Influence of the Market Supply of Construction Land on the Misallocation of Labor Resources: Empirical Evidence from China
Abstract
:1. Introduction
2. Theoretical Framework
3. Variables and Methods
3.1. Data and Variables
3.1.1. LMIS Calculation
3.1.2. MSCL and Land-Transaction Unit Price
3.1.3. Control Variable Selection
3.2. Model Setting
3.2.1. Individual Fixed-Effect Model
3.2.2. Panel Threshold Effect Model
3.2.3. Spatial Durbin Model
4. Result
4.1. Analysis of MSCL and LMIS
4.2. Benchmark Regression
4.3. Analysis Based on the Threshold Eeffect
4.4. Robustness Test Analysis Based on Spatial Spillover Effects
5. Discussion
6. Conclusions and Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Vars | FE | RE | (b-B)/Difference | sqrt(diag(V_b-V_B))/S.E. |
---|---|---|---|---|
MSCL | −0.146 | −0.150 | 0.004 | 0.009 |
LTUP | 0.056 | 0.070 | −0.014 | 0.011 |
AVT | 6.448 | 6.312 | 0.137 | 0.686 |
REP | −0.286 | −0.254 | −0.032 | 0.012 |
RTV | 0.167 | 0.164 | 0.003 | 0.025 |
IGUR | −0.670 | −0.381 | −0.289 | 0.141 |
Test | Ho: the difference in coefficients is not systematic | |||
chi2(7) | 13.23 | |||
Prob > chi2 | 0.066 |
Threshold | RSS | MSE | F | Prob |
---|---|---|---|---|
Single | 41.9638 | 0.1113 | 42.38 | 0.0100 |
Double | 40.7553 | 0.1081 | 11.18 | 0.3800 |
Triple | 40.1973 | 0.1066 | 5.23 | 0.7767 |
Year | Moran’s I | Geary’s C | ||
---|---|---|---|---|
I | p-Value | c | p-Value | |
2005 | 0.337 | 0.000 | 0.674 | 0.000 |
2006 | 0.377 | 0.000 | 0.627 | 0.000 |
2007 | 0.397 | 0.000 | 0.622 | 0.000 |
2008 | 0.417 | 0.000 | 0.602 | 0.000 |
2009 | 0.381 | 0.000 | 0.600 | 0.000 |
2010 | 0.346 | 0.000 | 0.611 | 0.000 |
2011 | 0.319 | 0.000 | 0.626 | 0.000 |
2012 | 0.280 | 0.000 | 0.692 | 0.001 |
2013 | 0.276 | 0.000 | 0.723 | 0.003 |
2014 | 0.339 | 0.000 | 0.679 | 0.001 |
2015 | 0.304 | 0.000 | 0.712 | 0.002 |
2016 | 0.429 | 0.000 | 0.617 | 0.000 |
2017 | 0.472 | 0.000 | 0.584 | 0.000 |
References
- Pu, W.F.; Zhang, A.L. Can China’s Market-Oriented Reform Improve the Efficiency of Industrial Land Use? A Panel Data Empirical Analysis at Prefecture Level From 2007–2019. Front. Environ. Sci. 2022, 10, 884958. [Google Scholar] [CrossRef]
- Cai, M.N.; Fan, J.Y.; Ye, C.H.; Zhang, Q. Government debt, land financing and distributive justice in China. Urban Stud. 2021, 58, 2329–2347. [Google Scholar] [CrossRef]
- Xie, H.L.; Lu, H. Impact of land fragmentation and non-agricultural labor supply on circulation of agricultural land management rights. Land Use Policy 2017, 68, 355–364. [Google Scholar] [CrossRef]
- Hilber, C.A.L.; Robert-Nicoud, F. On the origins of land use regulations: Theory and evidence from US metro areas. J. Urban Econ. 2013, 75, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.P.; Yang, Z. Informal government preferences and asymmetric land allocation in China. Land Use Policy 2020, 99, 105085. [Google Scholar] [CrossRef]
- Li, Y.H.; Li, Y.R.; Westlund, H.; Liu, Y.S. Urban-rural transformation in relation to cultivated land conversion in China: Implications for optimizing land use and balanced regional development. Land Use Policy 2015, 47, 218–224. [Google Scholar] [CrossRef]
- Park, K.S. Money, Mortgages, and the Conquest of America. Law Soc. Inq.-J. Am. Bar Found. 2016, 41, 1006–1035. [Google Scholar] [CrossRef]
- Keenan, S. From historical chains to derivative futures: Title registries as time machines. Soc. Cult. Geogr. 2019, 20, 283–303. [Google Scholar] [CrossRef]
- Mateos-Romero, L.; Salinas-Jimenez, M.D. Skills use in the workplace and its effects on wages and on job satisfaction: An application to the Spanish case. Pers. Rev. 2018, 47, 494–516. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Klenow, P.J. Misallocation and manufacturing tfp in china and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef]
- Crowley, F.; Doran, J.; McCann, P. The vulnerability of European regional labour markets to job automation: The role of agglomeration externalities. Reg. Stud. 2021, 55, 1711–1723. [Google Scholar] [CrossRef]
- Jonsson, J.; Muntaner, C.; Bodin, T.; Alderling, M.; Balogh, R.; Burstrom, B.; Davis, L.; Gunn, V.; Hemmingsson, T.; Julia, M.; et al. Low-quality employment trajectories and risk of common mental disorders, substance use disorders and suicide attempt: A longitudinal study of the Swedish workforce. Scand. J. Work. Environ. Health 2021, 47, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Suwito, T. Population mobility based on social integrity factors. In Proceedings of the 1st International Conference on Geography and Education (ICGE), Malang, Indonesia, 29 October 2016; pp. 139–143. [Google Scholar]
- Luo, J.J.; Xing, X.S.; Wu, Y.Z.; Zhang, W.W.; Chen, R.S. Spatio-temporal analysis on built-up land expansion and population growth in the Yangtze River Delta Region, China: From a coordination perspective. Appl. Geogr. 2018, 96, 98–108. [Google Scholar] [CrossRef]
- Brandt, L.; Van Biesebroeck, J.; Zhang, Y. Creative accounting or creative destruction? firm-level productivity growth in Chinese manufacturing. J. Dev. Econ. 2012, 97, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Duflo, A.B.E. Growth Theory Through the Lens of Development Economics. Soc. Sci. Electron. Publ. 2005, 1, 473–552. [Google Scholar]
- Michaelides, M. Labour market oligopsonistic competition: The effect of worker immobility on wages. Labour Econ. 2010, 17, 230–239. [Google Scholar] [CrossRef]
- Fan, X.; Qiu, S.N.; Sun, Y.K. Land finance dependence and urban land marketization in China: The perspective of strategic choice of local governments on land transfer. Land Use Policy 2020, 99, 105023. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, Y.; Peng, F.; Li, J.Z.; Yan, X.J. Analog simulation of urban construction land supply and demand in Chang-Zhu-Tan Urban Agglomeration based on land intensive use. J. Geogr. Sci. 2019, 29, 1346–1362. [Google Scholar] [CrossRef] [Green Version]
- Nosrat, A.H.; Jeswiet, J.; Pearce, J.M. Cleaner production via industrial symbiosis in glass and large-scale solar photovoltaic manufacturing. In Proceedings of the IEEE Toronto International Conference on Science and Technology for Humanity, Toronto, ON, Canada, 26–27 September 2009; pp. 967–970. [Google Scholar]
- Hong, H.R.; Gasparatos, A. Eco-industrial parks in China: Key institutional aspects, sustainability impacts, and implementation challenges. J. Clean. Prod. 2020, 274, 122853. [Google Scholar] [CrossRef]
- Ciuriak, D.; Lapham, B.; Wolfe, R.; Collins-Williams, T.; Curtis, J. Firms in International Trade: Trade Policy Implications of the New Trade Theory. Glob. Policy 2015, 6, 130–140. [Google Scholar] [CrossRef]
- Gabriela, R.I.; Alexandru, G. Advanced Theories in International Trade. Metal. Int. 2009, 14, 123–127. [Google Scholar]
- Wu, K.; Wang, X.N. Understanding Growth and Shrinkage Phenomena of Industrial and Trade Cities in Southeastern China: Case Study of Yiwu. J. Urban Plan. Dev. 2020, 146, 05020028. [Google Scholar] [CrossRef]
- Yan, J. Technical analysis on business model of Wenzhou. In Proceedings of the 2nd International Conference on Civil Engineering, Architecture and Building Materials (CEABM 2012), Yantai, China, 25–27 May 2012; pp. 3585–3588. [Google Scholar]
- Wang, Y.A.; Yin, S.W.; Fang, X.L.; Chen, W. Interaction of economic agglomeration, energy conservation and emission reduction: Evidence from three major urban agglomerations in China. Energy 2022, 241, 122519. [Google Scholar] [CrossRef]
- Deng, L.B.; Luo, F. An study on the technology spillover theory and the technology innovation of indigenous enterprises in China. In Proceedings of the 5th International Conference on Innovation and Management, Maastricht, The Netherlands, 10–11 December 2008; pp. 100–107. [Google Scholar]
- Wang, X.T.; Qi, Y.W. The Impact of Institutional Distance on Innovation Performance of OFDI Enterprises: Comparison of Coastal and Inland Regions in China. J. Coast. Res. 2020, 106, 166–170. [Google Scholar] [CrossRef]
- Tian, H. Innovation Research on Medium and Low-tech Traditional Industry. In Proceedings of the 4th International Conference on Applied Mechanics and Mechanical Engineering (ICAMME 2013), Singapore, 11–12 October 2013; pp. 413–417. [Google Scholar]
- Liu, G.M.; Wang, H.J.; Lang, X.; Yu, K. Hiding or sharing? Technology upgrade, technology spillover and information asymmetry. Rairo-Oper. Res. 2022, 56, 1917–1945. [Google Scholar] [CrossRef]
- Dai, X.Y.; Sun, Z. Does firm innovation improve aggregate industry productivity? Evidence from Chinese manufacturing firms. Struct. Chang. Econ. Dyn. 2021, 56, 1–9. [Google Scholar] [CrossRef]
- Chen, Y.W.; Hu, W.M. Distortions, Misallocation and Losses: Theory and Application. China Econ. Q. 2011, 10, 1401–1422. (In Chinese) [Google Scholar]
- Ji, S.H.; Zhu, Y.M.; Zhang, X. Study of Industrial Agglomeration Improving Misallocation of Resources. China Ind. Econ. 2016, 6, 73–90. (In Chinese) [Google Scholar]
- Cai, Z.W.; Chen, L.N.; Fang, Y. Semiparametric Estimation of Partially Varying-Coefficient Dynamic Panel Data Models. Econ. Rev. 2015, 34, 694–718. [Google Scholar] [CrossRef]
- Ji, C.J.; Hu, Y.J.; Tang, B.J. Research on carbon market price mechanism and influencing factors: A literature review. Nat. Hazards 2018, 92, 761–782. [Google Scholar] [CrossRef]
- Ingstrup, M.B.; Christensen, P.R. Transformation of cluster specialization in the wake of globalization. Entrep. Reg. Dev. 2017, 29, 500–516. [Google Scholar] [CrossRef]
- Xing, H.F.; Meng, Y. Revealing deep semantic commercial patterns: Insights from urban landscape depiction. Comput. Environ. Urban Syst. 2020, 79, 101404. [Google Scholar] [CrossRef]
- Guo, W.; Dai, H.J.; Liu, X.R. Impact of different types of environmental regulation on employment scale: An analysis based on perspective of provincial heterogeneity. Environ. Sci. Pollut. Res. 2020, 27, 45699–45711. [Google Scholar] [CrossRef] [PubMed]
- Svare, H.; Gausdal, A.H. Strengthening regional innovation through network-based innovation brokering. Entrep. Reg. Dev. 2015, 27, 619–643. [Google Scholar] [CrossRef]
- Jiang, C.J.; Li, J.T.; Liu, J.L. Does urbanization affect the gap between urban and rural areas? Evidence from China. Socio-Econ. Plan. Sci. 2022, 82, 101271. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econ. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Elhorst, J.P. Dynamic Spatial Panels: Models, Methods and Inferences. J. Geogr. Syst. 2012, 14, 5–18. [Google Scholar] [CrossRef]
- Li, Y.R.; Wang, J.; Liu, Y.S.; Long, H.L. Problem regions and regional problems of socioeconomic development in China: A perspective from the coordinated development of industrialization, informatization, urbanization and agricultural modernization. J. Geogr. Sci. 2014, 24, 1115–1130. [Google Scholar] [CrossRef]
- Manning, A. The Elusive Employment Effect of the Minimum Wage. J. Econ. Perspect. 2021, 35, 3–26. [Google Scholar] [CrossRef]
- Kincaid, J. Production vs. realisation: A critique of Fine and Saad-Filho on value theory. Hist. Mater.-Res. Crit. Marx. Theory 2007, 15, 137–165. [Google Scholar] [CrossRef] [Green Version]
- Peláez Gramajo, J.G. Inconsistencia del equilibrio parcial en la teoría del valor y su consistencia macroeconómica. Econ. Teoría Práctica 2018, 48, 9–38. [Google Scholar] [CrossRef]
- Richards, T.J.; Allender, W.J.; Hamilton, S.F. Commodity price inflation, retail pass-through and market power. Int. J. Ind. Organ. 2012, 30, 50–57. [Google Scholar] [CrossRef]
- Li, Y.-y.; Liu, L.-p.; Liu, Y.-y. Spatial Distribution Pattern and Influencing Factors of Industrial Pollution Emissions in Yangtze River Economic Belt. Huanjing Kexue 2021, 42, 3820–3828. [Google Scholar]
- Guo, X.-J.; Zhou, R.; Li, J.-Z.; Lu, C.-P. Spatial-temporal Evolution Characteristics and Influencing Factors of Agricultural Resources and Environment Efficiency in the Yellow River Basin. J. Ecol. Rural. Environ. 2021, 37, 332–340. [Google Scholar]
- Fetzel, T.; Niedertscheider, M.; Haberl, H.; Krausmann, F.; Erb, K.H. Patterns and changes of land use and land-use efficiency in Africa 1980–2005: An analysis based on the human appropriation of net primary production framework. Reg. Environ. Chang. 2016, 16, 1507–1520. [Google Scholar] [CrossRef]
- Qiao, L.Y.; Li, Y.R.; Liu, Y.S.; Yang, R. The spatio-temporal change of China’s net floating population at county scale from 2000 to 2010. Asia Pac. Viewp. 2016, 57, 365–378. [Google Scholar] [CrossRef]
Variables | Avg. | S.D. | Min | Max | |
---|---|---|---|---|---|
Labor-resource misallocation | LMIS | 0.428 | 0.409 | 0.006 | 2.30 |
Market supply of construction land | MSCL | 6867.24 | 6485.161 | 59.01 | 37830.37 |
Land-transaction unit price | LTUP | 1614.62 | 3362.577 | 60.968 | 35,698.65 |
Proportion of added value of tertiary industry | PAVTI | 89.170 | 5.646 | 67.8 | 99.7 |
Regional innovation potential | REP | 17,462.9 | 29,312.94 | 79 | 187,005 |
Railway traffic volume | RTV | 6539.10 | 4698.628 | 33 | 28,954 |
Income gap between urban and rural areas | IGUR | 2.838 | 0.541 | 1.85 | 4.6 |
Regional GDP deflator | RGDPD | 110.951 | 3.0636 | 97.5 | 123.8 |
Regional GDP | RGDP | 16,902.4 | 15,412.48 | 543.32 | 89,705.2 |
Employed population | EMP | 2608.28 | 1738.013 | 291.04 | 6962.7 |
Investment in fixed assets | IFA | 11,266.0 | 10,255.76 | 329.81 | 55,202.7 |
Fixed-asset investment price index | FAIPI | 102.36 | 3.360 | 96 | 113.3 |
Vars | OLS | FE | Eastern | Central | Western | ||
---|---|---|---|---|---|---|---|
MSCL | −0.193 *** (0.000) | −0.150 *** (0.000) | −0.194 *** (0.000) | −0.146 *** (0.000) | −0.164 ** (0.015) | −0.238 *** (0.005) | −0.113 ** (0.037) |
LTUP | - | 0.070 (0.212) | - | 0.056 (0.323) | −0.089 (0.271) | 0.046 (0.823) | 0.140 * (0.100) |
PAVTI | - | 6.322 *** (0.000) | - | 6.449 *** (0.000) | 10.965 *** (0.006) | 6.345 *** (0.006) | 5.490 ** (0.014) |
REP | - | −0.254 *** (0.000) | - | −0.286 *** (0.000) | −0.213 *** (0.005) | −0.267 ** (0.019) | −0.076 (0.381) |
RTV | - | 0.164 *** (0.010) | - | 0.167 ** (0.012) | 0.251 ** (0.022) | −1.095 *** (0.007) | −0.544 *** (0.004) |
IGUR | - | −0.381 (0.297) | - | −0.670 * (0.085) | 0.499 *** (0.004) | −0.672 *** (0.000) | −0.059 (0.930) |
Province | N | N | Y | Y | Y | Y | Y |
Rho | 0.8405 | 0.8236 | 0.8379 | 0.8697 | 0.8760 | 0.9296 | 0.8940 |
Prob > F | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
obs | 360 | 360 | 360 | 360 | 143 | 104 | 143 |
Threshold | RSS | MSE | F | Prob |
---|---|---|---|---|
Single | 41.9638 | 0.1113 | 42.38 | 0.0133 |
Model | Threshold | Lower | Upper |
---|---|---|---|
Th-1 | 1.8045 | 1.7906 | 1.8050 |
Vars | Regression Coefficient | |
---|---|---|
LTUP | 0.087 (0.115) | |
PAVTI | 7.225 *** (0.000) | |
REP | −0.321 *** (0.000) | |
RTV | 0.150 ** (0.030) | |
IGUR | −0.691 * (0.075) | |
MSCL | MSCL ≦ 18,045 | −0.324 *** (0.000) |
MSCL ≧ 18,045 | −0.042 (0.456) | |
Province | Y | |
F-test | 57.36 | |
Prob > F | 0.0000 | |
rho | 0.8636 | |
Obs | 360 |
Test | Statistic | p-Value | |
---|---|---|---|
Spatial error | Moran’s I | 5.788 | 0.000 |
Lagrange multiplier | 29.292 | 0.000 | |
Robust Lagrange multiplier | 5.438 | 0.020 | |
Spatial lag | Lagrange multiplier | 119.273 | 0.000 |
Robust Lagrange multiplier | 95.419 | 0.000 |
Vars | Economic Link Matrix | Geographic Location Matrix | ||||||
---|---|---|---|---|---|---|---|---|
Main | Direct | Indirect | Total | Main | Direct | Indirect | Total | |
MSCL | −0.149 ** (0.021) | −0.156 ** (0.026) | −0.183 ** (0.050) | −0.340 ** (0.032) | −0.186 *** (0.009) | −0.184 ** (0.013) | −0.015 (0.426) | −0.199 ** (0.016) |
C V | Y | Y | ||||||
Spatial/rho | 0.564 *** (0.000) | 0.069 (0.368) | ||||||
Variance/sigma2_e | 0.500 *** (0.000) | 0.608 *** (0.000) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Li, J. Influence of the Market Supply of Construction Land on the Misallocation of Labor Resources: Empirical Evidence from China. Land 2022, 11, 1773. https://doi.org/10.3390/land11101773
Jiang C, Li J. Influence of the Market Supply of Construction Land on the Misallocation of Labor Resources: Empirical Evidence from China. Land. 2022; 11(10):1773. https://doi.org/10.3390/land11101773
Chicago/Turabian StyleJiang, Changjun, and Jintao Li. 2022. "Influence of the Market Supply of Construction Land on the Misallocation of Labor Resources: Empirical Evidence from China" Land 11, no. 10: 1773. https://doi.org/10.3390/land11101773
APA StyleJiang, C., & Li, J. (2022). Influence of the Market Supply of Construction Land on the Misallocation of Labor Resources: Empirical Evidence from China. Land, 11(10), 1773. https://doi.org/10.3390/land11101773