Characterizing Temporal Dynamics of Urban Heat Island in a Rapidly Expanding City: A 39 Years Study in Zhengzhou, China
Abstract
:1. Introduction
- (1)
- What kind of changes in urban local climate change and UHI are observed with rapid urbanization in Zhengzhou city?
- (2)
- What are the differences between daytime UHI and nighttime UHI?
- (3)
- What are the most important urban development indicators (GDP, population density, and urbanization rate) associated with the urban heat island in Zhengzhou?
2. Study Area
3. Data Sets and Method
3.1. Air Temperature Data
3.2. Additional Data
3.3. Method
3.3.1. Urban Heat Island Intensity
3.3.2. Index of Urban Growth
3.4. Analysis Methods and Tools
4. Results
4.1. Urban Climate Change
4.2. Temperature-Based Temporal Dynamics of UHI Intensity
4.3. Diurnal Variations in Atmospheric UHI Intensity across the Four Seasons
4.4. The Correlation between Atmospheric UHI Intensity and Urban Socioeconomic Growth
5. Discussion
5.1. Urbanization Roles in Climate Change
5.2. UHI and Urban Expansion
5.3. Policy-Driven Urbanization Process—Indirect Factors
5.4. Countermeasures and Outlooks
6. Conclusions
- (1)
- UHI intensity increases with time and urban expansion magnitude.
- (2)
- Renewed evidence shows the changing characteristics of urban heat islands in the Northern Hemisphere. Summer has the highest UHI intensity, spring is the second, and winter is the weakest. Nocturnal UHI intensity was more significant than daytime.
- (3)
- The urban development indicators (population, urbanization rate, population density, UCR) are all significant factors contributing to the UHI effect.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | LCZ Type | Aerial Images |
---|---|---|
1988 | LCZ D-Agriculture land | |
2005 | LCZ-6 Open low-rise | |
2007 | LCZ-4 Open mid-rise | |
2019 | LCZ-1 Open high-rise | |
National Standard Station model | Aerial map | Reference model from⟪Specifications for surface meteorological observation⟫ QX/T 61-2007 National Standard |
Local climate zone types (Stewart & Oke 2012) |
Year | LCZ Type | Aerial Images |
---|---|---|
1988 | LCZ D-Agriculture land | |
2009 | LCZ D-Agriculture land | |
2013 | LCZ-9 Sparsely built | |
2019 | LCZ-4 Open low-rise |
Year | Built-Up/km2 | Citizens/Million | * Urbanization Rate/% | Population Density/km2 | GDP/CNY |
---|---|---|---|---|---|
1981 | 65 | 4.58 | 35 | 616 | 31.1 |
1982 | 66 | 4.67 | 35.8 | 628 | 33.3 |
1983 | 67.8 | 4.74 | 36.7 | 637 | 37.5 |
1984 | 69.3 | 4.8 | 37.6 | 645 | 43.3 |
1985 | 70.2 | 4.85 | 38.4 | 652 | 49.7 |
1986 | 80.5 | 4.91 | 39.3 | 660 | 53.4 |
1987 | 94.2 | 5.00 | 40.1 | 672 | 66.3 |
1988 | 102 | 5.10 | 41 | 686 | 81.5 |
1989 | 110.9 | 5.21 | 41.9 | 700 | 97.8 |
1990 | 112 | 5.57 | 42.7 | 749 | 116.4 |
1991 | 117.2 | 5.65 | 43.9 | 759 | 138.7 |
1992 | 93.1 | 5.70 | 45.2 | 767 | 167.4 |
1993 | 99.5 | 5.81 | 46.4 | 781 | 218.4 |
1994 | 101.9 | 5.88 | 47.7 | 791 | 287.9 |
1995 | 108.3 | 6.00 | 48.9 | 806 | 386.4 |
1996 | 112.8 | 6.07 | 50.1 | 816 | 498.2 |
1997 | 116.2 | 6.14 | 51.4 | 826 | 566 |
1998 | 119.8 | 6.22 | 52.6 | 836 | 610 |
1999 | 124.5 | 6.31 | 53.9 | 848 | 632.9 |
2000 | 133.2 | 6.65 | 55.1 | 894 | 728.4 |
2001 | 142.4 | 6.77 | 55.5 | 909 | 815.8 |
2002 | 156.4 | 6.87 | 56 | 924 | 913.9 |
2003 | 212.4 | 6.97 | 57 | 937 | 1074.1 |
2004 | 243.3 | 7.08 | 57.9 | 951 | 1335.2 |
2005 | 262 | 7.16 | 59.2 | 962 | 1660.6 |
2006 | 282 | 7.24 | 60.2 | 973 | 2007.8 |
2007 | 302 | 7.35 | 61.3 | 988 | 2486.7 |
2008 | 328.7 | 7.43 | 62.3 | 999 | 3012.9 |
2009 | 336.7 | 7.52 | 63.4 | 1010 | 3305.9 |
2010 | 342.7 | 8.66 | 63.6 | 1163 | 4029.3 |
2011 | 354.7 | 8.85 | 64.8 | 1189 | 4954.1 |
2012 | 373 | 9.03 | 66.3 | 1213 | 5517.1 |
2013 | 382.7 | 9.19 | 67.1 | 1234 | 6197.4 |
2014 | 412.7 | 9.37 | 68.3 | 1259 | 6777 |
2015 | 437.6 | 9.56 | 69.7 | 1285 | 7311.5 |
2016 | 456.6 | 9.72 | 71 | 1306 | 8114 |
2017 | 500.8 | 9.88 | 72.2 | 1327 | 9193.8 |
2018 | 543.9 | 10.13 | 73.4 | 1361 | 10,670.1 |
2019 | 651.3 | 10.35 | 74.6 | 1390 | 11,589.7 |
References
- Droughts in Europe in July 2022: Almost Half of the EU + UK Territory at Risk. Available online: https://joint-research-centre.ec.europa.eu/jrc-news/droughts-europe-july-2022-almost-half-eu-uk-territory-risk-2022-07-18_en (accessed on 28 August 2022).
- United Nations. World Population Prospects 2019-Volume II: Demographic Profiles; UN: New York, NY, USA, 2020; ISBN 978-92-1-004643-5.
- Oke, T.R. Boundary Layer Climates; Taylor & Francis: Oxford, UK, 2002; ISBN 978-1-134-95133-8. [Google Scholar]
- Kotharkar, R.; Ramesh, A.; Bagade, A. Urban Heat Island Studies in South Asia: A Critical Review. Urban Clim. 2018, 24, 1011–1026. [Google Scholar] [CrossRef]
- Phelan, P.E.; Kaloush, K.; Miner, M.; Golden, J.; Phelan, B.; Silva, H.; Taylor, R.A. Urban Heat Island: Mechanisms, Implications, and Possible Remedies. Annu. Rev. Environ. Resour. 2015, 40, 285–307. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban Heat Island Effect: A Systematic Review of Spatio-Temporal Factors, Data, Methods, and Mitigation Measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat Waves and Urban Heat Islands in Europe: A Review of Relevant Drivers. Sci. Total Environ. 2016, 569–570, 527–539. [Google Scholar] [CrossRef]
- Gaffin, S.R.; Rosenzweig, C.; Khanbilvardi, R.; Parshall, L.; Mahani, S.; Glickman, H.; Goldberg, R.; Blake, R.; Slosberg, R.B.; Hillel, D. Variations in New York City’s Urban Heat Island Strength over Time and Space. Theor. Appl Clim. 2008, 94, 1–11. [Google Scholar] [CrossRef]
- Kataoka, K.; Matsumoto, F.; Ichinose, T.; Taniguchi, M. Urban Warming Trends in Several Large Asian Cities over the Last 100 Years. Sci. Total Environ. 2009, 407, 3112–3119. [Google Scholar] [CrossRef]
- Hong, J.-W.; Hong, J.; Kwon, E.E.; Yoon, D.K. Temporal Dynamics of Urban Heat Island Correlated with the Socio-Economic Development over the Past Half-Century in Seoul, Korea. Environ. Pollut. 2019, 254, 112934. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, Y.; Chu, Z.; Zhou, J.; Zhang, A.; Guo, J.; Liu, X. Urbanization Effects on Observed Surface Air Temperature Trends in North China. J. Clim. 2008, 21, 1333–1348. [Google Scholar] [CrossRef] [Green Version]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of Urban Heat Islands Largely Explained by Climate and Population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef]
- Howard, L. The Climate of London: Deduced from Meteorological Observations; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-108-04952-8. [Google Scholar]
- Unger, J. Intra-Urban Relationship between Surface Geometry and Urban Heat Island: Review and New Approach. Clim. Res. 2004, 27, 253–264. [Google Scholar] [CrossRef]
- Oke, T.R. The Distinction between Canopy and Boundary-layer Urban Heat Islands. Atmosphere 1976, 14, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. Street Design and Urban Canopy Layer Climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Ooka, R.; Sato, T.; Harayama, K.; Murakami, S.; Kawamoto, Y. Thermal Energy Balance Analysis of the Tokyo Metropolitan Area Using a Mesoscale Meteorological Model Incorporating an Urban Canopy Model. Bound.-Layer Meteorol. 2011, 138, 77–97. [Google Scholar] [CrossRef]
- Park, B.-J.; Kim, Y.-H.; Min, S.-K.; Kim, M.-K.; Choi, Y.; Boo, K.-O.; Shim, S. Long-Term Warming Trends in Korea and Contribution of Urbanization: An Updated Assessment: Urbanization Contribution in Korea. J. Geophys. Res. Atmos. 2017, 122, 10637–10654. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The Impacts of Rapid Urbanization on the Thermal Environment: A Remote Sensing Study of Guangzhou, South China. Remote Sens. 2012, 4, 2033–2056. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The Impact of Urbanization and Climate Change on Urban Temperatures: A Systematic Review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal Patterns and Characteristics of Remotely Sensed Region Heat Islands during the Rapid Urbanization (1995–2015) of Southern China. Sci. Total Environ. 2019, 674, 242–254. [Google Scholar] [CrossRef]
- Sun, S. An Analysis on Planning Paradigms and the Evolution of Urban Planning in China. UPI 2019, 34, 1–7. [Google Scholar] [CrossRef]
- Min, M.; Zhao, H.; Miao, C. Spatio-Temporal Evolution Analysis of the Urban Heat Island: A Case Study of Zhengzhou City, China. Sustainability 2018, 10, 1992. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zhang, H.; Miao, C.; Ye, X.; Min, M. Linking Heat Source–Sink Landscape Patterns with Analysis of Urban Heat Islands: Study on the Fast-Growing Zhengzhou City in Central China. Remote Sens. 2018, 10, 1268. [Google Scholar] [CrossRef]
- Zhao, H.; Ren, Z.; Tan, J. The Spatial Patterns of Land Surface Temperature and Its Impact Factors: Spatial Non-Stationarity and Scale Effects Based on a Geographically-Weighted Regression Model. Sustainability 2018, 10, 2242. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xi, C.; Zhao, X.; Mao, P.; Wang, Z.; Shi, Y.; He, T.; Li, Z. Measuring the Urban Land Surface Temperature Variations Under Zhengzhou City Expansion Using Landsat-Like Data. Remote Sens. 2020, 12, 801. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Gul, S.; Li, W. Remote Sensing Evaluation of Land Surface Temperature and Urban Area Expansion in Zhengzhou City during 2013–2015. Nat. Appl. Sci. Int. J. (NASIJ) 2021, 2, 39–55. [Google Scholar] [CrossRef]
- Yang, Y.; Song, F.; Ma, J.; Wei, Z.; Song, L.; Cao, W. Spatial and Temporal Variation of Heat Islands in the Main Urban Area of Zhengzhou under the Two-Way Influence of Urbanization and Urban Forestry. PLoS ONE 2022, 17, e0272626. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Lelovics, E.; Unger, J.; Gál, T.; Gál, C. Design of an Urban Monitoring Network Based on Local Climate Zone Mapping and Temperature Pattern Modelling. Clim. Res. 2014, 60, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Okaze, T.; Ren, C.; Cai, M.; Ishida, Y.; Watanabe, H.; Mochida, A. Evaluation of Urban Heat Islands Using Local Climate Zones and the Influence of Sea-Land Breeze. Sustain. Cities Soc. 2020, 55, 102060. [Google Scholar] [CrossRef]
- Dian, C.; Pongrácz, R.; Incze, D.; Bartholy, J.; Talamon, A. Analysis of the Urban Heat Island Intensity Based on Air Temperature Measurements in a Renovated Part of Budapest (Hungary). Geogr. Pannonica 2019, 23, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y. Derivation of the Functional Relations between Fractal Dimension of and Shape Indices of Urban Form. Comput. Environ. Urban Syst. 2011, 35, 442–451. [Google Scholar] [CrossRef]
- Haggett, P.; Cliff, A.D.; Frey, A. Locational Analysis in Human Geography; Arnold: London, UK, 1977; Volume 2. [Google Scholar]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global Surface Temperature Change. Rev. Geophys. 2010, 48, 1–29. [Google Scholar] [CrossRef]
- Mu, B.; Mayer, A.L.; He, R.; Tian, G. Land Use Dynamics and Policy Implications in Central China: A Case Study of Zhengzhou. Cities 2016, 58, 39–49. [Google Scholar] [CrossRef]
- Dimoudi, A.; Nikolopoulou, M. Vegetation in the Urban Environment: Microclimatic Analysis and Benefits. Energy Build. 2003, 35, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Jin, S.; Du, P. Roles of Horizontal and Vertical Tree Canopy Structure in Mitigating Daytime and Nighttime Urban Heat Island Effects. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102060. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, D.; Cao, Y.; Wang, Y.; Zhang, G. Spatio–Temporal Evolution and Factors of Climate Comfort for Urban Human Settlements in the Guangdong–Hong Kong–Macau Greater Bay Area. Front. Environ. Sci. 2022, 10, 1001064. [Google Scholar] [CrossRef]
- He, B.-J.; Wang, J.; Zhu, J.; Qi, J. Beating the Urban Heat: Situation, Background, Impacts and the Way Forward in China. Renew. Sustain. Energy Rev. 2022, 161, 112350. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Roth, M. Temporal Dynamics of the Urban Heat Island of Singapore. Int. J. Climatol. 2006, 26, 2243–2260. [Google Scholar] [CrossRef]
- Lee, T.-W.; Lee, J.Y.; Wang, Z.-H. Scaling of the Urban Heat Island Intensity Using Time-Dependent Energy Balance. Urban Clim. 2012, 2, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Bowen, I.S. The Ratio of Heat Losses by Conduction and by Evaporation from Any Water Surface. Phys. Rev. 1926, 27, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Qiu, G.; Li, H.; Zhang, Q.; Chen, W.; Liang, X.; Li, X. Effects of Evapotranspiration on Mitigation of Urban Temperature by Vegetation and Urban Agriculture. J. Integr. Agric. 2013, 12, 1307–1315. [Google Scholar] [CrossRef]
- Zhong, C.; Chen, C.; Liu, Y.; Gao, P.; Li, H. A Specific Study on the Impacts of PM2.5 on Urban Heat Islands with Detailed In Situ Data and Satellite Images. Sustainability 2019, 11, 7075. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, C.; He, B.-J. Spatial and Temporal Heterogeneity of Urban Land Area and PM2.5 Concentration in China. Urban Clim. 2022, 45, 101268. [Google Scholar] [CrossRef]
- Yang, J.; Xin, J.; Zhang, Y.; Xiao, X.; Xia, J.C. Contributions of Sea–Land Breeze and Local Climate Zones to Daytime and Nighttime Heat Island Intensity. npj Urban Sustain. 2022, 2, 12. [Google Scholar] [CrossRef]
- Stabler, L.B.; Martin, C.A.; Brazel, A.J. Microclimates in a Desert City Were Related to Land Use and Vegetation Index. Urban For. Urban Green. 2005, 3, 137–147. [Google Scholar] [CrossRef]
- Li, X.-X.; Liu, X. Effect of Tree Evapotranspiration and Hydrological Processes on Urban Microclimate in a Tropical City: A WRF/SLUCM Study. Urban Clim. 2021, 40, 101009. [Google Scholar] [CrossRef]
- Xu, H.; Ding, F.; Wen, X. Urban Expansion and Heat Island Dynamics in the Quanzhou Region, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 74–79. [Google Scholar] [CrossRef]
- Qiao, Z.; Tian, G.; Zhang, L.; Xu, X. Influences of Urban Expansion on Urban Heat Island in Beijing during 1989–2010. Adv. Meteorol. 2014, 2014, e187169. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, H.; Kainz, W. Monitoring Patterns of Urban Heat Islands of the Fast-Growing Shanghai Metropolis, China: Using Time-Series of Landsat TM/ETM+ Data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 127–138. [Google Scholar] [CrossRef]
- Shen, H.; Huang, L.; Zhang, L.; Wu, P.; Zeng, C. Long-Term and Fine-Scale Satellite Monitoring of the Urban Heat Island Effect by the Fusion of Multi-Temporal and Multi-Sensor Remote Sensed Data: A 26-Year Case Study of the City of Wuhan in China. Remote Sens. Environ. 2016, 172, 109–125. [Google Scholar] [CrossRef]
- Kamal-Chaoui, L.; Leeman, E.; Rufei, Z. Urban Trends and Policy in China; OECD Publishing: Paris, France, 2009. [Google Scholar] [CrossRef]
- Wei, H.; Li, L.; Nian, M. China’s Urbanization Strategy and Policy During the 14th Five-Year Plan Period. Chin. J. Urban Environ. Stud. 2021, 9, 2150002. [Google Scholar] [CrossRef]
- Ding, C.; Zhao, X. Urbanization in Japan, South Korea, and China: Policy and Reality. In The Oxford Handbook of Urban Economics and Planning; Brooks, N., Donaghy, K., Knaap, G., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 906–931. ISBN 978-0-19-538062-0. [Google Scholar]
- Faroughi, M.; Karimimoshaver, M.; Aram, F.; Solgi, E.; Mosavi, A.; Nabipour, N.; Chau, K.-W. Computational Modeling of Land Surface Temperature Using Remote Sensing Data to Investigate the Spatial Arrangement of Buildings and Energy Consumption Relationship. Eng. Appl. Comput. Fluid Mech. 2020, 14, 254–270. [Google Scholar] [CrossRef] [Green Version]
- Alexander, C. Influence of the Proportion, Height and Proximity of Vegetation and Buildings on Urban Land Surface Temperature. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102265. [Google Scholar] [CrossRef]
- Song, J.; Chen, W.; Zhang, J.; Huang, K.; Hou, B.; Prishchepov, A.V. Effects of Building Density on Land Surface Temperature in China: Spatial Patterns and Determinants. Landsc. Urban Plan. 2020, 198, 103794. [Google Scholar] [CrossRef]
- Salvati, A.; Roura, H.C.; Cecere, C. Assessing the Urban Heat Island and Its Energy Impact on Residential Buildings in Mediterranean Climate: Barcelona Case Study. Energy Build. 2017, 146, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M. On the Energy Impact of Urban Heat Island and Global Warming on Buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the Impact of Urban Heat Island and Global Warming on the Power Demand and Electricity Consumption of Buildings—A Review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Hayes, A.T.; Jandaghian, Z.; Lacasse, M.A.; Gaur, A.; Lu, H.; Laouadi, A.; Ge, H.; Wang, L. Nature-Based Solutions (NBSs) to Mitigate Urban Heat Island (UHI) Effects in Canadian Cities. Buildings 2022, 12, 925. [Google Scholar] [CrossRef]
- Bing, D.; Zhaoyin, Y.; Wupeng, D.; Xiaoyi, F.; Yonghong, L.; Chen, C.; Yan, L. Cooling the City with “Natural Wind”: Construction Strategy of Urban Ventilation Corridors in China. IOP Conf. Ser. Earth Environ. Sci. 2021, 657, 012009. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the Cities—A Review of Reflective and Green Roof Mitigation Technologies to Fight Heat Island and Improve Comfort in Urban Environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Dwivedi, A.; Mohan, B.K. Impact of Green Roof on Micro Climate to Reduce Urban Heat Island. Remote Sens. Appl. Soc. Environ. 2018, 10, 56–69. [Google Scholar] [CrossRef]
- Shao, H.; Song, P.; Mu, B.; Tian, G.; Chen, Q.; He, R.; Kim, G. Assessing City-Scale Green Roof Development Potential Using Unmanned Aerial Vehicle (UAV) Imagery. Urban For. Urban Green. 2021, 57, 126954. [Google Scholar] [CrossRef]
- Bhattacharya, B.K.; Mallick, K.; Padmanabhan, N.; Patel, N.K.; Parihar, J.S. Retrieval of Land Surface Albedo and Temperature Using Data from the Indian Geostationary Satellite: A Case Study for the Winter Months. Int. J. Remote Sens. 2009, 30, 3239–3257. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Boneh, D.; Kutiel, P.B. Effect of High-Albedo Materials on Pedestrian Heat Stress in Urban Street Canyons. Urban Clim. 2014, 10, 367–386. [Google Scholar] [CrossRef]
- Taha, H. Urban Climates and Heat Islands: Albedo, Evapotranspiration, and Anthropogenic Heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Asawa, T.; Kobayashi, H. Narrow-to-Broadband Conversion for Albedo Estimation on Urban Surfaces by UAV-Based Multispectral Camera. Remote Sens. 2020, 12, 2214. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Y.; Pan, H. Cooling and Humidifying Effect of Plant Communities in Subtropical Urban Parks. Urban For. Urban Green. 2013, 12, 323–329. [Google Scholar] [CrossRef]
- Du, H.; Song, X.; Jiang, H.; Kan, Z.; Wang, Z.; Cai, Y. Research on the Cooling Island Effects of Water Body: A Case Study of Shanghai, China. Ecol. Indic. 2016, 67, 31–38. [Google Scholar] [CrossRef]
- Aram, F.; Solgi, E.; Higueras García, E.; Mosavi, A.; Várkonyi-Kóczy, A.R. The Cooling Effect of Large-Scale Urban Parks on Surrounding Area Thermal Comfort. Energies 2019, 12, 3904. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Su, Y.; Li, D.; Huang, G.; Chen, W.; Chen, S. Study on the Cooling Effects of Urban Parks on Surrounding Environments Using Landsat TM Data: A Case Study in Guangzhou, Southern China. Int. J. Remote Sens. 2012, 33, 5889–5914. [Google Scholar] [CrossRef]
- Shen, Z.-J.; Zhang, B.-H.; Xin, R.-H.; Liu, J.-Y. Examining Supply and Demand of Cooling Effect of Blue and Green Spaces in Mitigating Urban Heat Island Effects: A Case Study of the Fujian Delta Urban Agglomeration (FDUA), China. Ecol. Indic. 2022, 142, 109187. [Google Scholar] [CrossRef]
Built-Up | UR 1 | Population | GDP | PD 2 | ||
---|---|---|---|---|---|---|
UHII | Pearson correlation | 0.824 ** | 0.824 ** | 0.857 ** | 0.788 ** | 0.788 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
N/year (1981–2019) | 39 | 39 | 39 | 39 | 39 |
Indicators | Regression Model * | R2 | CC * |
---|---|---|---|
Population (ten thousand) | Y = 0.0036x − 0.7464 | 0.73 | 0.86 |
Built-up area (km2) | Y = 0.0031x − 0.3505 | 0.68 | 0.82 |
Urbanization rate (%) | Y = 0.0362x − 1.673 | 0.63 | 0.82 |
Population density (per km2) | Y = 0.0019x − 1.4726 | 0.67 | 0.79 |
GDP | Y = 0.0001x − 0.0358 | 0.62 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Jombach, S.; Tian, G.; Li, Y.; Meng, H. Characterizing Temporal Dynamics of Urban Heat Island in a Rapidly Expanding City: A 39 Years Study in Zhengzhou, China. Land 2022, 11, 1838. https://doi.org/10.3390/land11101838
Li H, Jombach S, Tian G, Li Y, Meng H. Characterizing Temporal Dynamics of Urban Heat Island in a Rapidly Expanding City: A 39 Years Study in Zhengzhou, China. Land. 2022; 11(10):1838. https://doi.org/10.3390/land11101838
Chicago/Turabian StyleLi, Huawei, Sandor Jombach, Guohang Tian, Yuanzheng Li, and Handong Meng. 2022. "Characterizing Temporal Dynamics of Urban Heat Island in a Rapidly Expanding City: A 39 Years Study in Zhengzhou, China" Land 11, no. 10: 1838. https://doi.org/10.3390/land11101838
APA StyleLi, H., Jombach, S., Tian, G., Li, Y., & Meng, H. (2022). Characterizing Temporal Dynamics of Urban Heat Island in a Rapidly Expanding City: A 39 Years Study in Zhengzhou, China. Land, 11(10), 1838. https://doi.org/10.3390/land11101838