Coupling Efficiency Assessment of Food–Energy–Water (FEW) Nexus Based on Urban Resource Consumption towards Economic Development: The Case of Shenzhen Megacity, China
Abstract
:1. Introduction
- (1)
- Assess temporally and spatially characteristics of the regional FEW efficiencies for economic development during 2012–2020.
- (2)
- Explore the interactions among coupling FEW efficiencies with economic development.
- (3)
- Explore the impacts of urbanization on the coupling FEW efficiencies of the city.
2. Materials and Methods
2.1. Study Area
2.2. The Conceptual Framework for Coupling FEW Efficiency Assessment
2.3. DEA Analysis
2.4. Coupling Efficiency of Regional and Municipal FEW
2.5. Correlation and Driving Force Analysis
2.6. Data Source
3. Results
3.1. Characteristics of Municipal and Regional FEW Efficiencies
3.2. Correlations between Regional FEW Efficiencies
3.3. Driving Factors of Regional FEW Efficiencies
4. Discussion
4.1. Urban FEW Situation and Sustainability
4.2. Urban FEW Management towards Sustainability
4.3. Research Highlights and Limitations
5. Conclusions
- (1)
- In terms of food subsystem efficiency, 60% of administrative districts increased their values of efficiency during the study period, while 30% of administrative districts remained stable. Concerning energy subsystem efficiency, 70% of the districts of Shenzhen reached an energy efficient level (value = 1) in 2020, and half of the total districts achieved an improvement in energy resource efficiency. The annual energy efficiency achieved by Nanshan played a key role in achieving the overall energy efficiency of Shenzhen city. More than half of the total districts did not achieve water resource efficiency throughout the period, which demonstrates that the water resource issue is still the main obstacle to overall FEW improvement in Shenzhen city. In total, 80% of districts increased their relevant FEW efficiency values by 2020, the averages of which were higher for Yantian, Nanshan, Luohu and Dapeng, and lower for Baoan, Longgang and Guangming, along with a downtrend only being observed in Guangming. Overall, the FEW efficiency value of Shenzhen megacity rose by 35% from 2012 to 2020.
- (2)
- The Pearson correlation analysis revealed that no negative mutual correlations among districts were observed, and regional FEW efficiencies maintained synergetic improvement during the study period. Longhua, Guangming and Longgang, as concentrated industrial zones, were regarded as important nodes in municipal FEW efficiency, while Luohu and Dapeng with higher percentages of forest land achieved FEW efficiencies without synergetic correlations with others districts. Considering the regional heterogeneity within the city, it is possible to balance ecological conservation and resource efficiency in inner regions while working towards overall municipal economic development.
- (3)
- The multiple linear regression demonstrated that per capita GDP was the main driving factor of the regional FEW efficiencies of Shenzhen City. Rising GDP per capita could encourage resource-saving fashions and advanced greener economic structure adjustment during the urbanization process. From a nexus perspective of governmental intervention, there still exist potential improvements in Shenzhen to realize coordinated FEW resource management. It is recommended that energy investments should be equally integrated into the Shenzhen water and food issues; an appropriate proportion of “FEW-based investments” can effectively maintain the driving forces of economic development towards sustainability, the guidance of which is also suitable for the integrative FEW resource governance of other megacities in China.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
FEW Subsystems | Items | Units | Maximum | Minimum | Mean | Median | Standard Deviation |
---|---|---|---|---|---|---|---|
Futian | |||||||
Energy system | Energy input | Million ton of SCE (Standard Coal Equivalent) | 15.794 | 10.715 | 13.977 | 13.977 | 1.659 |
Water input | Million m3 | 21.202 | 10.582 | 15.850 | 15.295 | 3.366 | |
Investment input | Million Yuan | 1111.202 | 7.910 | 368.741 | 318.000 | 308.496 | |
Desired output (GDP) | Million Yuan | 38,768.090 | 18,648.540 | 24,561.560 | 21,711.790 | 6598.583 | |
Undesired output (NOx) | Ton | 646.800 | 108.700 | 393.467 | 415.600 | 195.870 | |
Water system | Energy input | Ton of SCE (Standard Coal Equivalent) | 134.105 | 0 | 41.649 | 38.479 | 45.088 |
Water input | Million m3 | 257.765 | 223.659 | 240.436 | 240.670 | 8.359 | |
Investment input | Million Yuan | 29.600 | 7.728 | 17.991 | 19.272 | 7.519 | |
Desired output (GDP) | Million Yuan | 475,416.260 | 237,572.570 | 355,773.431 | 357,456.120 | 76,360.840 | |
Undesired output (wastewater) | Million m3 | 237.673 | 204.596 | 219.992 | 220.305 | 7.990 | |
Food system | Energy input | Million ton of SCE | 3.025 | 1.611 | 2.306 | 2.348 | 0.446 |
Water input | Million m3 | 110.357 | 97.004 | 102.017 | 98.785 | 5.413 | |
Investment input | Million Yuan | 295.000 | 0 | 43.966 | 0 | 94.143 | |
Food input (food-source protein) | Million ton | 0.061 | 0.038 | 0.052 | 0.058 | 0.010 | |
Desired output | Million Yuan | 216,697.488 | 78,512.805 | 138,455.606 | 133,980.274 | 46,292.394 | |
Undesired output (ammonia nitrogen) | Ton | 73.097 | 1.280 | 26.774 | 6.288 | 29.014 | |
Luohu | |||||||
Energy system | Energy input | Million ton of SCE (Standard Coal Equivalent) | 8.314 | 6.126 | 7.435 | 7.782 | 0.778 |
Water input | Million m3 | 13.400 | 6.236 | 9.828 | 9.901 | 2.217 | |
Investment input | Million Yuan | 971.691 | 0 | 400.815 | 396.320 | 383.826 | |
Desired output (GDP) | Million Yuan | 17,264.910 | 7576.520 | 10,929.758 | 10,720.040 | 3169.702 | |
Undesired output (NOx) | Ton | 134.000 | 5.300 | 46.944 | 40.400 | 37.260 | |
Water system | Energy input | Ton of SCE (Standard Coal Equivalent) | 549.692 | 80.182 | 454.566 | 336.530 | 170.362 |
Water input | Million m3 | 147.944 | 131.228 | 143.361 | 142.606 | 4.56038 | |
Investment input | Million Yuan | 18.000 | 4.144 | 10.906 | 10.552 | 4.813 | |
Desired output (GDP) | Million Yuan | 239,025.600 | 135,825.200 | 197,624.600 | 192,916.500 | 36,837.760 | |
Undesired output (wastewater) | Million m3 | 144.079 | 127.127 | 139.521 | 138.643 | 4.654 | |
Food system | Energy input | Million ton of SCE | 1.516 | 0.921 | 1.308 | 1.258 | 0.214 |
Water input | Million m3 | 70.182 | 62.8905 | 64.6234 | 65.7313 | 2.452298 | |
Investment input | Million Yuan | 80.000 | 0 | 0 | 8.889 | 25.142 | |
Food input (food-source protein) | Million ton | 0.045 | 0.027 | 0.041 | 0.037 | 0.007 | |
Desired output | Million Yuan | 160,002.800 | 55,256.960 | 93,356.260 | 98,846.140 | 34,842.380 | |
Undesired output (ammonia nitrogen) | Ton | 61.185 | 0.126 | 2.772 | 15.706 | 20.160 | |
Yantian | |||||||
Energy system | Energy input | Million ton of SCE (Standard Coal Equivalent) | 2.158 | 1.651 | 2.035 | 1.956 | 0.167 |
Water input | Million m3 | 2.676 | 1.713 | 1.942 | 2.096 | 0.315 | |
Investment input | Million Yuan | 978.154 | 70.030 | 259.12 | 481.923 | 366.307 | |
Desired output (GDP) | Million Yuan | 8793.510 | 7498.130 | 8234.120 | 8223.874 | 355.498 | |
Undesired output (NOx) | Ton | 239.900 | 21.100 | 69.300 | 88.700 | 68.081 | |
Water system | Energy input | Ton of SCE (Standard Coal Equivalent) | 83.278 | 12.300 | 50.083 | 45.571 | 22.538 |
Water input | Million m3 | 38.736 | 36.178 | 37.643 | 37.478 | 0.871 | |
Investment input | Million Yuan | 12 | 3.575 | 7.038 | 7.169 | 2.435 | |
Desired output (GDP) | Million Yuan | 65,814.860 | 36,617.870 | 54,026.930 | 52,964.900 | 10,106.100 | |
Undesired output (wastewater) | Million m3 | 36.952 | 29.191 | 30.409 | 31.355 | 2.559 | |
Food system | Energy input | Million ton of SCE | 0.392 | 0.248 | 0.342 | 0.330 | 0.050 |
Water input | Million m3 | 15.842 | 12.440 | 13.362 | 13.687 | 1.153 | |
Investment input | Million Yuan | 63 | 0 | 16.306 | 24.053 | 24.067 | |
Food input (food-source protein) | Million ton | 0.009 | 0.006 | 0.008 | 0.008 | 0.001 | |
Desired output | Million Yuan | 29,881.130 | 12,545.530 | 19,818.350 | 20,316.130 | 5771.499 | |
Undesired output (ammonia nitrogen) | Ton | 15.871 | 0.105 | 1.352 | 4.600 | 5.154 | |
Nanshan | |||||||
Energy system | Energy input | Million ton of SCE (Standard Coal Equivalent) | 20.523 | 12.790 | 14.991 | 16.132 | 2.658 |
Water input | Million m3 | 16.830 | 11.382 | 14.882 | 14.445 | 1.576 | |
Investment input | Million Yuan | 1357.385 | 32.940 | 398.815 | 442.926 | 418.140 | |
Desired output (GDP) | Million Yuan | 207,831.290 | 166,793.630 | 198,760.560 | 193,684.043 | 13,020.024 | |
Undesired output (NOx) | Ton | 18,436.300 | 1050.800 | 5872.600 | 6178.144 | 5307.760 | |
Water system | Energy input | Ton of SCE (Standard Coal Equivalent) | 645.500 | 103.208 | 477.296 | 391.997 | 194.204 |
Water input | Million m3 | 252.589 | 186.068 | 236.830 | 223.778 | 25.183 | |
Investment input | Million Yuan | 87.200 | 15.120 | 55.104 | 47.463 | 22.779 | |
Desired output (GDP) | Million Yuan | 650,222.270 | 283,600.200 | 397,847.580 | 438,445.344 | 120,652.463 | |
Undesired output (wastewater) | Million m3 | 234.210 | 180.299 | 229.065 | 215.051 | 22.504 | |
Food system | Energy input | Million ton of SCE | 3.913 | 1.923 | 2.519 | 2.743 | 0.661 |
Water input | Million m3 | 105.261 | 77.271 | 99.182 | 94.852 | 8.642 | |
Investment input | Million Yuan | 636.000 | 0.000 | 41.760 | 148.621 | 205.037 | |
Food input (food-source protein) | Million ton | 0.071 | 0.032 | 0.061 | 0.054 | 0.016 | |
Desired output | Million Yuan | 251,570.431 | 65,412.585 | 140,227.361 | 145,193.128 | 63,455.715 | |
Undesired output (ammonia nitrogen) | Ton | 115.818 | 1.062 | 54.498 | 52.035 | 39.436 | |
Baoan | |||||||
Energy system | Energy input | Million ton of SCE (Standard Coal Equivalent) | 13.545 | 8.665 | 11.711 | 11.311 | 1.463 |
Water input | Million m3 | 197.287 | 148.921 | 172.198 | 174.670 | 13.971 | |
Investment input | Million Yuan | 5199.888 | 266.760 | 2105.247 | 2032.656 | 1435.362 | |
Desired output (GDP) | Million Yuan | 185,878.590 | 93,614.251 | 151,053.310 | 148,280.395 | 35,424.409 | |
Undesired output (NOx) | Ton | 2931.200 | 227.100 | 916.200 | 1275.556 | 963.466 | |
Water system | Energy input | Ton of SCE (Standard Coal Equivalent) | 582.291 | 167.039 | 464.728 | 384.628 | 149.760 |
Water input | Million m3 | 471.434 | 448.330 | 458.365 | 459.788 | 6.473 | |
Investment input | Million Yuan | 69.377 | 18.032 | 44.838 | 41.883 | 16.487 | |
Desired output (GDP) | Million Yuan | 385,358.470 | 182,723.311 | 307,124.520 | 296,870.271 | 73,323.284 | |
Undesired output (wastewater) | Million m3 | 460.193 | 439.563 | 448.442 | 449.891 | 5.878 | |
Food system | Energy input | Million ton of SCE | 2.248 | 1.373 | 2.036 | 1.906 | 0.313 |
Water input | Million m3 | 167.907 | 141.254 | 160.126 | 156.954 | 8.621 | |
Investment input | Million Yuan | 31,371.840 | 23.530 | 95.970 | 5702.574 | 10,433.481 | |
Food input (food-source protein) | Million ton | 0.176 | 0.076 | 0.157 | 0.136 | 0.043 | |
Desired output | Million Yuan | 626,221.020 | 158,406.444 | 361,271.925 | 367,921.635 | 164,384.303 | |
Undesired output (ammonia nitrogen) | Ton | 528.478 | 37.225 | 151.865 | 246.380 | 168.754 | |
Longgang | |||||||
Energy system | Energy input | Million ton of SCE (Standard Coal Equivalent) | 15.423 | 9.157 | 12.902 | 12.211 | 2.383 |
Water input | Million m3 | 135.068 | 104.180 | 114.995 | 117.200 | 9.272 | |
Investment input | Million Yuan | 3642.382 | 703.730 | 2543.231 | 2369.189 | 1052.728 | |
Desired output (GDP) | Million Yuan | 336,093.650 | 37,175.786 | 105,036.430 | 151,200.695 | 125,032.276 | |
Undesired output (NOx) | Ton | 2755.442 | 382.200 | 579.500 | 950.127 | 737.399 | |
Water system | Energy input | Ton of SCE (Standard Coal Equivalent) | 1158.848 | 259.323 | 925.761 | 730.572 | 333.931 |
Water input | Million m3 | 411.192 | 371.380 | 396.598 | 394.757 | 11.032 | |
Investment input | Million Yuan | 74.800 | 25.312 | 47.520 | 47.375 | 15.471 | |
Desired output (GDP) | Million Yuan | 474,448.510 | 195,823.904 | 347,047.250 | 334,766.618 | 104,515.869 | |
Undesired output (wastewater) | Million m3 | 391.121 | 358.484 | 383.678 | 380.566 | 9.702 | |
Food system | Energy input | Million ton of SCE | 2.801 | 1.451 | 2.168 | 2.079 | 0.546 |
Water input | Million m3 | 177.730 | 140.425 | 151.465 | 156.086 | 12.598 | |
Investment input | Million Yuan | 3108.209 | 157.240 | 302.310 | 1100.218 | 1159.821 | |
Food input (food-source protein) | Million ton | 0.156 | 0.055 | 0.122 | 0.109 | 0.040 | |
Desired output | Million Yuan | 557,604.564 | 113,706.369 | 280,364.965 | 299,380.933 | 153,430.519 | |
Undesired output (ammonia nitrogen) | Ton | 426.784 | 2.877 | 84.848 | 164.111 | 164.840 | |
Longhua | |||||||
Energy system | Energy input | Million ton of SCE (Standard Coal Equivalent) | 8.393 | 5.304 | 7.148 | 7.006 | 1.092 |
Water input | Million m3 | 90.759 | 57.446 | 66.664 | 71.031 | 10.810 | |
Investment input | Million Yuan | 18,761.294 | 247.410 | 1188.383 | 4047.146 | 5933.322 | |
Desired output (GDP) | Million Yuan | 143,875.810 | 46,434.760 | 91,750.890 | 91,933.673 | 30,200.516 | |
Undesired output (NOx) | Ton | 461.800 | 36.300 | 173.200 | 266.000 | 155.181 | |
Water system | Energy input | Ton of SCE (Standard Coal Equivalent) | 510.697 | 88.613 | 279.109 | 311.995 | 162.162 |
Water input | Million m3 | 256.006 | 131.020 | 249.052 | 235.419 | 37.381 | |
Investment input | Million Yuan | 48.400 | 15.008 | 31.416 | 30.613 | 11.377 | |
Desired output (GDP) | Million Yuan | 251,077.240 | 117,603.249 | 188,458.200 | 189,497.670 | 48,656.320 | |
Undesired output (wastewater) | Million m3 | 232.740 | 108.928 | 226.994 | 213.108 | 37.276 | |
Food system | Energy input | Million ton of SCE | 1.524 | 0.797 | 1.201 | 1.189 | 0.263 |
Water input | Million m3 | 101.938 | 27.256 | 88.385 | 82.951 | 21.583 | |
Investment input | Million Yuan | 124.930 | 0.000 | 0.000 | 55.524 | 62.078 | |
Food input (food-source protein) | Million ton | 0.099 | 0.040 | 0.081 | 0.072 | 0.023 | |
Desired output | Million Yuan | 153,867.626 | 29,021.118 | 70,782.370 | 77,870.406 | 42,092.919 | |
Undesired output (ammonia nitrogen) | Ton | 194.827 | 2.716 | 19.467 | 52.344 | 68.064 | |
Pingshan | |||||||
Energy system | Energy input | Million ton of SCE (Standard Coal Equivalent) | 2.487 | 1.557 | 2.011 | 2.042 | 0.350 |
Water input | Million m3 | 39.343 | 28.624 | 33.275 | 33.496 | 2.927 | |
Investment input | Million Yuan | 2288.990 | 175.620 | 647.048 | 780.275 | 565.958 | |
Desired output (GDP) | Million Yuan | 262,738.930 | 24,846.620 | 137,223.220 | 120,790.836 | 78,742.709 | |
Undesired output (NOx) | Ton | 252.400 | 30.000 | 89.400 | 104.922 | 63.692 | |
Water system | Energy input | Ton of SCE (Standard Coal Equivalent) | 233.414 | 34.788 | 159.143 | 138.290 | 72.017 |
Water input | Million m3 | 87.994 | 43.702 | 77.060 | 74.064 | 11.379 | |
Investment input | Million Yuan | 29.200 | 9.009 | 16.353 | 16.852 | 6.168 | |
Desired output (GDP) | Million Yuan | 80,105.320 | 34,524.860 | 53,077.290 | 55,738.980 | 15,866.113 | |
Undesired output (wastewater) | Million m3 | 84.264 | 39.967 | 72.295 | 70.095 | 11.326 | |
Food system | Energy input | Million ton of SCE | 0.475 | 0.234 | 0.338 | 0.347 | 0.084 |
Water input | Million m3 | 24.073 | 18.343 | 22.157 | 21.721 | 1.637 | |
Investment input | Million Yuan | 0 | 0 | 0 | 0 | 0 | |
Food input (food-source protein) | Million ton | 0.022 | 0.009 | 0.019 | 0.016 | 0.005 | |
Desired output | Million Yuan | 77,289.375 | 18,694.368 | 42,562.769 | 43,446.214 | 20,014.587 | |
Undesired output (ammonia nitrogen) | Ton | 71.085 | 0.566 | 23.767 | 36.424 | 26.772 | |
Guangming | |||||||
Energy system | Energy input | Million ton of SCE (Standard Coal Equivalent) | 3.490 | 2.276 | 2.813 | 2.893 | 0.406 |
Water input | Million m3 | 73.116 | 48.994 | 60.222 | 59.165 | 6.472 | |
Investment input | Million Yuan | 7424.998 | 655.511 | 2374.873 | 3081.897 | 2553.177 | |
Desired output (GDP) | Million Yuan | 74,144.330 | 27,247.040 | 36,154.170 | 44,553.237 | 17,000.892 | |
Undesired output (NOx) | Ton | 219.700 | 34.100 | 68.400 | 92.167 | 57.176 | |
Water system | Energy input | Ton of SCE (Standard Coal Equivalent) | 197.619 | 43.581 | 82.740 | 104.134 | 52.148 |
Water input | Million m3 | 245.546 | 114.865 | 140.367 | 146.054 | 37.297 | |
Investment input | Million Yuan | 36.729 | 9.856 | 20.304 | 20.521 | 8.258 | |
Desired output (GDP) | Million Yuan | 110,077.140 | 50,459.670 | 74,203.410 | 78,085.678 | 19,309.675 | |
Undesired output (wastewater) | Million m3 | 242.471 | 111.500 | 134.468 | 140.828 | 37.417 | |
Food system | Energy input | Million ton of SCE | 0.668 | 0.342 | 0.473 | 0.491 | 0.105 |
Water input | Million m3 | 77.571 | 24.720 | 30.328 | 34.646 | 15.525 | |
Investment input | Million Yuan | 289.210 | 0.000 | 0.000 | 62.341 | 90.492 | |
Food input (food-source protein) | Million ton | 0.043 | 0.014 | 0.031 | 0.028 | 0.011 | |
Desired output | Million Yuan | 354,613.635 | 83,121.486 | 186,048.310 | 196,512.882 | 92,659.073 | |
Undesired output (ammonia nitrogen) | Ton | 129.747 | 4.727 | 60.889 | 75.034 | 43.975 | |
Dapeng | |||||||
Energy system | Energy input | Million ton of SCE (Standard Coal Equivalent) | 1.202 | 1.010 | 1.089 | 1.114 | 0.067 |
Water input | Million m3 | 9.011 | 4.686 | 6.476 | 6.705 | 1.350 | |
Investment input | Million Yuan | 9458.722 | 701.010 | 1538.010 | 3584.381 | 3385.691 | |
Desired output (GDP) | Million Yuan | 20,772.080 | 14,212.590 | 18,331.890 | 17,744.050 | 2071.373 | |
Undesired output (NOx) | Ton | 1798.758 | 314.000 | 831.600 | 969.851 | 521.395 | |
Water system | Energy input | Ton of SCE (Standard Coal Equivalent) | 63.294 | 8.338 | 28.388 | 35.218 | 20.457 |
Water input | Million m3 | 32.693 | 30.319 | 31.560 | 31.439 | 0.759 | |
Investment input | Million Yuan | 7.200 | 2.002 | 4.368 | 4.657 | 1.499 | |
Desired output (GDP) | Million Yuan | 35,143.530 | 3.360 | 30.623 | 8519.328 | 12,728.647 | |
Undesired output (wastewater) | Million m3 | 28.963 | 26.576 | 27.751 | 27.710 | 0.787 | |
Food system | Energy input | Million ton of SCE | 0.213 | 0.152 | 0.198 | 0.188 | 0.022 |
Water input | Million m3 | 7.886 | 5.109 | 5.980 | 6.144 | 0.885 | |
Investment input | Million Yuan | 10,669.791 | 1.000 | 214.888 | 3206.782 | 4369.322 | |
Food input (food-source protein) | Million ton | 0.006 | 0.004 | 0.006 | 0.005 | 0.001 | |
Desired output | Million Yuan | 21,877.508 | 7724.409 | 12,646.761 | 13,683.076 | 4845.435 | |
Undesired output (ammonia nitrogen) | Ton | 39.248 | 0.120 | 16.839 | 15.853 | 12.676 |
References
- Heard, B.R.; Miller, S.A.; Liang, S.; Xu, M. Emerging challenges and opportunities for the food-energy-water nexus in urban systems. Curr. Opin. Chem. Eng. 2017, 17, 48–53. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Chang, Y.; Xu, M.; Hao, Y.; Liang, S.; Liu, G.; Yang, Z.; Wang, C. Food-Energy-Water (FEW) nexus for urban sustainability: A comprehensive review. Resour. Conservat. Recycl. 2019, 142, 215–224. [Google Scholar] [CrossRef]
- Simpson, G.B.; Jewitt, G.P. The development of the water-energy-food nexus as a framework for achieving resource security: A review. Front. Environ. Sci. 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Tayal, S. Managing food at urban level through water–energy–food nexus in India: A way towards holistic sustainable development. Environ. Dev. Sustain. 2022, 24, 3640–3658. [Google Scholar] [CrossRef]
- To, W.M.; Lee, P.K.; Lau, A.K. Economic and environmental changes in Shenzhen—A technology hub in southern China. Sustainability 2021, 13, 5545. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, Y.; Zhou, Y.; Tan, Q.; Li, B.; Li, B.; Jia, Q.; Yang, Z. Quantifying the water-energy-food nexus in Guangdong, Hong Kong, and Macao regions. Sustain. Prod. Consump. 2022, 29, 188–200. [Google Scholar] [CrossRef]
- State Council of the People’s Republic of China. The 14th Five-Year Plan for National Economic and Social Development of the People’s Republic of China and the Outline of Vision 2035; State Council of the People’s Republic of China: Beijing, China, 2021. Available online: http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm (accessed on 5 May 2022).
- Sun, C.; Yan, X.; Zhao, L. Coupling efficiency measurement and spatial correlation characteristic of water–energy–food nexus in China. Resour. Conservat. Recycl. 2021, 164, 105151. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; He, G.; Li, R.; Wang, X. Evaluating sustainability of water-energy-food (WEF) nexus using an improved matter-element extension model: A case study of China. J. Clean. Prod. 2018, 202, 1097–1106. [Google Scholar] [CrossRef]
- Deng, H.M.; Wang, C.; Cai, W.J.; Liu, Y.; Zhang, L.X. Managing the water-energy-food nexus in China by adjusting critical final demands and supply chains: An input-output analysis. Sci. Total Environ. 2020, 720, 137635. [Google Scholar] [CrossRef]
- Han, D.; Yu, D.; Cao, Q. Assessment on the features of coupling interaction of the food-energy-water nexus in China. J. Clean. Prod. 2020, 249, 119379. [Google Scholar] [CrossRef]
- Costanza, R.; Kubiszewski, I.; Giovannini, E.; Lovins, H.; McGlade, J.; Pickett, K.E.; Ragnarsdottir, K.V.; Roberts, D.; De Vogli, R.; Wilkinson, R. Development: Time to leave GDP behind. Nature 2014, 505, 283. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Huang, D.; Li, Y. China’s input-output efficiency of water-energy-food nexus based on the data envelopment analysis (DEA) model. Sustainability 2016, 8, 927. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.Y.; Liang, Q.M. Sustainability evaluation of the provincial water-energy-food nexus in China: Evolutions, obstacles, and response strategies. Sustain. Cities Soc. 2021, 75, 103332. [Google Scholar] [CrossRef]
- Yuan, M.H.; Lo, S.L. Ecosystem services and sustainable development: Perspectives from the food-energy-water nexus. Ecosyst. Serv. 2020, 46, 101217. [Google Scholar] [CrossRef]
- Li, G.; Huang, D.; Sun, C.; Li, Y. Developing interpretive structural modeling based on factor analysis for the water-energy-food nexus conundrum. Sci. Total Environ. 2019, 651, 309–322. [Google Scholar] [CrossRef]
- Wen, C.; Dong, W.; Zhang, Q.; He, N.; Li, T. A system dynamics model to simulate the water-energy-food nexus of resource-based regions: A case study in Daqing City, China. Sci. Total Environ. 2022, 806, 150497. [Google Scholar] [CrossRef]
- Yu, X.; Shan, L.; Wu, Y. Land use optimization in a resource-exhausted city based on simulation of the F-E-W nexus. Land 2021, 10, 1013. [Google Scholar] [CrossRef]
- Shi, X.; Matsui, T.; Machimura, T.; Haga, C.; Hu, A.; Gan, X. Impact of urbanization on the food–water–land–ecosystem nexus: A study of Shenzhen, China. Sci. Total Environ. 2022, 808, 152138. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; McPhearson, T.; Davidson, D.J. The food-energy-water nexus and urban complexity. Nat. Clim. Chang. 2017, 7, 233–235. [Google Scholar] [CrossRef]
- Maddahi, R.; Jahanshahloo, G.R.; Hosseinzadeh Lotfi, F.; Ebrahimnejad, A. Optimising proportional weights as a secondary goal in DEA cross-efficiency evaluation. Int. J. Oper. Res. 2014, 19, 234–245. [Google Scholar] [CrossRef]
- Hadad, Y.; Hanani, M.Z. Combining the AHP and DEA methodologies for selecting the best alternative. Int. J. Logist. Manag. 2011, 9, 251–267. [Google Scholar] [CrossRef]
- Hadad, Y.; Keren, B.; Hanani, M.Z. Combining data envelopment analysis and Malmquist Index for evaluating police station efficiency and effectiveness. Police Pract. Res. 2015, 16, 5–21. [Google Scholar] [CrossRef]
- Tavana, M.; Ebrahimnejad, A.; Santos-Arteaga, F.J.; Mansourzadeh, S.M.; Matin, R.K. A hybrid DEA-MOLP model for public school assessment and closure decision in the City of Philadelphia. Socio. Econ. Plan. Sci. 2018, 61, 70–89. [Google Scholar] [CrossRef]
- Ebrahimnejad, A.; Lotfi, F.H. Equivalence relationship between the general combined-oriented CCR model and the weighted minimax MOLP formulation. J. King Saud Univ. Sci. 2012, 24, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimnejad, A.; Tavana, M.; Santos-Arteaga, F.J. An integrated data envelopment analysis and simulation method for group consensus ranking. Math. Comput. Simulat. 2016, 119, 1–17. [Google Scholar] [CrossRef]
- Bagheri, M.; Ebrahimnejad, A.; Razavyan, S.; Hosseinzadeh Lotfi, F.; Malekmohammadi, N. Fuzzy arithmetic DEA approach for fuzzy multi-objective transportation problem. Oper. Res. 2020, 22, 1479–1509. [Google Scholar] [CrossRef]
- Bagheri, M.; Ebrahimnejad, A.; Razavyan, S.; Hosseinzadeh Lotfi, F.; Malekmohammadi, N. Solving the fully fuzzy multi-objective transportation problem based on the common set of weights in DEA. J. Intell. Fuzzy Syst. 2020, 39, 3099–3124. [Google Scholar] [CrossRef]
- Li, G.J.; Li, Y.L.; Jia, X.J.; Du, L.; Huang, D.H. Establishment and simulation study of system dynamic model on sustainable development of water-energy-food nexus in Beijing. Manag. Rev. 2016, 28, 11. [Google Scholar]
- Fan, Y.; Fang, C. Circular economy development in China-current situation, evaluation and policy implications. Environ. Impact Assess. Rev. 2020, 84, 106441. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Fu, Z. Tourism eco-efficiency of Chinese coastal cities–Analysis based on the DEA-Tobit model. Ocean Coast. Manag. 2017, 148, 164–170. [Google Scholar] [CrossRef]
- Yuan, W.; Li, J.; Meng, L.; Qin, X.; Qi, X. Measuring the area green efficiency and the influencing factors in urban agglomeration. J. Clean. Prod. 2019, 241, 118092. [Google Scholar] [CrossRef]
- Xian, C.; Wang, L.; Lu, F.; Zhang, H.; Ouyang, Z. The applications of ‘N offset’ mechanism in the evaluation of reactive nitrogen emissions reduction in a typical China’s urban agglomeration. Ecol. Evol. Biol. 2018, 3, 5–15. [Google Scholar]
- Fan, Y.; Bai, B.; Qiao, Q.; Kang, P.; Zhang, Y.; Guo, J. Study on eco-efficiency of industrial parks in China based on data envelopment analysis. J. Environ. Manag. 2017, 192, 107–115. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Wu, J.; Lv, H.; Hu, X. Linking ecosystem services and landscape patterns to assess urban ecosystem health: A case study in Shenzhen City, China. Landsc. Urban Plan. 2015, 143, 56–68. [Google Scholar] [CrossRef]
- Shenzhen Statistics Bureau (SSB). Shenzhen Statistical Yearbook (Various Issues from 2012 to 2021); China Statistics Press Co., Ltd.: Beijing, China, 2021.
- Chen, C.; Wen, Z.; Wang, Y. Nitrogen flow patterns in the food system among cities within urban agglomeration: A case study of the Pearl River Delta region. Sci. Total Environ. 2020, 703, 135506. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, S.; Tan, M. Simulation and optimization of water supply and demand balance in Shenzhen: A system dynamics approach. J. Clean. Prod. 2019, 207, 882–893. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Li, Y. Synergies within the water-energy-food nexus to support the integrated urban resources governance. Water 2019, 11, 2365. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Bawa, K.S.; Seager, T.P.; Mao, G.; Ding, D.; Lee, J.S.H.; Swim, J.K. On knowledge generation and use for sustainability. Nat. Sustain. 2019, 2, 80–82. [Google Scholar] [CrossRef]
- Ebrahimnejad, A.; Tavana, M. An interactive MOLP method for identifying target units in output-oriented DEA models: The NATO enlargement problem. Measurement 2014, 52, 124–134. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, L. Aggregate risk of reactive nitrogen under anthropogenic disturbance in the Pearl River Delta urban agglomeration. J. Clean. Prod. 2019, 211, 490–502. [Google Scholar] [CrossRef]
- Wang, Y.; Xian, C.; Jiang, Y.; Pan, X.; Ouyang, Z. Anthropogenic reactive nitrogen releases and gray water footprints in urban water pollution evaluation: The case of Shenzhen City, China. Environ. Dev. Sustain. 2020, 22, 6343–6361. [Google Scholar] [CrossRef]
- Xian, C.; Fan, Y.; Zhang, J.; Zhang, L. Assessing sustainable water utilization from a holistic view: A case study of Guangdong, China. Sustain. Cities Soc. 2022, 76, 103428. [Google Scholar] [CrossRef]
- Water Authority of Shenzhen Municipality (WASM). Shenzhen Water Resource Bulletin (Various Issues from 2012 to 2020); Water Authority of Shenzhen Municipality: Shenzhen, China, 2020. Available online: http://swj.sz.gov.cn/xxgk/zfxxgkml/szswgk/tjsj/szygb/ (accessed on 5 May 2022).
- Guo, J.; Xu, Y.; Sha, Q.; Huang, Z.; Wu, L.; Liu, H.; Zhang, X.; Chen, Z.; Li, Z.; Zhong, Z.; et al. Atmospheric pollutants and greenhouse gas emissions from household energy consumption in Guangdong Province. Acta Sci. Circumstantiae 2022, 42, 84–93. [Google Scholar]
- Xian, C.; Liu, J.; Pan, X.; Ouyang, Z. Calculation and analysis of urban food nitrogen footprints in a typical immigrant city: A case study of Shenzhen City, China. Acta Ecol. Sin. 2020, 40, 7441–7450. [Google Scholar]
- Wang, L.; Xiao, Y.; Ouyang, Z. Food and grain consumption per capita in the Qinghai–Tibet Plateau and implications for conservation. Nutrients 2021, 13, 3742. [Google Scholar] [CrossRef] [PubMed]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Boloori, F.; Afsharian, M.; Pourmahmoud, J. Equivalent multiplier and envelopment DEA models for measuring efficiency under general network structures. Measurement 2016, 80, 259–269. [Google Scholar] [CrossRef]
- Xian, C.; Ouyang, Z.; Lu, F.; Xiao, Y.; Li, Y. Quantitative evaluation of reactive nitrogen emissions with urbanization: A case study in Beijing megacity, China. Environ. Sci. Pollut. Res. 2016, 23, 17689–17701. [Google Scholar] [CrossRef] [PubMed]
- Cooper, W.W.; Seiford, L.M.; Kaoru, T. Data Envelopment Analysis, a Comprehensive Text with Models, Applications, Reference and DEA-Solver Software; Kluwer Academic Publisher: Morwell, Australia, 2000. [Google Scholar]
- Shenzhen Planning and Natural Resources Bureau (SPNRB). Third National Land Survey Bulletin for Shenzhen; Shenzhen Planning and Natural Resources Bureau: Shenzhen, China, 2022. Available online: http://pnr.sz.gov.cn/xxgk/sjfb/tjsj/content/post_9744744.html (accessed on 5 May 2022).
- Guangdong Statistics Bureau (GSB). Guangdong Statistical Yearbook (Various Issues from 2012 to 2021); China Statistics Press Co. Ltd.: Beijing, China, 2021.
- Li, M.; Fu, Q.; Singh, V.P.; Ji, Y.; Liu, D.; Zhang, C.; Li, T. An optimal modelling approach for managing agricultural water-energy-food nexus under uncertainty. Sci. Total Environ. 2019, 651, 1416–1434. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus. In Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Zhu, J.; Kang, S.; Zhao, W.; Li, Q.; Xie, X.; Hu, X. A bibliometric analysis of food–energy–water nexus: Progress and prospects. Land 2020, 9, 504. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Environ. Sci. Policy 2017, 92, 356–367. [Google Scholar] [CrossRef]
- National Development and Reform Commission (NDRC) (2021). The 14th Five-Year Plan for National Economic and Social Development of Shenzhen and the Outline of Long-term Goal for 2035; National Development and Reform Commission: Beijing, China, 2021. Available online: https://www.ndrc.gov.cn/fggz/fzzlgh/dffzgh/202106/t20210611_1283093_ext.html (accessed on 5 May 2022).
Regions | Average Annual Population Density (Thousand/km2) | Average Annual GDP (Billion RMB) | Average Annual Percentage of Municipal Investment in Fixed Assets (%) | Average Annual Percentage of Build-Up Land (%) | Average Annual Percentage of Forest Land(%) |
---|---|---|---|---|---|
Futian | 18.48 | 370.55 | 7.20 | 64.88 | 19.21 |
Luohu | 13.12 | 200.05 | 4.17 | 39.35 | 43.38 |
Nanshan | 7.88 | 457.80 | 18.47 | 53.81 | 13.43 |
Yantian | 2.89 | 55.01 | 3.01 | 23.22 | 60.25 |
Baoan | 9.40 | 311.14 | 16.92 | 51.28 | 15.32 |
Longgang | 7.66 | 352.13 | 19.74 | 52.49 | 26.52 |
Longhua | 12.73 | 198.44 | 12.49 | 61.42 | 19.42 |
Pingshan | 2.65 | 58.39 | 7.00 | 36.39 | 37.99 |
Guangming | 4.38 | 81.54 | 8.33 | 41.74 | 14.89 |
Dapeng | 0.48 | 30.70 | 2.01 | 10.20 | 67.00 |
FEW Systems | Items | Units | Calculation | Parameter Definition | References |
---|---|---|---|---|---|
Energy system | Energy input | Ton of SCE * (Standard Coal Equivalent) | EC × GDP | GDP: Gross domestic production EC: Energy consumption per unit GDP | [36] |
Water input | m3 | IWC | IWC: Industrial water consumption | [45] | |
Investment input | Yuan | IEG | IEG: Investment in fixed assets for production and supply of electricity | [8,31,36] | |
Desired output | Yuan | IGDP | IGDP: Value added of secondary industry | [8,31,36] | |
Undesired output | Ton | NOx | NOx: Industrial nitrogen oxide emission | [36] | |
Water system | Energy input | Ton of SCE (Standard Coal Equivalent) | GAS × EG + DIS × ED | GAS: Gasoline for production and supply of water DIS: Diesel for production and supply of water EG: Conversion coefficients for gasoline to SCE ED: Conversion coefficients for diesel to SCE | [36,46] |
Water input | m3 | AWC + IWC + RWC | AWC: Industrial water consumption RWC: Residential water consumption | [45] | |
Investment input | Yuan | IWM | IWM: Completed investment in water resource management | [8,31,36] | |
Desired output | Yuan | GDP | GDP: Gross domestic production | [8,31,36] | |
Undesired output | m3 | (AWC + IWC + RWC) × PT-RWW + (AWC + IWC + RWC) × (1 − PT) | PT: Wastewater treatment rate RWW: Reuse of wastewater | [42,45] | |
Food system | Energy input | Ton of SCE | EC × GDP × (ER/EU) | ER: Energy consumption for whole city EU: Energy for residential consumption | [36] |
Water input | m3 | RWC | RWC: Residential water consumption | [45] | |
Investment input | Yuan | IHC | IHC: Investment in fixed assets for hotels and catering services | [8,31,36] | |
Food input | Ton of protein | FCi: Daily food i consumption PRO: Protein content of food i RPOP: Regional population by the end of year | [47,48] | ||
Desired output | Yuan | PWA × RPOP × (TPEP/TPOP) | PWA: Average wage for fully employed staff and workers TPEP: Total number of employed persons TPOP: Total population by the end of year | [8,36] | |
Undesired output | Ton | NH3 | NH3: Ammonia nitrogen discharge | [36,42,47] |
Regions | 2012 | 2014 | 2016 | 2018 | 2020 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | E | W | F | E | W | F | E | W | F | E | W | F | E | W | |
Futian | 0.395 | 0.152 | 1 | 0.356 | 0.122 | 1 | 1 | 0.552 | 1 | 0.395 | 0.373 | 1 | 0.459 | 0.926 | 1 |
Luohu | 0.397 | 1 | 1 | 0.398 | 1 | 1 | 1 | 0.847 | 0.941 | 0.397 | 1 | 0.970 | 1 | 0.888 | 0.865 |
Nanshan | 0.351 | 1 | 1 | 0.357 | 1 | 1 | 0.767 | 1 | 1 | 0.351 | 1 | 1 | 0.47 | 1 | 1 |
Yantian | 1 | 1 | 1 | 1 | 0.579 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Baoan | 0.349 | 0.521 | 0.376 | 0.517 | 0.151 | 0.401 | 1 | 1 | 0.443 | 0.349 | 0.741 | 0.457 | 0.526 | 0.697 | 0.379 |
Longgang | 0.349 | 0.255 | 0.375 | 0.379 | 0.074 | 0.388 | 0.724 | 0.571 | 0.576 | 0.349 | 1 | 0.609 | 0.434 | 1 | 0.537 |
Longhua | 0.261 | 0.911 | 0.435 | 0.152 | 0.277 | 0.423 | 0.468 | 0.939 | 0.501 | 0.261 | 1 | 0.538 | 0.200 | 1 | 0.427 |
Pingshan | 0.491 | 1 | 0.318 | 0.422 | 1 | 0.365 | 1 | 1 | 0.447 | 0.491 | 1 | 0.503 | 0.868 | 1 | 0.473 |
Guangming | 1 | 1 | 0.418 | 1 | 0.165 | 0.385 | 1 | 1 | 0.349 | 1 | 0.955 | 0.399 | 1 | 1 | 0.316 |
Dapeng | 1 | 0.997 | 1 | 1 | 0.409 | 1 | 0.997 | 0.464 | 1 | 1 | 0.986 | 1 | 1 | 1 | 1 |
Regions | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|
Futian | 1.278 | 1.170 | 1.334 | 1.940 | 1.596 | 1.224 | 1.385 | 1.343 | 1.930 |
Luohu | 1.427 | 2 | 2 | 2 | 1.795 | 1.633 | 1.970 | 1.762 | 1.755 |
Nanshan | 1.483 | 1.526 | 1.748 | 1.738 | 1.967 | 2 | 2 | 2 | 2 |
Yantian | 2 | 1.666 | 1.617 | 2 | 2 | 2 | 2 | 1.980 | 2 |
Baoan | 0.753 | 0.857 | 0.867 | 0.737 | 1.443 | 0.741 | 1.183 | 1.209 | 1.080 |
Longgang | 0.678 | 0.583 | 0.609 | 0.666 | 1.217 | 0.770 | 1.556 | 1.492 | 1.457 |
Longhua | 1.347 | 0.604 | 0.701 | 1.089 | 1.450 | 0.859 | 1.464 | 1.315 | 1.354 |
Pingshan | 1.318 | 1.357 | 1.365 | 1.779 | 1.447 | 1.454 | 1.503 | 1.436 | 1.473 |
Guangming | 1.418 | 0.631 | 0.553 | 0.509 | 1.349 | 0.727 | 1.355 | 1.350 | 1.316 |
Dapeng | 1.999 | 1.678 | 1.722 | 1.527 | 1.467 | 1.400 | 1.988 | 2 | 2 |
Shenzhen City | 1.219 | 1.158 | 1.242 | 1.386 | 1.582 | 1.246 | 1.602 | 1.561 | 1.645 |
Unstandardized Coefficients | Standardized Coefficients | T | Sig. (p) | Confidence Interval | |||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Lower Limit | Upper Limit | |||
Constant | 1.016 | 0.143 | 7.109 | 0.000 | 0.732 | 1.300 | |
PU (population density) | 0.024 | 0.082 | 0.030 | 0.291 | 0.771 | −0.139 | 0.187 |
EU (per capita GDP) | 0.037 | 0.005 | 0.634 | 7.690 | 0.000 | 0.028 | 0.047 |
LU (percentage of built-up land) | −0.506 | 0.275 | −0.192 | −1.840 | 0.069 | −1.053 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xian, C.; Yang, S.; Fan, Y.; Wu, H.; Gong, C. Coupling Efficiency Assessment of Food–Energy–Water (FEW) Nexus Based on Urban Resource Consumption towards Economic Development: The Case of Shenzhen Megacity, China. Land 2022, 11, 1783. https://doi.org/10.3390/land11101783
Xian C, Yang S, Fan Y, Wu H, Gong C. Coupling Efficiency Assessment of Food–Energy–Water (FEW) Nexus Based on Urban Resource Consumption towards Economic Development: The Case of Shenzhen Megacity, China. Land. 2022; 11(10):1783. https://doi.org/10.3390/land11101783
Chicago/Turabian StyleXian, Chaofan, Shuo Yang, Yupeng Fan, Haotong Wu, and Cheng Gong. 2022. "Coupling Efficiency Assessment of Food–Energy–Water (FEW) Nexus Based on Urban Resource Consumption towards Economic Development: The Case of Shenzhen Megacity, China" Land 11, no. 10: 1783. https://doi.org/10.3390/land11101783
APA StyleXian, C., Yang, S., Fan, Y., Wu, H., & Gong, C. (2022). Coupling Efficiency Assessment of Food–Energy–Water (FEW) Nexus Based on Urban Resource Consumption towards Economic Development: The Case of Shenzhen Megacity, China. Land, 11(10), 1783. https://doi.org/10.3390/land11101783