How Does the Spatial Misallocation of Land Resources Affect Urban Industrial Transformation and Upgrading? Evidence from China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
3. Model Construction and Data Collection
3.1. Econometric Analysis of the Impact Outcome Dimension: A Spatial Panel Model
3.2. Econometric Analysis of the Impact Mechanism Dimension: A Mediating Effect Model
3.3. Data Collection
4. Empirical Results Analysis
4.1. Results of the Econometric Analysis of the Impact Outcome Dimension
4.1.1. Spatial Panel Model Specification Test
4.1.2. Results of the Econometric Analysis of the Spatial Panel Model
4.2. Results of the Econometric Analysis of The Impact Mechanism Dimension
4.2.1. Intermediate Mechanisms of the Impact of LSM on UITU: Cities with a Relative Land Supply Surplus
4.2.2. Intermediate Mechanisms of the Impact of LSM on UITU: Cities with a Relative Land Supply Shortage
5. Robustness Test
5.1. Robustness Test for the Impact Outcome Dimension
5.2. Robustness Test for the Impact Mechanism Dimension
6. Discussion
7. Conclusions and Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gereffi, G. Development models and industrial upgrading in China and Mexico. Eur. Sociol. Rev. 2008, 25, 37–51. [Google Scholar] [CrossRef]
- Brandt, L.; Thun, E. Constructing a ladder for growth: Policy, markets, and industrial upgrading in china. World Dev. 2016, 80, 78–95. [Google Scholar] [CrossRef]
- Lee, K.; Qu, D.; Mao, Z. Global value chains, industrial policy, and industrial upgrading: Automotive sectors in Malaysia, Thailand, and china in comparison with Korea. Eur. J. Dev. Res. 2021, 33, 275–303. [Google Scholar] [CrossRef]
- Li, M.; Guan, S. Does China’s state-owned sector lead industrial transformation and upgrading? J. Clean. Prod. 2022, 338, 130412. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Klenow, P.J. Misallocation and manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef]
- Wu, N.; Liu, Z. Higher education development, technological innovation and industrial structure upgrade. Technol. Forecast. Soc. Chang. 2021, 162, 120400. [Google Scholar] [CrossRef]
- Wu, L.; Sun, L.; Qi, P.; Ren, X.; Sun, X. Energy endowment, industrial structure upgrading, and co2 emissions in China: Revisiting resource curse in the context of carbon emissions. Resour. Policy 2021, 74, 102329. [Google Scholar] [CrossRef]
- Anwar, S.; Sun, S. Foreign direct investment and export quality upgrading in China’s manufacturing sector. Int. Rev. Econ. Financ. 2018, 54, 289–298. [Google Scholar] [CrossRef]
- Salim, A.; Razavi, M.R.; Afshari-Mofrad, M. Foreign direct investment and technology spillover in iran: The role of technological capabilities of subsidiaries. Technol. Forecast. Soc. Chang. 2017, 122, 207–214. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, X.; Zhang, M. The influence of environmental regulation on industrial structure upgrading: Based on the strategic interaction behavior of environmental regulation among local governments. Technol. Forecast. Soc. Chang. 2021, 170, 120930. [Google Scholar] [CrossRef]
- Du, K.; Cheng, Y.; Yao, X. Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities. Energy Econ. 2021, 98, 105247. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. How does vertical fiscal imbalance affect the upgrading of industrial structure? Empirical evidence from China. Technol. Forecast. Soc. Chang. 2021, 170, 120886. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q. Research on the impact of green finance on the upgrading of China’s regional industrial structure from the perspective of sustainable development. Resour. Policy 2021, 74, 102436. [Google Scholar] [CrossRef]
- García-Vega, M.; Kneller, R.; Stiebale, J. Labor market reform and innovation: Evidence from Spain. Res. Policy 2021, 50, 104213. [Google Scholar] [CrossRef]
- Hu, G. Is knowledge spillover from human capital investment a catalyst for technological innovation? The curious case of fourth industrial revolution in brics economies. Technol. Forecast. Soc. Chang. 2021, 162, 120327. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Q.; Yan, S.; Guo, G.; Peng, S. China’s local governments breaking the land use planning quota: A strategic interaction perspective. Land Use Policy 2020, 92, 104434. [Google Scholar] [CrossRef]
- Han, L.; Lu, M. Housing prices and investment: An assessment of China’s inland-favoring land supply policies. J. Asia Pac. Econ. 2017, 22, 106–121. [Google Scholar] [CrossRef]
- Fan, J.; Zhou, L.; Yu, X.; Zhang, Y. Impact of land quota and land supply structure on China’s housing prices: Quasi-natural experiment based on land quota policy adjustment. Land Use Policy 2021, 106, 105452. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Gyourko, J.; Saks, R.E. Urban growth and housing supply. J. Econ. Geogr. 2006, 6, 71–89. [Google Scholar] [CrossRef]
- Chen, W.; Shen, Y.; Wang, Y. Does industrial land price lead to industrial diffusion in China? An empirical study from a spatial perspective. Sustain. Cities Soc. 2018, 40, 307–316. [Google Scholar] [CrossRef]
- Han, L.; Lu, M.; Xiang, K.; Zhong, H. Density, distance and debt: New-town construction and local-government financial risks in China. J. Asian Econ. 2021, 77, 101376. [Google Scholar] [CrossRef]
- Mo, J. Land financing and economic growth: Evidence from Chinese counties. China Econ. Rev. 2018, 50, 218–239. [Google Scholar] [CrossRef]
- Du, W.; Li, M. The impact of land resource mismatch and land marketization on pollution emissions of industrial enterprises in China. J. Environ. Manag. 2021, 299, 113565. [Google Scholar] [CrossRef] [PubMed]
- Egidi, G.; Cividino, S.; Quaranta, G.; Alhuseen, A.; Salvati, L. Land mismatches, urban growth and spatial planning: A contribution to metropolitan sustainability. Environ. Impact Assess. Rev. 2020, 84, 106439. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Government intervention and land misallocation: Evidence from China. Cities 2017, 60, 323–332. [Google Scholar] [CrossRef]
- Ding, C.; Niu, Y.; Lichtenberg, E. Spending preferences of local officials with off-budget land revenues of Chinese cities. China Econ. Rev. 2014, 31, 265–276. [Google Scholar] [CrossRef]
- Wang, J.; Skidmore, M.; Wu, Q.; Wang, S. The impact of a tax cut reform on land finance revenue: Constrained by the binding target of construction land. J. Urban Aff. 2020, 1–30. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, X.; Jin, X.; Mao, N. Government competition, land supply structure and semi-urbanization in China. Land 2021, 10, 1371. [Google Scholar] [CrossRef]
- Ma, A.; He, Y.; Tang, P. Understanding the impact of land resource misallocation on carbon emissions in China. Land 2021, 10, 1188. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Strategic interaction in local governments’ industrial land supply: Evidence from China. Urban Stud. 2016, 54, 1328–1346. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, J.; Zhu, D.; Jiang, X.; Zhang, H.; Zhang, Y. Land marketization and urban innovation capability: Evidence from China. Habitat Int. 2022, 122, 102540. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, X.; Gong, M. How land transfer marketization influence on green total factor productivity from the approach of industrial structure? Evidence from China. Land Use Policy 2020, 95, 104610. [Google Scholar] [CrossRef]
- Cheong, T.S.; Wu, Y. The impacts of structural transformation and industrial upgrading on regional inequality in China. China Econ. Rev. 2014, 31, 339–350. [Google Scholar] [CrossRef]
- Hu, J.; Liang, J.; Fang, J.; He, H.; Chen, F. How do industrial land price and environmental regulations affect spatiotemporal variations of pollution-intensive industries? Regional analysis in China. J. Clean. Prod. 2021, 333, 130035. [Google Scholar] [CrossRef]
- Lin, G.C.S.; Yi, F. Urbanization of capital or capitalization on urban land? Land development and local public finance in urbanizing China. Urban Geogr. 2011, 32, 50–79. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, L.; Cao, Y.; Yang, L. Industrial land supply at different technological intensities and its contribution to economic growth in China: A case study of the Beijing-Tianjin-Hebei region. Land Use Policy 2021, 101, 105087. [Google Scholar] [CrossRef]
- Chen, W.; Shen, Y.; Wang, Y.; Wu, Q. How do industrial land price variations affect industrial diffusion? Evidence from a spatial analysis of China. Land Use Policy 2018, 71, 384–394. [Google Scholar] [CrossRef]
- Mian, A.R.; Sufi, A. House prices, home equity-based borrowing, and the U.S. Household leverage crisis. Am. Econ. Rev. 2011, 101, 32–56. [Google Scholar] [CrossRef]
- Wang, D.; Ren, C.; Zhou, T. Understanding the impact of land finance on industrial structure change in China: Insights from a spatial econometric analysis. Land Use Policy 2021, 103, 105323. [Google Scholar] [CrossRef]
- Cao, G.; Feng, C.; Tao, R. local land finance in China’s urban expansion: Challenges and solutions. China World Econ. 2008, 16, 19–30. [Google Scholar] [CrossRef]
- Yang, Z.; Pan, Y. Human capital, housing prices, and regional economic development: Will “vying for talent” through policy succeed? Cities 2020, 98, 102577. [Google Scholar] [CrossRef]
- Brueckner, J.K. Strategic interaction among governments: An overview of empirical studies. Int. Reg. Sci. Rev. 2003, 26, 175–188. [Google Scholar] [CrossRef]
- Hernandez-Murillo, R. Strategic interaction in tax policies among states. Fed. Reserve Bank St Louis Rev. 2003, 85, 47–56. [Google Scholar] [CrossRef]
- Alesina, A.; Zhuravskaya, E. Segregation and the quality of government in a cross-section of countries. Am. Econ. Rev. 2011, 101, 1872–1911. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Z.; Gu, X.; Zhou, L. Arrival of young talents: The send-down movement and rural education in China. Am. Econ. Rev. 2020, 110, 3393–3430. [Google Scholar] [CrossRef]
- Hayes, F.A. Beyond baron and kenny: Statistical mediation analysis in the new millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Guangdong Academy of Social Sciences. Research Report on the Evaluation of Guangdong Industrial Transformation and Upgrading; Guangdong Academy of Social Sciences: Guangzhou, China, 2020. [Google Scholar]
- Chen, B.; Lin, J.Y. Development strategy, resource misallocation and economic performance. Struct. Change Econ. Dyn. 2021, 59, 612–634. [Google Scholar] [CrossRef]
- Hao, Y.; Gai, Z.; Wu, H. How do resource misallocation and government corruption affect green total factor energy efficiency? Evidence from China. Energ. Policy 2020, 143, 111562. [Google Scholar] [CrossRef]
- Schaaper, M. Measuring China’s Innovation System: National Specificities and International Comparisons; OECD Publishing: Paris, France, 2009. [Google Scholar]
- Tang, P.; Feng, Y.; Li, M.; Zhang, Y. Can the performance evaluation change from central government suppress illegal land use in local governments? A new interpretation of Chinese decentralisation. Land Use Policy 2021, 108, 105578. [Google Scholar] [CrossRef]
- Rong, Z.; Wang, W.; Gong, Q. Housing price appreciation, investment opportunity, and firm innovation: Evidence from China. J. Hous. Econ. 2016, 33, 34–58. [Google Scholar] [CrossRef]
- Campbell, J.Y.; Cocco, J.F. How do house prices affect consumption? Evidence from micro data. J. Monet. Econ. 2007, 54, 591–621. [Google Scholar] [CrossRef]
- Li, L.; Wu, X. Housing price and entrepreneurship in China. J. Comp. Econ. 2014, 42, 436–449. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, W.; Wu, Y. How do zombie firms affect China’s industrial upgrading? Econ. Model. 2021, 97, 79–94. [Google Scholar] [CrossRef]
- Lee, L. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 2004, 72, 1899–1925. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics from Cross Sectional Data to Spatial Panels; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Han, F.; Huang, M. Land misallocation and carbon emissions: Evidence from China. Land 2022, 11, 1189. [Google Scholar] [CrossRef]
- Restuccia, D.; Rogerson, R. Misallocation and productivity. Rev. Econ. Dyn. 2013, 16, 1–10. [Google Scholar] [CrossRef]
- Tong, D.; Chu, J.; Han, Q.; Liu, X. How land finance drives urban expansion under fiscal pressure: Evidence from Chinese cities. Land 2022, 11, 253. [Google Scholar] [CrossRef]
Primary Indicator | Secondary Indicator | Tertiary Indicator | Indicator Property | Weight (%) |
---|---|---|---|---|
Driving force transformation | R&D intensity | R&D expenditure as a percentage of GDP (%) | Positive | 27 |
Structural optimization | Upgrading of industrial structure | Tertiary industry output value/secondary industry output value (dimensionless) | Positive | 23 |
Rationalization of industrial structure | Theil index (dimensionless) | Negative | 9 | |
Quality and efficiency improvement | Economic performance | Labor productivity (yuan/person) | Positive | 9 |
Product technical complexity (dimensionless) | Positive | 18 | ||
Environmental performance | Energy consumption per unit of GDP (tons of standard coal/10,000 yuan) | Negative | 14 |
Variable Type | Variable Name | Mean | Standard Deviation | Maximum | Minimum | Construction Process and Data Source |
---|---|---|---|---|---|---|
Explained variable | Urban industrial transformation and upgrading index (UITU) | 21.88 | 8.17 | 64.67 | 7.43 | Data are from measurement results and are dimensionless |
Core explanatory variable | Spatial misallocation of land resources (LSM) | 0.90 | 4.45 | 93.26 | 0.00 | Data are from measurement results and are dimensionless |
Mediating variable | Proportion of output value of the low-end manufacturing industry (LM) | 33.21 | 15.56 | 67.35 | 10.86 | Output value for the urban LM/total output value of urban manufacturing, unit: %; data from the statistical yearbooks of relevant provinces and cities. |
Number of illegal land use cases (ILU) | 6.81 | 0.86 | 9.07 | 4.10 | Data from the China Land and Resources Statistical Yearbook and China Natural Resources Yearbook; unit: piece; the natural logarithm of data is used. | |
Proportion of real estate investment (REI) | 14.72 | 9.06 | 81.96 | 6.11 | Investment in urban real estate development/total urban social fixed asset investment, unit: %; data from the China City Statistical Yearbook. | |
Housing price-to-income ratio (HPIR) | 1.35 | 1.41 | 24.56 | 0.12 | Unit price of urban housing/average monthly wage of urban employees, dimensionless; housing price data are from the China Real Estate Index System, and employee wage data from the China City Statistical Yearbook. | |
Control variable | Per capita GDP (PGDP) | 10.46 | 0.66 | 12.24 | 8.13 | Data are from the China City Statistical Yearbook, unit: yuan; natural logarithm of data is used. |
Human capital level (HC) | 13.29 | 11.84 | 76.85 | 0.12 | Ratio of college students and graduate students/employees; data are from the China City Statistical Yearbook and the statistical yearbooks of relevant provinces and cities, unit: %. | |
Openness level (OL) | 2.68 | 3.03 | 25.67 | 0.00 | Foreign direct investment (RMB denominated)/fixed asset investment, unit: %; data are from the China City Statistical Yearbook and statistical yearbooks of relevant provinces and cities | |
Marketization level (ML) | 81.97 | 9.76 | 95.74 | 8.52 | 1-local government budgetary expenditure/GDP, unit: %; data from the China City Statistical Yearbook and the statistical yearbooks of relevant provinces and cities. | |
Urbanization level (UL) | 54.09 | 22.26 | 95.74 | 40.35 | Urban permanent resident population/citywide permanent resident population, unit: %; data from the statistical yearbooks of relevant provinces and cities. |
Test Category | Test Statistics | Model 1: All Cities | Model 2: Cities with a Relative Land Supply Surplus | Model 3: Cities with a Relative Land Supply Shortage |
---|---|---|---|---|
Spatial model applicability test | LM Lag | 744.152 *** | 317.947 *** | 212.169 *** |
LM Error | 1067.624 *** | 467.418 *** | 294.904 *** | |
Robust LM Lag | 119.125 *** | 33.662 *** | 43.792 *** | |
Robust LM Error | 442.596 *** | 183.133 *** | 126.527 *** | |
Spatial model form test | Wald test (SAR) | 119.858 *** | 48.418 *** | 101.014 *** |
LR test (SAR) | 125.784 *** | 52.493 *** | 99.028 *** | |
Wald test (SEM) | 66.403 *** | 43.618 *** | 47.125 *** | |
LR test (SEM) | 77.861 *** | 49.311 *** | 53.381 *** | |
Fixed and random effect test | Hausman test | 92.981 *** | 32.442 *** | 36.318 *** |
Variable Type | Variable Name | Model 1: All Cities | Model 2: Cities with a Relative Land Supply Surplus | Model 3: Cities with a Relative Land Supply Shortage | |||
---|---|---|---|---|---|---|---|
Double Fixed Effect | Bias-Corrected Double Fixed Effect | Double Fixed Effect | Bias-Corrected Double Fixed Effect | Double Fixed Effect | Bias-Corrected Double Fixed Effect | ||
Spatial lag term for the explained variable | W × UITU | 0.546 *** (18.848) | 0.568 *** (20.055) | 0.371 *** (9.610) | 0.398 *** (10.535) | 0.481 *** (12.994) | 0.512 *** (14.273) |
Core explanatory variable | LSM | −0.413 ** (−2.154) | −0.402 ** (−1.988) | −0.378 ** (−2.087) | −0.371 ** (−1.983) | −0.737 *** (−2.903) | −0.734 *** (−2.760) |
Control variable | PGDP | 6.141 *** (21.082) | 6.145 *** (20.189) | 4.534 *** (14.067) | 4.540 *** (13.463) | 11.093 *** (21.374) | 11.099 *** (20.434) |
HC | 0.055 *** (5.315) | 0.056 *** (5.079) | 0.022 (1.629) | 0.020 (1.449) | 0.064 *** (3.839) | 0.064 *** (3.655) | |
OL | 0.062 ** (2.359) | 0.061 ** (2.223) | 0.083 *** (2.773) | 0.082 *** (2.653) | 0.098 ** (2.514) | 0.096 ** (2.359) | |
ML | 0.037 *** (2.778) | 0.035 *** (2.629) | 0.026 ** (2.061) | 0.027 ** (1.975) | 0.066 *** (4.081) | 0.064 *** (3.939) | |
UL | 0.049 *** (5.467) | 0.049 *** (5.231) | 0.041 *** (3.658) | 0.041 *** (3.459) | 0.051 *** (3.853) | 0.051 *** (3.720) | |
Spatial lag term for the core explanatory variable | W × LSM | −0.011 (−0.504) | −0.011 (−0.451) | −0.016 (−0.928) | −0.015 (−0.847) | 0.254 (0.401) | 0.218 (0.327) |
Spatial lag term for the control variable | W × PGDP | −5.209 *** (−8.775) | −5.302 *** (−8.574) | −2.855 *** (−4.281) | −2.962 *** (−4.259) | −7.142 *** (−7.290) | −7.405 *** (−7.278) |
W × HC | 0.011 (0.414) | 0.013 (0.449) | −0.114 *** (−3.086) | −0.113 *** (−2.909) | −0.010 (−0.241) | −0.007 (−0.172) | |
W × OL | −0.325 *** (−5.319) | −0.315 *** (−4.948) | −0.166 ** (−2.433) | −0.161 ** (−2.242) | −0.208 *** (−2.649) | −0.198 *** (−2.610) | |
W × ML | 0.071 * (1.795) | 0.069 * (1.692) | 0.027 (0.796) | 0.028 (0.776) | 0.366 *** (3.182) | 0.351 *** (2.917) | |
W × UL | −0.035 (−1.422) | −0.036 (−1.403) | 0.143 *** (4.080) | 0.140 *** (3.821) | −0.095 *** (−3.759) | −0.095 ** (−3.585) | |
σ2 | 4.322 | 4.718 | 3.646 | 3.990 | 4.118 | 4.511 | |
R2 | 0.936 | 0.936 | 0.922 | 0.922 | 0.957 | 0.957 | |
Log likelihood | −7228.513 | −7228.513 | −4454.697 | −4454.697 | −2552.598 | −2552.598 | |
Number of observations | 3588 | 2340 | 1248 |
Variable Name | Mechanisms That Enhance the Survival of Low-End Industries | Mechanisms That Disrupt the Institutional Environment | ||||
---|---|---|---|---|---|---|
(1) UITU | (2) LM | (3) UITU | (4) UITU | (5) ILU | (6) UITU | |
LSM | −0.371 ** (−1.983) | 0.036 *** (3.315) | −0.219 ** (−2.201) | −0.371 ** (−1.983) | 0.129 *** (2.914) | −0.299 ** (−2.311) |
LM | -- | -- | −4.465 *** (−3.476) | -- | -- | -- |
ILU | -- | -- | -- | -- | -- | −0.552 ** (−2.215) |
W × UITU | 0.398 *** (10.535) | -- | 0.405 *** (10.739) | 0.398 *** (10.535) | -- | 0.381 *** (10.042) |
Control variable | YES | YES | YES | YES | YES | YES |
Spatial lag term for the core explanatory variable | YES | -- | YES | YES | -- | YES |
Spatial lag term for the control variable | YES | -- | YES | YES | -- | YES |
City fixed effect | YES | YES | YES | YES | YES | YES |
Time fixed effect | YES | YES | YES | YES | YES | YES |
R2 | 0.922 | 0.939 | 0.929 | 0.922 | 0.901 | 0.926 |
Number of observations | 2340 | 2340 | 2340 | 2340 | 2340 | 2340 |
Variable Name | Mechanisms That Crowd out Investments and Financing for Real Industries | Mechanisms That Inhibit Residents’ Demand and Innovation | ||||
---|---|---|---|---|---|---|
(1) UITU | (2) REI | (3) UITU | (4) UITU | (5) HPIR | (6) UITU | |
LSM | −0.734 *** (−2.760) | 0.578 *** (4.132) | −0.542 *** (−3.147) | −0.734 *** (−2.760) | 0.519 ** (2.186) | −0.562 *** (−2.617) |
REI | -- | -- | −0.489 ** (−2.072) | -- | -- | -- |
HPIR | -- | -- | -- | -- | -- | −0.531 *** (−7.181) |
W × UITU | 0.512 *** (14.273) | -- | 0.503 *** (13.917) | 0.512 *** (14.273) | -- | 0.497 *** (13.461) |
Control variable | YES | YES | YES | YES | YES | YES |
Spatial lag term for the core explanatory variable | YES | -- | YES | YES | -- | YES |
Spatial lag term for the control variable | YES | -- | YES | YES | -- | YES |
City fixed effect | YES | YES | YES | YES | YES | YES |
Time fixed effect | YES | YES | YES | YES | YES | YES |
R2 | 0.957 | 0.848 | 0.960 | 0.957 | 0.657 | 0.961 |
Number of observations | 1248 | 1248 | 1248 | 1248 | 1248 | 1248 |
Variable Name | Model 1: All Cities | Model 2: Cities with a Relative Land Supply Surplus | Model 3: Cities with a Relative Land Supply Shortage | |||
---|---|---|---|---|---|---|
Population–Land Misallocation | Capital–Land Misallocation | Population–Land Misallocation | Capital–Land Misallocation | Population–Land Misallocation | Capital–Land Misallocation | |
Core explanatory variables (LSM) | −0.138 ** (−2.203) | −0.216 ** (−2.157) | −0.101 ** (−2.125) | −0.211 ** (−2.187) | −0.198 ** (−2.421) | −0.284 ** (−2.478) |
Space lag term for the explained variable (W × UITU) | 0.543 *** (19.372) | 0.559 *** (20.014) | 0.389 *** (11.463) | 0.392 *** (10.935) | 0.497 *** (14.538) | 0.506 *** (14.451) |
Control variable | YES | YES | YES | YES | YES | YES |
Spatial lag term for the core explanatory variable terms | YES | YES | YES | YES | YES | YES |
Spatial lag term for the control variable | YES | YES | YES | YES | YES | YES |
City fixed effect | YES | YES | YES | YES | YES | YES |
Time fixed effect | YES | YES | YES | YES | YES | YES |
σ2 | 4.826 | 4.783 | 3.978 | 3.781 | 4.142 | 4.801 |
R2 | 0.933 | 0.939 | 0.923 | 0.924 | 0.954 | 0.956 |
Log like | −7229.571 | −7300.258 | −4443.853 | −4458.251 | −2561.581 | −2564.861 |
Number of observations | 3588 | 2340 | 1248 |
Variable Name | Cities with a Relative Land Supply Surplus | Cities with a Relative Land Supply Shortage | ||
---|---|---|---|---|
REI | HPIR | LM | ILU | |
LSM | 0.015 (0.735) | −0.001 (−0.054) | −0.019 (−1.508) | 0.091 (0.194) |
Control variable | YES | YES | YES | YES |
City fixed effect | YES | YES | YES | YES |
Time fixed effect | YES | YES | YES | YES |
R2 | 0.621 | 0.603 | 0.849 | 0.863 |
Number of observations | 2340 | 2340 | 1248 | 1248 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Wang, J.; Sun, H.; Guo, Z. How Does the Spatial Misallocation of Land Resources Affect Urban Industrial Transformation and Upgrading? Evidence from China. Land 2022, 11, 1630. https://doi.org/10.3390/land11101630
Peng S, Wang J, Sun H, Guo Z. How Does the Spatial Misallocation of Land Resources Affect Urban Industrial Transformation and Upgrading? Evidence from China. Land. 2022; 11(10):1630. https://doi.org/10.3390/land11101630
Chicago/Turabian StylePeng, Shangui, Jian Wang, Hao Sun, and Zhengning Guo. 2022. "How Does the Spatial Misallocation of Land Resources Affect Urban Industrial Transformation and Upgrading? Evidence from China" Land 11, no. 10: 1630. https://doi.org/10.3390/land11101630