Comparison of Bacterial Community in Paddy Soil after Short-Term Application of Pig Manure and the Corresponding Organic Fertilizer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Experimental Set-Up
2.3. Soil Sample Collection
2.4. Physical and Chemical Characteristics
2.5. Microbial Community Characterization
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Characteristics of Paddy Soil
3.2. Microbial Richness and Diversity of Paddy Soil
3.3. Composition of Microbial Community of Paddy Soil
3.4. Effects of Environmental Factors on Soil Microbial Community in Paddy Field
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Guo, T.; Lou, C.L.; Zhai, W.W.; Tang, X.J.; Hashmi, M.Z.; Murtaza, R.; Li, Y.; Liu, X.M.; Xu, J.M. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. Sci. Total Environ. 2018, 635, 995–1003. [Google Scholar] [CrossRef]
- Shen, Y.J.; Zhao, L.X.; Meng, H.B.; Hou, Y.Q.; Zhou, H.B.; Wang, F.; Cheng, H.S.; Liu, H.B. Effect of aeration rate, moisture content and composting period on availability of copper and lead during PM composting. Waste Manag. Res. 2016, 34, 578–583. [Google Scholar] [CrossRef]
- Mandal, A.; Patra, A.K.; Singh, D.; Swarup, A.; Masto, R.E. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour. Technol. 2007, 98, 3585–3592. [Google Scholar] [CrossRef]
- Schmitt, H.; Stoob, K.; Hamscher, G.; Smit, E.; Seinen, W. Tetracyclines and tetracycline resistance in agricultural soils: Microcosm and field studies. Microb. Ecol. 2006, 51, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 2011, 14, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Chen, H.; Su, C.; Yan, S. Abundance and persistence of antibiotic resistance genes in livestock farms: A comprehensive investigation in eastern China. Environ. Int. 2013, 61, 1–7. [Google Scholar] [CrossRef]
- Peng, S.; Wang, Y.; Zhou, B.; Lin, X. Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. Sci. Total Environ. 2015, 506, 279–286. [Google Scholar] [CrossRef]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Hu, R.; Zhang, C. Does the adoption of complex fertilizers contribute to fertilizer overuse? Evidence from rice production in China. J. Clean. Prod. 2019, 219, 677–685. [Google Scholar] [CrossRef]
- Xie, W. The research of livestock and poultry breeding pollution problem and governance mechanism in Chongming. Shanghai Jiao Tong Univ. 2015. [Google Scholar]
- Jannoura, R.; Joergensen, R.G.; Bruns, C. Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. Eur. J. Agron. 2014, 52, 259–270. [Google Scholar] [CrossRef]
- Insam, H.; Gómez-Brandón, M.; Ascher, J. Manure-based biogas fermentation residues—Friend or foe of soil fertility? Soil Biol. Biochem. 2015, 84, 1–14. [Google Scholar] [CrossRef]
- Orr, C.H.; Leifert, C.; Cummings, S.P.; Cooper, J.M. Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. PLoS ONE 2012, 7, e52891. [Google Scholar] [CrossRef] [Green Version]
- Garaiyurrebaso, O.; Garbisu, C.; Blanco, F.; Lanzén, A.; Martín, I.; Epelde, L.; Becerril, J.M.; Jechalke, S.; Smalla, K.; Grohmann, E.; et al. Long-term effects of aided phytostabilisation on microbial communities of metal-contaminated mine soil. FEMS Microbiol. Ecol. 2017, 93, fiw252. [Google Scholar] [CrossRef] [PubMed]
- Daquiado, A.R.; Kuppusamy, S.; Kim, S.Y.; Kim, J.H.; Kim, P.J.; Oh, S.; Kwak, Y.; Lee, Y.B. Pyrosequencing analysis of bacterial community diversity in long-term fertilized paddy field soil. Appl. Soil Ecol. 2016, 108, 84–91. [Google Scholar] [CrossRef]
- Cruz, A.F.; Hamel, C.; Hanson, K.; Selles, F.; Zentner, R.P. Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a Brown Chernozem. Plant Soil. 2009, 315, 173–184. [Google Scholar] [CrossRef]
- Liesack, W.; Schnell, S.; Revsbech, N.P. Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 2000, 24, 625–645. [Google Scholar] [CrossRef] [PubMed]
- Girvan, M.S.; Campbell, C.D.; Killham, K.; Prosser, J.I.; Glover, L.A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 2005, 7, 301–313. [Google Scholar] [CrossRef]
- Tan, Z.J.; Zhou, W.J.; Zhang, Y.Z.; Zeng, X.B.; Xiao, N.Q.; Liu, Q. Effect of fertilization systems on microbes in the paddy soil. Plant Nutr. Fertil. 2007, 13, 430–435. [Google Scholar]
- Wang, W.H.; Liu, Y.; Tang, H.M.; Sun, Z.L.; Bao-Zhen, L.I.; Ti-Da, G.E.; Jin-Shui, W.U. Effects of Long-term Fertilization Regimes on Microbial Biomass, Community Structure and Activity in a Paddy Soil. Environ. Sci. 2018, 39, 430–437. [Google Scholar]
- Kumar, U.; Shahid, M.; Tripathi, R.; Mohanty, S.; Kumar, A.; Bhattacharyya, P.; Lal, B.; Gautam, P.; Raja, R.; Panda, B.B.; et al. Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecol. Indic. 2017, 73, 536–543. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Pan, W.U.; Peng, S. Influence of long-term manure application in paddy soil on the functional diversity of microbial community. Chin. J. Appl. Environ. Biol. 2019, 25, 593–602. [Google Scholar]
- Xie, W.Y.; Shen, Q.; Zhao, F.J. Antibiotics and antibiotic resistance from animal manures to soil: A review. Eur. J. Soil Sci. 2018, 69, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Davide, F.; Elke, S.; Lentendu, G.; Wubet, T.; Buscot, F.; Reite, T. Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar]
- Ying, W.; Ji, H.; Gao, C. Differential responses of soil bacterial taxa to long-term P, N, and organic manure application. J. Soils Sediments 2016, 16, 1046–1058. [Google Scholar]
- Cui, E.; Cui, B.; Fan, X.; Li, S.; Gao, F. Ryegrass (Lolium multiflorum L.) and indian mustard (Brassica juncea L.) intercropping can improve the phytoremediation of antibiotics and antibiotic resistance genes but not heavy metals. Sci. Total Environ. 2021, 784, 147093. [Google Scholar] [CrossRef]
- Meng, J.; Wang, L.; Zhong, L.; Liu, X.; Brookes, P.C.; Xu, J.; Chen, H. Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure. Chemosphere 2017, 180, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, X.; Wang, Z.; Liang, Z.; Wang, M.; Liu, M.; Suarez, D.L. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.). Agric. Water Manag. 2017, 194, 48–57. [Google Scholar] [CrossRef]
- Ping, Q.; Lu, X.; Zheng, M.; Li, Y. Effect of CaO2 addition on anaerobic digestion of waste activated sludge at different temperatures and the promotion of valuable carbon source production under ambient condition. Bioresour. Technol. 2018, 265, 247–256. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Chen, L.Y.; Shi, J. Research Progress of the Mechanism of Action of Heavy Metal in Soil Environment by Biochar. Environ. Sci. Surv. 2017, 36, 12–18. [Google Scholar]
- Hui, C.; Liu, B.; Wei, R.; Jiang, H.; Zhao, Y.; Liang, Y.; Zhang, Q.; Xu, L. Dynamics, biodegradability, and microbial community shift of water-extractable organic matter in rice-wheat cropping soil under different fertilization treatments. Environ. Pollut. 2019, 249, 686–695. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Yu, W.; Turak, A.; Chen, D.; Huang, Y.; Ao, J.; Jiang, Y.; Huang, Z. Effects of Nitrogen and Phosphorus Inputs on Soil Bacterial Abundance, Diversity, and Community Composition in Chinese Fir Plantations. Front. Microbiol. 2018, 9, 1543. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Huang, S.; Sha, C.; Wu, J.; Cui, C.; Su, J.; Ruan, J.; Tan, J.; Tang, H.; Xue, J. Changes of bacterial community in arable soil after short-term application of fresh manures and organic fertilizer. Environ. Technol. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, V.; Rehman, A.; Mishra, A.; Chauhan, P.S.; Nautiyal, C.S. Changes in Bacterial Community Structure of Agricultural Land Due to Long-Term Organic and Chemical Amendments. Microb. Ecol. 2012, 64, 450–460. [Google Scholar] [CrossRef]
- Podosokorskaya, O.A.; Bonch-Osmolovskaya, E.A.; Novikov, A.A.; Kolganova, T.V.; Kublanov, I.V. Ornatilinea apprima gen. nov., sp. nov., A cellulolytic representative of the class Anaerolineae. Int. J. Syst. Evol. Microbiol. 2013, 63(Pt. 1), 86–92. [Google Scholar] [CrossRef] [Green Version]
- Calleja-Cervantes, M.E.; Menéndez, S.; Fernández-González, A.J.; Irigoyen, I.; Cibriáin-Sabalza, J.F.; Toro, N.; Aparicio-Tejo, P.M.; Fernández-López, M. Changes in soil nutrient content and bacterial community after 12 years of organic amendment application to a vineyard. Eur. J. Soil Sci. 2015, 66, 802–812. [Google Scholar] [CrossRef]
- Park, S.-J.; Andrei, A.-Ş.; Bulzu, P.-A.; Kavagutti Vinicius, S.; Ghai, R.; Mosier Annika, C.; Atomi, H. Expanded Diversity and Metabolic Versatility of Marine Nitrite-Oxidizing Bacteria Revealed by Cultivation- and Genomics-Based Approaches. Appl. Environ. Microb. 2020, 86, e01667-20. [Google Scholar] [CrossRef]
- Wang, D.; Li, T.; Huang, K.; He, X.; Zhang, X.-X. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal. Sci. Total Environ. 2019, 655, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Park, M.K.; Park, Y.J.; Min, J.K.; Kim, M.; Shin, J.H. Complete genome sequence of a plant growth-promoting bacterium Pseudarthrobacter sp. NIBRBAC000502772, isolated from shooting range soil in the Republic of Korea. J. Microbiol. 2021, 56, 390–393. [Google Scholar]
- Yang, X.P.; Wang, S.M.; Zhang, D.W.; Zhou, L.X. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, Bacillus subtilis A1. Bioresour. Technol. 2011, 102, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Ehrich, S.; Behrens, D.; Lebedeva, E.; Ludwig, W.; Bock, E. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch. Microbiol. 1995, 164, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Bossolani, J.W.; Crusciol Carlos, A.C.; Leite, M.F.A.; Merloti, L.F.; Moretti, L.G.; Pascoaloto, I.M.; Kuramae, E.E. Modulation of the soil microbiome by long-term Ca-based soil amendments boosts soil organic carbon and physicochemical quality in a tropical no-till crop rotation system. Soil Biol. Biochem. 2021, 156, 108188. [Google Scholar] [CrossRef]
- Kennedy, N.; Brodie, E.; Connolly, J.; Clipson, N. Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms. Environ. Microbiol. 2004, 6, 1070–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.H.; Gerding, D.N.; Johnson, S.; Kelly, C.P.; Loo, V.G.; McDonald, L.C.; Pepin, J.; Wilcox, M.H. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect. Control. Hosp. Epidemiol. 2010, 31, 431–455. [Google Scholar] [CrossRef]
- Krulwich, T.A.; Guffanti, A.A.; Ito, M. pH Tolerance in Bacillus: Alkaliphiles versus Non-Alkaliphiles; Novartis Foundation: Basel, Switzerland, 1999; Volume 221, p. 167. [Google Scholar]
- Hamm, A.C.; Tenuta, M.; Krause, D.O.; Ominski, K.H.; Tkachulk, V.L.; Flaten, D.N. Bacterial communities of an agricultural soil amenden with soild pig and dairy manures, and urea fertilizer. Appl. Soil Ecol. 2016, 103, 61–71. [Google Scholar] [CrossRef]
Stage | Tests | Cu (mg·kg−1) | Pb (mg·kg−1) | As (mg·kg−1) | Cr (mg·kg−1) | Hg (mg·kg−1) | Zn (mg·kg−1) | Cd (mg·kg−1) | Ni (mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|
Tillering stage | CK-T | 23.00 ± 0.00a | 31.23 ± 5.08a | 11.53 ± 0.15a | 115.67 ± 14.22a | 0.13 ± 0.02a | 80.67 ± 2.52a | 0.14 ± 0.01a | 35.33 ± 3.79a |
PM-T | 22.33 ± 0.58a | 26.80 ± 2.96a | 12.00 ± 0.44a | 150.67 ± 62.93a | 0.12 ± 0.02a | 81.00 ± 2.65a | 0.14 ± 0.01a | 44.00 ± 14.00a | |
OF-T | 22.33 ± 0.58a | 25.97 ± 0.35a | 11.40 ± 0.30a | 109.33 ± 25.79a | 0.12 ± 0.01a | 80.67 ± 3.06a | 0.14 ± 0.01a | 32.67 ± 9.29a | |
Heading stage | CK-H | 20.33 ± 0.58a | 20.20 ± 1.97a | 6.37 ± 1.40a | 110.67 ± 59.28a | 0.06 ± 0.01a | 71.00 ± 2.65b | 0.10 ± 0.01a | 70.33 ± 18.58a |
PM-H | 20.00 ± 2.00a | 20.03 ± 1.01a | 5.83 ± 1.08a | 188.00 ± 44.53a | 0.05 ± 0.01a | 74.00 ± 1.73ab | 0.11 ± 0.01a | 112.00 ± 27.62a | |
OF-H | 22.33 ± 2.89a | 18.67 ± 0.65a | 5.19 ± 0.78a | 158.67 ± 73.28a | 0.05 ± 0.01a | 77.67 ± 3.79a | 0.10 ± 0.00a | 92.00 ± 31.24a | |
Ripening stage | CK-R | 20.33 ± 2.52a | 15.50 ± 1.77a | 5.40 ± 0.55a | 104.00 ± 21.93a | 0.06 ± 0.02a | 59.00 ± 6.56a | 0.1 ± 0.01a | 72.00 ± 25.53a |
PM-R | 19.67 ± 0.58a | 14.57 ± 0.78a | 4.44 ± 0.55b | 73.67 ± 8.50b | 0.06 ± 0.02a | 61.67 ± 3.79a | 0.11 ± 0.00a | 50.67 ± 2.31a | |
OF-R | 18.33 ± 0.58a | 14.03 ± 0.90a | 4.61 ± 0.11ab | 83.00 ± 7.55ab | 0.05 ± 0.05a | 58.67 ± 6.66a | 0.11 ± 0.01a | 54.67 ± 10.69a |
Stage | Tests | pH | OM (g·kg−1) | TN (g·kg−1) | TP (g·kg−1) | TK (g·kg−1) |
---|---|---|---|---|---|---|
Tillering stage | CK-T | 8.23 ± 0.02a | 14.00 ± 4.36a | 0.81 ± 0.07a | 1.02 ± 0.05b | 3.18 ± 0.95a |
PM-T | 8.20 ± 0.02a | 18.00 ± 12.77a | 0.91 ± 0.05a | 1.14 ± 0.02a | 2.66 ± 0.88a | |
OF-T | 8.16 ± 0.02b | 16.00 ± 0.00a | 0.95 ± 0.22a | 1.12 ± 0.06a | 2.56 ± 0.32a | |
Heading stage | CK-H | 8.4 ± 0.06a | 30.33 ± 3.06b | 1.35 ± 0.06a | 1.00 ± 0.13b | 25.90 ± 1.13ab |
PM-H | 8.32 ± 0.03a | 35.33 ± 0.58a | 1.46 ± 0.09a | 1.18 ± 0.03a | 27.80 ± 1.23a | |
OF-H | 8.23 ± 0.04b | 30.33 ± 0.58b | 1.46 ± 0.07a | 1.18 ± 0.05a | 24.70 ± 1.42b | |
Ripening stage | CK-R | 8.23 ± 0.02a | 23.33 ± 2.08a | 0.94 ± 0.06b | 1.01 ± 0.07b | 22.00 ± 3.03a |
PM-R | 8.22 ± 0.03a | 20.33 ± 3.51a | 0.86 ± 0.05b | 1.11 ± 0.04b | 22.27 ± 3.88a | |
OF-R | 8.13 ± 0.01b | 20.33 ± 3.06a | 1.35 ± 0.26a | 1.23 ± 0.06a | 23.23 ± 0.32a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Sha, C.; Wu, J.; Li, P.; Tan, J.; Huang, S. Comparison of Bacterial Community in Paddy Soil after Short-Term Application of Pig Manure and the Corresponding Organic Fertilizer. Land 2022, 11, 9. https://doi.org/10.3390/land11010009
Wang M, Sha C, Wu J, Li P, Tan J, Huang S. Comparison of Bacterial Community in Paddy Soil after Short-Term Application of Pig Manure and the Corresponding Organic Fertilizer. Land. 2022; 11(1):9. https://doi.org/10.3390/land11010009
Chicago/Turabian StyleWang, Min, Chenyan Sha, Jianqiang Wu, Peng Li, Juan Tan, and Shenfa Huang. 2022. "Comparison of Bacterial Community in Paddy Soil after Short-Term Application of Pig Manure and the Corresponding Organic Fertilizer" Land 11, no. 1: 9. https://doi.org/10.3390/land11010009
APA StyleWang, M., Sha, C., Wu, J., Li, P., Tan, J., & Huang, S. (2022). Comparison of Bacterial Community in Paddy Soil after Short-Term Application of Pig Manure and the Corresponding Organic Fertilizer. Land, 11(1), 9. https://doi.org/10.3390/land11010009