raptors. Bird Conserv. Int. 2019, 29, 558–574. [Google Scholar] [CrossRef]
- Silva, A.A.D.S.; Alvarez, M.R.D.V.; Mariano-Neto, E.; Cassano, C.R. Is shadier better? The effect of agroforestry management on small mammal diversity. Biotropica 2020, 52, 470–479. [Google Scholar] [CrossRef]
- Rolim, S.G.; Chiarello, A.G. Slow death of Atlantic forest trees in cocoa agroforestry in southeastern Brazil. Biodivers. Conserv. 2004, 13, 2679–2694. [Google Scholar] [CrossRef]
- Sambuichi, R.H.R.; Haridasan, M. Recovery of species richness and conservation of native Atlantic forest trees in the cacao plantations of southern Bahia in Brazil. Biodivers. Conserv. 2007, 16, 3681–3701. [Google Scholar] [CrossRef]
- Frigeri, E.; Cassano, C.R.; Pardini, R. Domestic Dog Invasion in an Agroforestry Mosaic in Southern Bahia, Brazil. Trop. Conserv. Sci. 2014, 7, 508–528. [Google Scholar] [CrossRef]
- Giné, G.A.F.; De Barros, E.H.; Duarte, J.M.B.; Faria, D. Home range and multiscale habitat selection of threatened thin-spined porcupine in the Brazilian Atlantic Forest. J. Mammal. 2015, 96, 1095–1105. [Google Scholar] [CrossRef]
- Gutiérrez, J.A.M.; Rousseau, G.; Andrade-Silva, J.; Delabie, J.H.C. Taxones superiores de hormigas como sustitutos de la riqueza de especies, en una cronosecuencia de bosques secundarios, bosque primario y sistemas agroforestales en la Amazonía Oriental, Brasil. Rev. Biol. Trop. 2016, 65, 279–291. [Google Scholar] [CrossRef]
- Delabie, J.H.C.; Jahyny, B.; Nascimento, I.C.D.; Mariano, C.S.F.; Lacau, S.; Campiolo, S.; Philpott, S.M.; Leponce, M. Contribution of cocoa plantations to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic Forest fauna of southern Bahia, Brazil. Biodivers. Conserv. 2007, 16, 2359–2384. [Google Scholar] [CrossRef]
- Rolim, S.G.; Sambuichi, R.H.R.; Schroth, G.; Nascimento, M.T.; Gomes, J.M.L. Recovery of Forest and Phylogenetic Structure in Abandoned Cocoa Agroforestry in the Atlantic Forest of Brazil. Environ. Manag. 2017, 59, 410–418. [Google Scholar] [CrossRef]
- Faria, D.; Laps, R.R.; Baumgarten, J.; Cetra, M. Bat and Bird Assemblages from Forests and Shade Cacao Plantations in Two Contrasting Landscapes in the Atlantic Forest of Southern Bahia, Brazil. Biodivers. Conserv. 2006, 15, 587–612. [Google Scholar] [CrossRef]
- Bomfim, J.D.A.; Silva, R.M.; Souza, V.D.F.; de Andrade, E.R.; Cazetta, E. Effects of shade cocoa plantation on artificial fruit consumption by birds in two contrasting landscapes in Southern Bahia, Brazil. J. Trop. Ecol. 2013, 29, 313–319. [Google Scholar] [CrossRef]
- Souza, V.; Bomfim, J.D.A.; Fontoura, T.; Cazetta, E. Richness and abundance of Aechmea and Hohenbergia (Bro-meliaceae) in forest fragments and shade cocoa plantations in two contrasting landscapes in southern Bahia, Brazil. Trop. Conserv. Sci. 2015, 8, 58–75. [Google Scholar]
- Rezende, C.L.; Scarano, F.R.; Assad, E.D.; Joly, C.A.; Metzger, J.P.; Strassburg, B.B.N.; Tabarelli, M.; Fonseca, G.A.; Mittermeier, R.A. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 2018, 16, 208–214. [Google Scholar] [CrossRef]
- Scarano, F.R.; Ceotto, P. Brazilian Atlantic forest: Impact, vulnerability, and adaptation to climate change. Biodivers. Conserv. 2015, 24, 2319–2331. [Google Scholar] [CrossRef]
- Vihervaara, P.; Rönkä, M.; Walls, M. Trends in Ecosystem Service Research: Early Steps and Current Drivers. Ambio 2010, 39, 314–324. [Google Scholar] [CrossRef]
- Palomo-Campesino, S.; González, J.A.; García-Llorente, M. Exploring the Connections between Agroecological Practices and Ecosystem Services: A Systematic Literature Review. Sustainability 2018, 10, 4339. [Google Scholar] [CrossRef]
- Parron, L.M.; Fidalgo, E.C.; Luz, A.P.; Campanha, M.M.; Turetta, A.P.; Pedreira, B.C.; Prado, R.B. Research on ecosystem services in Brazil: A systematic review. Rev. Ambiente Água 2019, 14, e2263. [Google Scholar]
- Nair, P.K.R.; Garrity, D. Agroforestry research and development: The way forward. In Advances in Agroforestry, 1st ed.; Springer: Dordrecht, The Netherlands, 2012; Volume 1, pp. 515–531. [Google Scholar]
- Kay, S.; Graves, A.; Palma, J.H.; Moreno, G.; Roces-Díaz, J.V.; Aviron, S.; Chouvardas, D.; Crous-Duran, J.; Ferreiro-Domínguez, N.; de Jalón, S.G.; et al. Agroforestry is paying off—Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosyst. Serv. 2019, 36, 100896. [Google Scholar] [CrossRef]
- Horcea-Milcu, A.-I.; Hanspach, J.; Abson, D.; Fischer, J. Cultural Ecosystem Services: A Literature Review and Prospects for Future Research. Ecol. Soc. 2013, 18, 44–88. [Google Scholar] [CrossRef]
- Siddique, I.; Dionisio, A.C.; Simões-Ramos, G.A. Rede SAFAS: Construindo Conhecimentos Sobre Agroflorestas em Rede, 1st ed.; UFSC: Florianópolis, Brazil, 2017; Volume 3, p. 94. [Google Scholar]
- La Rovere, E.L.; Dubeux, C.B.S.; Wills, W.; Pereira, A. Climate change mitigation actions in Brazil. Clim. Dev. 2013, 6, 25–33. [Google Scholar] [CrossRef]
- Gama-Rodrigues, E.F.; Nair, P.K.R.; Nair, V.D.; Gama-Rodrigues, A.C.; Baligar, V.C.; Machado, R.C.R. Carbon Storage in Soil Size Fractions Under Two Cacao Agroforestry Systems in Bahia, Brazil. Environ. Manag. 2010, 45, 274–283. [Google Scholar] [CrossRef]
- Somarriba, E.; Cerda, R.; Orozco, L.; Cifuentes, M.; Dávila, H.; Espin, T.; Mavisoy, H.; Ávila, G.; Alvarado, E.; Poveda, V.; et al. Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric. Ecosyst. Environ. 2013, 173, 46–57. [Google Scholar] [CrossRef]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; Van Noordwijk, M.; Wang, M. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Nat. Sci. Rep. 2016, 6, 29987. [Google Scholar]
- Feliciano, D.; Ledo, A.; Hillier, J.; Nayak, D.R. Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric. Ecosyst. Environ. 2018, 254, 117–129. [Google Scholar] [CrossRef]
- Metzger, J.P.; Bustamante, M.M.; Ferreira, J.; Fernandes, G.W.; Embid, F.L.; Pillar, V.D.; Prist, P.R.; Rodrigues, R.R.; Vieira, I.C.G.; Overbeck, G.E. Why Brazil needs its Legal Reserves. Perspect. Ecol. Conserv. 2019, 17, 91–103. [Google Scholar] [CrossRef]
- dos Santos, D.; Joner, F.; Shipley, B.; Teleginski, M.; Lucas, R.R.; Siddique, I. Crop functional diversity drives multiple ecosystem functions during early agroforestry succession. J. Appl. Ecol. 2021, 58, 1718–1727. [Google Scholar] [CrossRef]
- Kumar, N.; Khamzina, A.; Tischbein, B.; Knöfel, P.; Conrad, C.; Lamers, J.P. Spatio-temporal supply–demand of surface water for agroforestry planning in saline landscape of the lower Amudarya Basin. J. Arid. Environ. 2019, 162, 53–61. [Google Scholar] [CrossRef]
- Coe, R.; Sinclair, F.; Barrios, E. Scaling up agroforestry requires research ‘in’ rather than ‘for’ development. Curr. Opin. Environ. Sustain. 2014, 6, 73–77. [Google Scholar]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing nature’s contributions to people. Science 2018, 359, 270–272. [Google Scholar] [CrossRef]
Types of AF | Predominant Land Use | Spatial Arrangement | Composition | Dominant Crop Species |
---|---|---|---|---|
Agro silvicultural | Mainly forest | Mixed dense | Secondary forest + perennial crop | Cacao (Theobroma cacao), coffee (Coffea sp.), yerba mate (Ilex paraguariensis), fava d’anta (Dimorphandra gardneriana), rubber tree (Hevea brasiliensis), sisal fiber (Agave sisalana), oil palm |
Mainly forest | Mixed dense | Perennial crop + tree for shade/biomass/other | rubber tree + coffee, cacao + rubber tree, cacao + erythrina (Erythrina glauca), coffee + araucaria (Araucaria angustifolia). | |
Mainly forest | Mixed dense | Perennial crop + mixed trees | Coffee, rubber tree, cacao, etc. | |
Mainly forest | Mixed dense | Mixed trees/shrubs planted for diverse purposes | Fruits: papaya (Carica papaya), guava (Psidium guajava), banana (Musa sp.), cashew (Anacardium occidentale), mango (Mangifera indica), palm tree (Euterpe edulis), cupuaçu (Theobroma grandiflorum), açai palm (Euterpe oleracea), andiroba (Carapa guianensis), coconut (Cocos nucifera), citrus. Biomass or wood: eucalypt (Eucalyptus sp.), leucena (Leucaena leucocephala), native species, manioc (Manihot esculenta), pigeonpea (Cajanus cajan), etc. | |
Mainly agriculture | Stripes | Intercropping of agricultural crops with diverse tree species in alley | Corn (Zea mays), rice (Oriza sp.), sorghum (Sorghun sp.), cashew, mango (Mangifera indica), etc. | |
Mainly agriculture | Stripes | Perennial crop + agricultural crops | Coffee and corn/beans, etc. | |
Agro silvopastoral | Mainly pasture/agriculture | Mixed sparse | Intercropping of agricultural crops + forage + mixed trees | Coffee, prickly pear (Opuntia ficus-indica), manicoba (Manihot glaziovii), eucalyptus, acacia (Acacia mangium), etc. |
Silvopastoral | Mainly pasture | Stripes | Forage + trees in alleys for biomass/wood | Paricá (Schizolobium amazonicum), coffee and shade trees, cashew, leucena, glirícidia (Gliridia sepium), etc. |
Mainly pasture | Mixed sparse | Forage + sparse native trees | Species from the families Boraginaceae, Fabaceae, Apocynaceae. etc. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuler, H.R.; Alarcon, G.G.; Joner, F.; dos Santos, K.L.; Siminski, A.; Siddique, I. Ecosystem Services from Ecological Agroforestry in Brazil: A Systematic Map of Scientific Evidence. Land 2022, 11, 83. https://doi.org/10.3390/land11010083
Schuler HR, Alarcon GG, Joner F, dos Santos KL, Siminski A, Siddique I. Ecosystem Services from Ecological Agroforestry in Brazil: A Systematic Map of Scientific Evidence. Land. 2022; 11(1):83. https://doi.org/10.3390/land11010083
Chicago/Turabian StyleSchuler, Hanna R., Gisele G. Alarcon, Fernando Joner, Karine Louise dos Santos, Alexandre Siminski, and Ilyas Siddique. 2022. "Ecosystem Services from Ecological Agroforestry in Brazil: A Systematic Map of Scientific Evidence" Land 11, no. 1: 83. https://doi.org/10.3390/land11010083