Assessing Karst Landscape Degradation: A Case Study in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
3. Results and Discussion
3.1. Morphological Characteristics of the Karst Landforms
3.2. Landcover and Karst Features Transformations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- LeGrand, H.E. Hydrological and Ecological Problems of Karst Regions: Hydrological actions on limestone regions cause distinctive ecological problems. Science 1973, 179, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.N. Cave Geology; Cave Books: Tainan, Taiwan, 2007. [Google Scholar]
- Bátori, Z.; Csiky, J.; Farkas, T.; Vojtkó, A.E.; Erdős, L.; Kovács, D.; Wirth, T.; Körmöczi, L.; Vojtkó, A. The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: Refugia and climate change. Int. J. Speleol. 2014, 43, 15–26. [Google Scholar] [CrossRef]
- Chen, Z.; Auler, A.S.; Bakalowicz, M.; Drew, D.; Griger, F.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Richts, A.; Stevanović, Z.; et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 2017, 25, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Bátori, Z.; Vojtkó, A.; Keppel, G.; Tölgyesi, C.; Čarni, A.; Zorn, M.; Farkas, T.; Erdős, L.; Kiss, P.J.; Módra, G.; et al. Anthropogenic disturbances alter the conservation value of karst dolines. Biodivers. Conserv. 2020, 29, 503–525. [Google Scholar] [CrossRef] [Green Version]
- White, W.B. Karst hydrology: Recent developments and open questions. Engng. Geol. 2002, 65, 85–105. [Google Scholar] [CrossRef]
- Palmer, A.N. Understanding the hydrology of karst. Geol. Croat. 2010, 63, 143–148. [Google Scholar] [CrossRef]
- Gams, I. Adaptation of the karst land for the agrarian use in the Mediterranean. Problems of research and conservation (a survey). Endins 1987, 13, 65–70. [Google Scholar]
- Parise, M. Management of water resources in karst environments, and negative effects of land use changes in the Murge area (Apulia). Karst Dev. 2012, 2, 16–20. [Google Scholar]
- Gutiérrez, F. Hazards associated with karst. In Geomorphological Hazards and Disaster Prevention; Alcántara, I., Goudie, A., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 161–175. [Google Scholar] [CrossRef]
- Brinkmann, R.; Parise, M. Karst Environments: Problems, Management, Human Impacts, and Sustainability. An introduction to the Special Issue. J. Cave Karst Stud. 2012, 74, 135–136. [Google Scholar] [CrossRef]
- Chen, F.; Bai, X.; Liu, F.; Luo, G.; Tian, Y.; Qin, L.; Li, Y.; Xu, Y.; Wang, J.; Wu, L.; et al. Analysis Long-Term and Spatial Changes of Forest Cover in Typical Karst Areas of China. Land 2022, 11, 1349. [Google Scholar] [CrossRef]
- Wu, L.; Wang, S.; Bai, X.; Chen, F.; Li, C.; Ran, C.; Zhang, S. Identifying the Multi-Scale Influences of Climate Factors on Runoff Changes in a Typical Karst Watershed Using Wavelet Analysis. Land 2022, 11, 1284. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, C.; Wang, K. Comparing Remote Sensing Methods for Monitoring Karst Rocky Desertification at Sub-pixel Scales in a Highly Heterogeneous Karst Region. Sci. Rep. 2019, 9, 13368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parise, M. Natural and anthropogenic hazards in karst areas: Recognition, Analysis and mitigation. In Geological Society of London; Gunn, J., Ed.; Special Publications: London, UK, 2007; Volume 279. [Google Scholar]
- Kogovšek, J.; Petrič, M. Increase of vulnerability of karst aquifers due to leakage from landfills. Environ. Earth Sci. 2013, 70, 901–912. [Google Scholar] [CrossRef]
- Yair, A. Hillslope hydrology, water harvesting and areal distribution of some ancient agricultural systems in the northern Negev Desert. J. Arid Environ. 1983, 6, 283–301. [Google Scholar] [CrossRef]
- Rejec Branceli, I. Influence of modern farming on karstic landscapes. Acta Carsol. 1998, 27, 201–213. [Google Scholar]
- Manzano, G.; Navar, J. Processes of desertification by goats overgrazing in the Tamaulipan thornscrub (matorral) in northeastern Mexico. J. Arid Environ. 2000, 44, 1–17. [Google Scholar] [CrossRef]
- Kovačič, G.; Ravbar, N. Analysis of human induced changes in a karst landscape-the filling of dolines in the Kras plateau, Slovenia. Sci. Total Environ. 2013, 447, 143–151. [Google Scholar] [CrossRef]
- Parise, M.; Pascali, V. Surface and subsurface environmental degradation in the karst of Apulia (southern Italy). Environ. Geol. 2003, 44, 247–256. [Google Scholar] [CrossRef]
- Breg, M. Degradation of dolines on Logasko polje (Slovenia). Acta Carsol. 2007, 36, 223–231. [Google Scholar] [CrossRef]
- Zhou, W.; Beck, B.F. Management and mitigation of sinkholes on karst lands: An overview of practical applications. Environ. Geol. 2008, 55, 837–851. [Google Scholar] [CrossRef]
- De Waele, J. Evaluating disturbance on mediterranean karst areas: The example of Sardinia (Italy). Environ. Geol. 2009, 58, 239–255. [Google Scholar] [CrossRef]
- Kaligarič, M.; Ivanjšič, D. Vanishing landscape of the “classic” karst: Changed landscape identity and projections for the future. Landsc. Urban Plan. 2014, 132, 148–158. [Google Scholar] [CrossRef]
- Breg Valjavec, M.; Ribeiro, D.; Čarni, A. Vegetation as the bioindicator of human-induced degradation in karst landscape: Case study of waste-filled dolines. Acta Carsol. 2017, 46, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.D. The hydrologic indicators of desertification. J. Arid Environ. 1998, 39, 121–132. [Google Scholar] [CrossRef]
- Frumkin, A. Interaction between karst, water and agriculture over the climatic gradient of Israel. Int. J. Speleol. 1999, 28, 99–110. [Google Scholar] [CrossRef]
- Sauro, U. A polygonal karst in the Alte Murge (Puglia, Southern Italy). Z. Geomorph. N.F. 1991, 35, 207–223. [Google Scholar] [CrossRef]
- Parise, M. Surface and subsurface karst geomorphology in the Murge (Apulia, southern Italy). Acta Carsol. 2011, 40, 79–93. [Google Scholar] [CrossRef]
- Di Santo, A.R.; Palumbo, N.; Campana, C. Fattori e prospettive per il territorio dell’Autorità di Bacino della Puglia. In Sviluppo e Conservazione Dei Servizi Degli Ecosistemi Contro Siccità e Desertificazione; Sciortino, M., Luise, A., Centritto, M., Eds.; Atti Workshop Scientifico: Roma, Italy, 2012; pp. 166–173. ISBN 978-88-8286-280-0. [Google Scholar]
- Cotecchia, V. Le acque sotterranee e l’intrusione marina in Puglia: Dalla ricerca all’emergenza nella salvaguardia della risorsa. Mem. Descr. Carta Geol. D’italia 2014, 92, 1228. [Google Scholar]
- Nicod, J. Pays et Paysages du Calcaire; Coll. SUP, P.S.F.: Paris, France, 1972. [Google Scholar]
- Laureano, P. Giardini di Pietra; Bollati Boringhieri: Turin, Italy, 1993. [Google Scholar]
- Laureano, P. Water Atlas. Traditional Knowledge to Combat Desertification; Bollati Boringhieri: Turin, Italy, 2001. [Google Scholar]
- Williams, P.W. The role of subcutaneous zone in karst hydrology. J. Hydrol. 1983, 61, 45–67. [Google Scholar] [CrossRef]
- Tallini, M.; Gasbarri, D.; Ranalli, D.; Scozzafava, M. Investigating epikarst using low frequency GPR: Example from the Gran Sasso range Central Italy. Bull. Eng. Geol. Environ. 2006, 65, 435–443. [Google Scholar] [CrossRef]
- Williams, P.W. The role of the epikarst in karst and cave hydrogeology: A review. Int. J. Speleol. 2008, 37, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cantelli, C. Misconosciute funzioni dei muretti a secco. Um. Della Pietra 1994, 9, 21–27. [Google Scholar]
- Kovačič, G.; Ravbar, N. Extreme hydrological events in karst areas of Slovenia, the case of the Unica River basin. Geodin. Acta 2010, 23, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Parise, M. Flood history in the karst environment of Castellana-Grotte (Apulia, southern Italy). Nat. Hazards Earth Syst. Sci. 2003, 3, 593–604. [Google Scholar] [CrossRef]
- Bonacci, O.; Ljubenkov, I.; Roje-Bonacci, T. Karst flash floods: An example from the Dinaric karst, Croatia. Nat. Hazards Earth Syst. Sci. 2006, 6, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Canora, F.; Fidelibus, M.D.; Sciortino, A.; Spilotro, G. Variation of infiltration rate through karstic surfaces due to land use changes: A case study in Murgia (SE-Italy). Eng. Geol. 2008, 99, 210–227. [Google Scholar] [CrossRef]
- Gill, L.W.; Naughton, O.; Johnston, P.M. Modeling a network of turloughs in lowland karst. Water Resour. Res. 2013, 49, 3487–3503. [Google Scholar] [CrossRef]
- Martinotti, M.E.; Pisano, L.; Marchesini, I.; Rossi, M.; Peruccacci, S.; Brunetti, M.T.; Melillo, M.; Amoruso, G.; Loiacono, P.; Vennari, C.; et al. Landslides, floods and sinkholes in a karst environment: The 1–6 September 2014 Gargano event, southern Italy. Nat. Hazards Earth Syst. Sci. 2017, 17, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Parise, M.; Sammarco, M. The historical use of water resources in karst. Environ. Earth Sci. 2015, 74, 143–152. [Google Scholar] [CrossRef]
- English, P.W. The origin and spread of qanats in the Old World. Proc. Am. Philos. Soc. 1968, 112, 170–181. [Google Scholar]
- Beaumont, P. Qanat systems in Iran. Hydrol. Sci. J. 1971, 16, 39–50. [Google Scholar] [CrossRef]
- Ahmed, A.T. Water Quality for Irrigation and Drinking Water Use of Aflaj in Oman. Water Sci. Technol. 2015, 15, 421–428. [Google Scholar] [CrossRef]
- Yazdi, S.; Asghar, A.; Khaneiki, M.L. Qanat Knowledge: Construction and Maintenance; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Valipour, M.; Abdelkader, T.A.; Antoniou, G.P.; Sala, R.; Parise, M.; Salgot, M.; Sanaan Bensi, N.; Angelakis, A.N. Sustainability of underground hydro-technologies: From ancient to modern times and toward the future. Sustainability 2020, 12, 8983. [Google Scholar] [CrossRef]
- Canora, F.; Fidelibus, M.D.; Spilotro, G. Hydrogeological implications of man-made agricultural transformations of the karstic soil textures of Alta Murgia (Puglia, Southern Italy). Geophys. Res. Abstr. 2005, 7, 10573. [Google Scholar]
- Parise, M. The impacts of quarrying in the Apulian karst. In Advances in Research in Karst Media; Carrasco, F., La Moreaux, J.W., Duran Valsero, J.J., Andreo, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 441–447. [Google Scholar]
- Parise, M.; Caldara, M.; Festa, V.; Francescangeli, R.; Iurilli, V.; Mastronuzzi, G.A.; Nicoletti, D.; Sabato, L.; Spalluto, L.; Tarantini, F.; et al. Establishing a Geopark in Alta Murgia (Italy). In Proceedings for Conservation of Fragile Karst Resources; Kambesis, P., Singer, A., Bledsoe, L.A., Eds.; August: Atlanta, GA, USA, 2020; Volume 18–20, p. 19. [Google Scholar]
- Tropeano, M.; Caldara, M.; Festa, V.; Fiore, A.; Francescangeli, R.; Iurilli, V.; Mastronuzzi, G.A.; Nicoletti, D.; Parise, M.; Sabato, L.; et al. We have a dream: Murge, the lost continent in southern Italy as a Geopark! In Proceedings of the 2020 Oxford Geoheritage Virtual Conference, 25–29 May 2020; 2020, pp. 59–60. [Google Scholar]
- Pisano, L.; Zumpano, V.; Malek, Ž.; Rosskopf, C.M.; Parise, M. Variations in the susceptibility to landslides, as a consequence of land cover changes: A look to the past, and another towards the future. Sci. Total Environ. 2017, 601, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Soeters, R.; van Westen, C.J. Slope instability recognition, analysis, and zonation. In Landslides: Investigation and Mitigation: Special Report 247 (TRANSPORTATION RESEARCH BOARD); Turner, A.K., Schuster, R.L., Eds.; The National Academy Press: Washington, DC, USA, 1996; pp. 129–177. [Google Scholar]
- Spalluto, L.; Fiore, A.; Miccoli, M.N.; Parise, M. Activity maps of multi-source mudslides from the Daunia Apennines (Apulia, southern Italy). Nat. Hazards 2021, 106, 277–301. [Google Scholar] [CrossRef]
- Calcaterra, D.; Parise, M. Landslide types and their relationships with weathering in a Calabrian basin, southern Italy. Bull. Eng. Geol. Environ. 2005, 64, 193–207. [Google Scholar] [CrossRef]
- Calcaterra, D.; Parise, M. Weathering as a predisposing factor to slope movements: An introduction. In Weathering as a Predisposing Factor to Slope Movements; Engineering Geology Special Publication no. 23; Calcaterra, D., Parise, M., Eds.; Geological Society of London: London, UK, 2010; Volume 23, pp. 1–4. [Google Scholar]
- Kundu, S.; Aggarwal, S.P.; Kingma, N.C.; Mondal, A.; Khare, D. Flood monitoring using microwave remote sensing in a part of Nuna river basin, Odisha, India. Nat. Hazards 2015, 76, 123–138. [Google Scholar] [CrossRef]
- Arvind, C.S.; Vanjare, A.; Omkar, S.N.; Senthilnath, J.; Mani, V.; Diwakar, P.G. Flood assessment using multi-temporal Modis satellite images. Procedia Comput. Sci. 2016, 89, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Garfì, G.; Bruno, D.; Calcaterra, D.; Parise, M. Fan morphodynamics and slope instability in the Mucone River basin (Sila Massif, southern Italy): Significance of weathering and role of land use changes. Catena 2007, 69, 181–196. [Google Scholar] [CrossRef]
- Scorpio, V.; Andreoli, A.; Zaramella, M.; Moritsch, S.; Theule, J.; Dell’Agnese, A.; Muhar, S.; Borga, M.; Bertoldi, W.; Comiti, F. Restoring a glacier-fed river: Past and present morphodynamics of a degraded channel in the Italian Alps. Earth Surf. Process. Landf. 2020, 45, 2804–2823. [Google Scholar] [CrossRef]
- Festa, V.; Fiore, A.; Parise, M.; Siniscalchi, A. Sinkhole evolution in the Apulian karst of southern Italy: A case study, with some considerations on sinkhole hazards. J. Cave Karst Stud. 2012, 74, 137–147. [Google Scholar] [CrossRef]
- Doctor, D.H.; Young, J.A. An evaluation of Automated Gis Tools for Delineating Karst Sinkholes and Closed Depressions From1-Meter Lidar-Derived Digital Elevation Data. In NCKRI Symposium 2, Proceedings of the 13th Multidisciplinary Conference on Sinkholes & the Engineering and Environmental Impacts of Karst, Calsbad, New Mexico, 6–10 May 2013; National Cave and Karst Research Institute: Carlsbad, NM, USA, 2013; pp. 449–458. [Google Scholar]
- Florea, L. Using state-wide GIS data to identify the coincidence between sinkholes and geologic structure. J. Cave Karst Stud. 2005, 67, 120–124. [Google Scholar]
- Li, S.; MacMillan, R.A.; Lobb, D.A.; McConkey, B.G.; Moulin, A.; Fraser, W.R. Lidar DEM error analyses and topographic depression identification in a hummocky landscape in the prairie region of Canada. Geomorphology 2011, 129, 263–275. [Google Scholar] [CrossRef]
- Zhu, J.; Taylor, T.P.; Currens, J.C.; Crawford, M.M. Improved karst sinkhole mapping in Kentucky using LiDAR techniques: A pilot study in Floyds fork watershed. J. Cave Karst Stud. 2014, 76, 207–216. [Google Scholar] [CrossRef]
- Zumpano, V.; Pisano, L.; Parise, M. An integrated framework to identify and analyze karst sinkholes. Geomorphology 2019, 332, 213–225. [Google Scholar] [CrossRef]
- Pieri, P. Principali caratteri geologici e morfologici delle Murge. Boll. Gr. Spel. Martina Franca, Murgia Sotter. 1980, 2, 13–19. [Google Scholar]
- Doglioni, C.; Mongelli, F.; Pieri, P. The Puglia uplift (SE Italy): An anomaly in the foreland of the Apenninic sub- duction due to buckling of a thick continental lithosphere. Tectonics 1994, 13, 1309–1321. [Google Scholar] [CrossRef]
- Teofilo, G.; Gioia, D.; Spalluto, L. Integrated geomorphological and geospatial analysis for mapping fluvial landforms in Murge basse karst of Apulia (Southern Italy). Geosci. 2019, 9, 418. [Google Scholar] [CrossRef] [Green Version]
- Pepe, M.; Parise, M. Structural control on development of karst landscape in the Salento Peninsula (Apulia, SE Italy). Acta Carsol. 2014, 43, 101–114. [Google Scholar] [CrossRef]
- Ciaranfi, N.; Pieri, P.; Ricchetti, G. Note alla Carta Geologica delle Murge e del Salento, scala 1:250,000. Mem. Soc. Geol. It. 1988, 41, 449–460. [Google Scholar]
- Tropeano, M.; Sabato, L.; Pieri, P.; Doglioni, C. Geodynamic and stratigraphic history of the Bradanic Trough (south Apennines Foredeep–Italy). In Proceedings of the 15th International Sedimentological Congress, Alicante, Spain, 12–17 April 1998; pp. 772–773. [Google Scholar]
- Tropeano, M.; Sabato, L. Response of Plio-Pleistocene mixed bioclastic-lithoclastic temperate-water carbonate systems to forced regressions: The Calcarenite di Gravina Formation, Puglia, SE Italy. In Sedimentary Responses to Forced Regressions; Hunt, D., Gawthorpe, R.L., Eds.; Geological Society: London, UK, 2000; spec. publ.; pp. 217–243. [Google Scholar]
- Pieri, P.; Festa, V.; Moretti, M.; Tropeano, M. Quaternary tectonic activity of the Murge area (Apulian foreland-Southern Italy). Ann. Geofis. 1997, 40, 1395–1404. [Google Scholar] [CrossRef]
- Festa, V. Cretaceous structural features of the Murge area (Apulian Foreland, Southern Italy). Ecol. Geol. Helv. 2003, 96, 11–22. [Google Scholar]
- Waltham, T.; Bell, F.; Culshaw, M. Sinkholes and Subsidence. Karst and Cavernous Rocks in Engineering and Construction; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth-Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Parise, M. Sinkholes, Subsidence and Related Mass Movements. In Treatise on Geomorphology, Vol. 5; Shroder, J.J.F., Ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2022; pp. 200–220. ISBN 9780128182345. [Google Scholar] [CrossRef]
- Parise, M.; Federico, A.; Delle Rose, M.; Sammarco, M. Karst Terminology in Apulia (Southern Italy). Acta Carsol. 2003, 32, 65–82. [Google Scholar] [CrossRef]
- Castiglioni, B.; Sauro, U. Large collapse dolines in Puglia (southern Italy): The cases of “Dolina Pozzatina” in the Gargano Plateau and of “Puli” in the Murge. Acta Carsol. 2000, 29, 83–93. [Google Scholar] [CrossRef]
- Pepe, M.; Parise, M. La zona dei puli di Ruvo: Idro-geomorfologia carsica e assetto strutturale. In XVI Incontro di Speleologia Regionale; Castellana Grotte: Bari, Italy, 2011; pp. 1–14. [Google Scholar]
- Simone, O.; Fiore, A. Five Large Collapse Dolines in Apulia (Southern Italy)—The Dolina Pozzatina and the Murgian Puli. Geoheritage 2014, 6, 291–303. [Google Scholar] [CrossRef]
- Pisano, L.; Zumpano, V.; Liso, I.S.; Parise, M. Geomorphological and structural characterization of the ‘Canale di Pirro’ polje, Apulia (Southern Italy). J. Maps 2020, 16, 479–487. [Google Scholar] [CrossRef]
- Parise, M. Modern resource use and its impact in karst areas–mining and quarrying. Z. Fur Geomorphol. 2016, 60, 199–216. [Google Scholar] [CrossRef]
- Rocchini, D.; Di Rita, A. Relief effects on aerial photos geometric correction. Appl. Geogr. 2005, 25, 159–168. [Google Scholar] [CrossRef]
- Bauer, C. Analysis of dolines using multiple methods applied to airborne laser scanning data. Geomorphology 2015, 250, 78–88. [Google Scholar] [CrossRef]
- Bracchetti, L.; Carotenuto, L.; Catorci, A. Land-cover changes in a remote area of central Apennines (Italy) and management directions. Landsc. Urban Plan. 2012, 104, 157–170. [Google Scholar] [CrossRef]
- Rocchini, D.; Perry, G.L.W.; Salerno, M.; Maccherini, S.; Chiarucci, A. Landscape change and the dynamics of open formations in a natural reserve. Landsc. Urban Plan. 2006, 77, 167–177. [Google Scholar] [CrossRef]
- Pelorosso, R.; Della Chiesa, S.; Tappeiner, U.; Leone, A.; Rocchini, D. Stability analysis for defining management strategies in abandoned mountain landscapes of the Mediterranean basin. Landsc. Urban Plan. 2011, 103, 335–346. [Google Scholar] [CrossRef]
- Denizman, C. Morphometric and spatial distribution parameters of karstic depressions, lower Suwannee river basin, Florida. J. Cave Karst Stud. 2003, 65, 29–35. [Google Scholar]
- Wall, J.; Bohnenstiehl, D.W.R.; Wegmann, K.W.; Levine, N.S. Morphometric comparisons between automated and manual karst depression inventories in Apalachicola National Forest, Florida, and Mammoth Cave National Park, Kentucky, USA. Nat. Hazards 2017, 85, 729–749. [Google Scholar] [CrossRef]
- De Carvalho Junior, O.A.; Guimarães, R.F.; Montgomery, D.R.; Gillespie, A.R.; Gomes, R.A.T.; Martins, É.D.S.; Silva, N.C. Karst depression detection using ASTER, ALOS/PRISM and SRTM-derived digital elevationmodels in the Bambuí group, Brazil. Remote Sens. 2013, 6, 330–351. [Google Scholar] [CrossRef] [Green Version]
- Kemmerly, P.R. Modeling doline populations with logistic growth functions. Earth Surf. Process. Landf. 2006, 32, 587–601. [Google Scholar] [CrossRef]
- Basso, A.; Bruno, E.; Parise, M.; Pepe, M. Morphometric analysis of sinkholes in a karst coastal area of southern Apulia (Italy). Environ. Earth Sci. 2013, 70, 2545–2559. [Google Scholar] [CrossRef]
- Gao, Y.; Alexander, E.C.; Barnes, R. Karst database implementation in Minnesota: Analysis of sinkhole distribution. Environ. Geol. 2005, 47, 1083–1098. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Samal, A. A simple method for fitting of bounding rectangle to closed regions. Pattern Recogn. 2007, 40, 1981–1989. [Google Scholar] [CrossRef]
- Kobal, M.; Bertoncelj, I.; Pirotti, F.; Dakskobler, I.; Kutnar, L. Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover-Case study of a high karst area in the Dinaric mountains. PLoS ONE 2015, 10, e0122070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Deng, C.; Chen, Z. Automated delineation of karst sinkholes from LIDAR-derived digital elevation models. Geomorphology 2016, 266, 1–10. [Google Scholar] [CrossRef]
- Gams, I. Doline morphogenetical processes from global and local viewpoints. Acta Carsol. 2000, 29, 123–138. [Google Scholar]
- Beck, B. Soil piping and sinkhole failures. In Encyclopedia of Caves, 2nd ed.; Culver, D.C., White, W.B., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2005; pp. 521–526. [Google Scholar]
- Colamonico, C. Il Pulo di Altamura. Mondo Sotter. 1917, 12, 65–76. [Google Scholar]
- Delle Rose, M.; Federico, A.; Parise, M. Sinkhole genesis and evolution in Apulia, and their interrelations with the anthropogenic environment. Nat. Hazards Earth Syst. Sci. 2004, 4, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Gams, I. The polje: The problem of definition. Z. Geomorphol. 1978, 22, 170–181. [Google Scholar]
- Šustersic, F.; Šustersic, S. Formation of the CerkniŠeica and the flooding of CerkniŠko polje. Acta Carsol. 2003, 32, 121–136. [Google Scholar]
- Bonacci, O. Poljes. In Encyclopedia of Caves and Karst Science; Gunn, J., Ed.; Fitzroy Dearborn: Chicago, LL, USA, 2004; pp. 599–600. [Google Scholar]
- Parise, M. Geomorphology of the Canale di Pirro karst polje (Apulia, southern Italy). Z. Für Geomorphol. N.F. 2006, 147, 143–158. [Google Scholar]
- Liso, I.S.; Chieco, M.; Fiore, A.; Pisano, L.; Parise, M. Underground geosites and caving speleotourism: Some considerations, from a case study in Southern Italy. Geoheritage 2020, 12, 13. [Google Scholar] [CrossRef]
- Parise, M.; Benedetto, L.; Chieco, M.; Fiore, A.; Lacarbonara, M.; Liso, I.S.; Masciopinto, C.; Pisano, L.; Riccio, A.; Vurro, M. First outcomes of a project dedicated to monitoring groundwater resources in Apulia, southern Italy. In Eurokarst 2018. Advances in the Hydrogeology of Karst and Carbonate Reservoirs; Bertrand, C., Denimal, S., Steinmann, M., Renard, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Advances in Karst Science; pp. 243–249. ISBN 978-3-030-14014-4. [Google Scholar]
- Molerio León, L.; Parise, M. Managing environmental problems in Cuban karstic aquifers. Environ. Geol. 2009, 58, 275–283. [Google Scholar] [CrossRef]
- Huang, W.; Deng, C.J.; Day, M. Differentiating tower karst (fenglin) and cockpitkarst (fengcong) using DEM contour, slope, and centroid. Environ. Earth Sci. 2014, 72, 407–416. [Google Scholar]
- Lei, M.; Gao, Y.; Jiang, X.; Guan, Z. Mechanism analysis of sinkhole formation at Maohe village, Liuzhou city, Guangxi province, China. Environ. Earth Sci. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Durn, G. Terra rossa in the Mediterranean region: Parent materials, composition and origin. Geol. Croat. 2003, 56, 83–100. [Google Scholar] [CrossRef]
- Lopez, N.; Spizzico, V.; Parise, M. Geomorphological, pedological, and hydrological characteristics of karst lakes at Conversano (Apulia, southern Italy) as a basis for environmental protection. Environ. Geol. 2009, 58, 327–337. [Google Scholar] [CrossRef]
- Larocca, F.; Bernocco, S. Grotte e voragini nel territorio comunale di Ruvo di Puglia (Ba). Itiner. Speleol. 1988, 3, 33–40. [Google Scholar]
- Iurilli, V.; Ruina, G. Indagini geologiche e geofisiche sulla Grave “Ferratella” in agro di Ruvo di Puglia (Bari). Itiner. Speleol. 1999, 8, 23–30. [Google Scholar]
- Bellaccio, G.; Pagliarulo, R.; Talucci, G.; Zezza, F. Le caratteristiche fisico-meccaniche e termiche del “Marmo” di Puglia. Rass. Tec. Puglies–Contin. 1982, 4, 3–9. [Google Scholar]
- Cotecchia, V.; Radina, B.; Zezza, F. Marmi di Puglia; Istituto Geografico De Agostini: Novara, Italy, 1982. [Google Scholar]
- Laviano, R. I materiali lapidei pugliesi: Loro utilizzo e alterazione nei Beni Culturali. In Memorie di Scienze Fisiche e Naturali; Accademia Nazionale delle Scienze: Rome, Italy, 2006; Volume 30, pp. 205–248. [Google Scholar]
- Shaban, A.; Darwich, T. The role of sinkholes in groundwater recharge in the high mountains of Lebanon. J. Environ. Hydrol. 2011, 19, 1–11. [Google Scholar]
- Hofierka, J.; Gallay, M.; Bandura, P.; Šašak, J. Identification of karst sinkholes in a forested karst landscape using airborne laser scanning data and water flow analysis. Geomorphology 2018, 308, 265–277. [Google Scholar] [CrossRef]
- Vennari, C.; Salvati, P.; Bianchi, C.; Casarano, D.; Parise, M.; Basso, A.; Marchesini, I. ARcReoDatHa: Apulian regional GeoDatabase for geo-hydrological hazards. J. Environ. Manag. 2022, 322, 116051. [Google Scholar] [CrossRef]
Cadastral Number | Name | Length (m) | Depth (m) |
Entrance Elevation (m a.s.l.) | Landscape Location |
---|---|---|---|---|---|
PU 444 | Grave Ferratella | 90 | −320 | 483 | doline bottom |
PU 493 * | Grotta della Masseria Lago Cupo | - | - | 530 | lama flank |
PU 1258 | Grotta della Ferrata | 36 | −18 | 380 | lama flank |
PU 1259 | Grotta del Brigante | 11 | −2 | 385 | lama flank |
PU 1260 | Grotta delle Volpi | 9.5 | −16 | 449 | lama flank |
PU 1261 | Capovento in loc. Petronella | 13.5 | −13 | 423 | lama flank |
PU 1262 | Grava della Cavallerizza | 36 | −43 | 445 | doline bottom |
PU 1263 | Buca in loc. Jazzo Rosso | 1.5 | −5 | 485 | lama flank |
PU 1264 | Capovento di Pancia d’Aceto | 5.5 | −14 | 380 | lama flank |
PU 1265 | Capovento in loc. Cavallerizza | 12 | −25 | 453 | plateau surface |
PU 1268 | Voragine di Notarvincenzo | 35 | −84 | 480 | plateau surface |
Area (m2) | Perimeter | Width (m) | Length (m) | Proximity | ER | CI | |
---|---|---|---|---|---|---|---|
MAX | 149,900.33 | 1783.16 | 301.57 | 705.53 | 1554.78 | 8.53 | 0.99 |
MIN | 84.59 | 35.47 | 7.91 | 13.58 | 6.95 | 1.02 | 0.24 |
Mean | 5213.95 | 231.81 | 51.43 | 87.53 | 113.81 | 1.72 | 0.82 |
Median | 1790.37 | 166.06 | 37.97 | 63.15 | 73.89 | 1.47 | 0.88 |
Land Cover Class | 1973 (ha) | 2006 (ha) | Δ (ha) | 1973% | 2006% | Δ % |
---|---|---|---|---|---|---|
Urban area | 1.32 | 3.63 | 2.30 | 0.02 | 0.06 | 0.04 |
Bareland/quarries | 2.71 | 67.51 | 64.80 | 0.05 | 1.19 | 1.15 |
Cultivated area | 870.05 | 2585.26 | 1715.21 | 15.39 | 45.73 | 30.34 |
Forest | 317.55 | 531.01 | 213.47 | 5.62 | 9.39 | 3.78 |
Permanent crops | 982.02 | 339.15 | −642.87 | 17.37 | 6.00 | −11.37 |
Pasture | 3480.02 | 2127.11 | −1352.91 | 61.55 | 37.62 | −23.93 |
1973 (ha) | 2006 (ha) | |||||
---|---|---|---|---|---|---|
Urban Area | Bareland/ Quarries | Cultivated Area | Forest | Permanent Crops | Pasture | |
Urban area | 0.46 | 0.00 | 0.23 | 0.00 | 0.98 | 0.58 |
Bareland/quarries | 0.00 | 2.59 | 0.12 | 0.00 | 0.00 | 0.00 |
Cultivated area | 1.61 | 7.95 | 662.05 | 11.00 | 80.93 | 106.50 |
Forest | 0.00 | 5.41 | 0.29 | 297.22 | 0.00 | 13.71 |
Permanent crops | 0.98 | 35.65 | 423.71 | 22.29 | 161.40 | 338.00 |
Pasture | 0.58 | 15.90 | 1498.87 | 200.51 | 95.90 | 1668.27 |
Colluvial Deposits Land Cover Changes | Area (ha) | % |
---|---|---|
Cultivated area-Cultivated area | 30.41 | 49.07 |
Cultivated area -> Forest | 0.12 | 0.19 |
Cultivated area-> Permanent crops | 1.09 | 1.77 |
Cultivated area -> Pasture | 1.73 | 2.79 |
Permanent crops -> Cultivated area | 4.95 | 7.99 |
Permanent crops—Permanent crops | 1.73 | 2.79 |
Permanent crops -> Pasture | 0.81 | 1.30 |
Pasture -> Cultivated area | 18.60 | 30.02 |
Pasture -> Pasture | 2.53 | 4.09 |
Doline Land Cover Changes | Area (ha) | % |
---|---|---|
Cultivated Area—Cultivated Area | 36.69 | 30.71 |
Cultivated area -> Forest | 2.53 | 2.12 |
Cultivated area-> Permanent crops | 2.07 | 1.74 |
Cultivated area -> Pasture | 1.90 | 1.59 |
Forest-Forest | 0.40 | 0.34 |
Permanent crops -> Cultivated area | 12.84 | 10.75 |
Permanent crops -> Forest | 0.81 | 0.68 |
Permanent Crops—Permanent Crops | 4.32 | 3.62 |
Permanent crops -> Pasture | 2.25 | 1.88 |
Pasture -> Cultivated area | 27.88 | 23.34 |
Pasture -> Forest | 0.29 | 0.24 |
Pasture -> Cultivated area | 0.17 | 0.14 |
Pasture -> Pasture | 27.30 | 22.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisano, L.; Zumpano, V.; Pepe, M.; Liso, I.S.; Parise, M. Assessing Karst Landscape Degradation: A Case Study in Southern Italy. Land 2022, 11, 1842. https://doi.org/10.3390/land11101842
Pisano L, Zumpano V, Pepe M, Liso IS, Parise M. Assessing Karst Landscape Degradation: A Case Study in Southern Italy. Land. 2022; 11(10):1842. https://doi.org/10.3390/land11101842
Chicago/Turabian StylePisano, Luca, Veronica Zumpano, Mariangela Pepe, Isabella Serena Liso, and Mario Parise. 2022. "Assessing Karst Landscape Degradation: A Case Study in Southern Italy" Land 11, no. 10: 1842. https://doi.org/10.3390/land11101842
APA StylePisano, L., Zumpano, V., Pepe, M., Liso, I. S., & Parise, M. (2022). Assessing Karst Landscape Degradation: A Case Study in Southern Italy. Land, 11(10), 1842. https://doi.org/10.3390/land11101842