Sulphur Contents in Arable Soils from Four Agro-Ecological Zones of Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
- Dompem, Forest zone: native vegetation, a mature cocoa (Theobroma cacao L.) plantation, a young cocoa plantation and a mixed farm comprising plantain (Musa paradisiaca L.), banana (Musa sp. L.), cassava (Manihot esculenta Crantz), and pineapple (Ananas comosus (L.) Merr.) with one-year old cocoa seedlings. The geology of the Dompem site is dominantly Birrimian formation comprising argillaceous sediments, volcanic and calcareous materials that metamorphosed into folded granite, and Tarkwaian formation comprising sandstones, phyllites and conglomerates.
- Sefwi-Ahokwa, Deciduous Forest zone: native vegetation under the Taungya agroforestry system, mature cocoa and oil palm plantations. The geology is Birrimian with argillaceous sediments, volcanic and calcareous materials that metamorphosed into folded granite or intruded by granite.
- Adansam, Forest -Savannah Transition zone: native vegetation, a mango plantation and two yam (Dioscorea sp.) farms located on two different soil types. The geology is located on the Voltaian system comprising mudstone, sandstone, conglomerates, tillites and limestone.
- Lito, Guinea Savannah zone: native vegetation and two yam farms. The geology is located on the Voltaian system comprising mudstone, sandstone, conglomerates, tillites and limestone.
- Wallembelle, Guinea Savannah zone: native vegetation, maize (Zea mays L.) and soybean (Glycine max (L.) Merr.) farms. The geology is dominantly granite.
2.2. Laboratory Procedures
2.3. Statistical Analyses
3. Results
3.1. Basic Properties of the Soils
3.2. Total S Contents and Trends
3.3. Sulphate Contents and Trends
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop yield gaps: Their Importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef] [Green Version]
- van Ittersum, M.K.; van Bussel, L.G.J.; Wolf, J.; Grassini, P.; van Wart, J.; Guilpart, N.; Claessens, L.; de Groot, H.; Wiebe, K.; Mason-D’Croz, D.; et al. Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. USA 2016, 113, 14964–14969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jellason, N.P.; Robinson, E.J.Z.; Chapman, A.S.A.; Neina, D.; Devenish, A.J.M.; Po, J.Y.T.; Adolph, B. A systematic review of drivers and constraints on agricultural expansion in Sub-Saharan Africa. Land 2021, 10, 332. [Google Scholar] [CrossRef]
- Bekunda, M.; Chikowo, R.; Claessens, L.; Hoeschle-Zeledon, I.; Kihara, J.; Kizito, F.; Okori, P.; Sognigbé, N.; Thierfelder, N. Combining Multiple Technologies: Integrated Soil Fertility Management, CABI Books; CABI International: Oxon, UK, 2022. [Google Scholar]
- Zenda, T.; Liu, S.; Dong, A.; Duan, H. Revisiting sulphur—The once neglected nutrient: Its roles in plant growth, metabolism, stress tolerance and crop production. Agriculture 2021, 11, 626. [Google Scholar] [CrossRef]
- Ma, Q.; Wen, Y.; Pan, W.; Macdonald, A.; Hill, P.W.; Chadwick, D.R.; Wu, L.; Jones, D.L. Soil carbon, nitrogen, and sulphur status affects the metabolism of organic S but not its uptake by microorganisms. Soil Biol. Biochem. 2020, 149, 107943. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Q.; Zhang, W.; Zhu, P.; Xiao, Q.; Wang, C.; Wu, L.; Tian, Y.; Xu, M.; Gunina, A. Stoichiometric imbalance of soil carbon and nutrients drives microbial community structure under long-term fertilization. Appl. Soil Ecol. 2021, 168, 104119. [Google Scholar] [CrossRef]
- Yuan, X.; Niu, D.; Gherardi, L.A.; Liu, Y.; Wang, Y.; Elser, J.J.; Fu, H. Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: Evidence from a long-term grassland experiment. Soil Biol. Biochem. 2019, 138, 107580. [Google Scholar] [CrossRef]
- Peñuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; van der Velde, M.; Bopp, L.; Boucher, O.; Godderis, Y.; Hinsinger, P.; Llusia, J.; et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013, 4, 2934. [Google Scholar] [CrossRef] [Green Version]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Agriculture. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Habtegebrial, K.; Singh, B.R. Response of wheat cultivars to nitrogen and sulfur for crop yield, nitrogen use efficiency, and protein quality in the semiarid region. J. Plant Nutr. 2009, 32, 1768–1787. [Google Scholar] [CrossRef]
- Crespo, C.; Wyngaard, N.; Sainz Rozas, H.; Barbagelata, P.; Barraco, M.; Gudelj, V.; Barbieri, P. Improving soil organic nitrogen and sulfur pools by cover cropping and crop fertilization in soybean-based cropping systems. Soil Tillage Res. 2021, 213, 105138. [Google Scholar] [CrossRef]
- Santana, M.M.; Dias, T.; Gonzalez, J.M.; Cruz, C. Transformation of organic and inorganic sulfur—Adding perspectives to new players in soil and rhizosphere. Soil Biol. Biochem. 2021, 160, 108306. [Google Scholar] [CrossRef]
- TSI. Sulphur—The Fourth Major Plant Nutrient—The Sulphur Institute. Available online: https://www.sulphurinstitute.org/about-sulphur/sulphur-construction-materials/ (accessed on 19 January 2022).
- Tabatabai, M.A. Importance of sulphur in crop production. Biogeochemistry 1984, 1, 45–62. [Google Scholar] [CrossRef]
- Kihara, J.; Sileshi, G.W.; Nziguheba, G.; Kinyua, M.; Zingore, S.; Sommer, R. Application of secondary nutrients and micronutrients increases crop yields in sub-Saharan Africa. Agron. Sustain. Dev. 2017, 37, 25. [Google Scholar] [CrossRef] [Green Version]
- Jamal, A.; Moon, Y.S.; Zainul Abdin, M. Sulphur—A general overview and interaction with nitrogen. Aust. J. Crop Sci. 2010, 4, 523–529. [Google Scholar]
- Prasad, R.; Shivay, Y.S. Sulphur in soil, plant and human nutrition. Proc. Natl. Acad. Sci. USA 2018, 88, 429–434. [Google Scholar] [CrossRef]
- Scherer, H.W. Sulphur in crop production—Invited paper. Eur. J. Agron. 2001, 14, 81–111. [Google Scholar] [CrossRef]
- Koprivova, A.; Kopriva, S. Role of plant sulfur metabolism in human nutrition and food security. In Plant Nutrition and Food Security in the Era of Climate Change, 1st ed.; Kumar, V., Srivastava, A., Suprasanna, P., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 73–95. [Google Scholar] [CrossRef]
- Zhao, F.J.; Fortune, S.; Barbosa, V.L.; McGrath, S.P.; Stobart, R.; Bilsborrow, P.E.; Booth, E.J.; Brown, A.; Robson, P. Effects of sulphur on yield and malting quality of barley. J. Cereal. Sci. 2006, 43, 369–377. [Google Scholar] [CrossRef]
- Tsujimoto, Y.; Inusah, B.; Katsura, K.; Fuseini, A.; Dogbe, W.; Zakaria, A.I.; Fujihara, Y.; Oda, M.; Sakagami, J.-I. The effect of sulfur fertilization on rice yields and nitrogen use efficiency in a floodplain ecosystem of northern Ghana. Field Crops Res. 2017, 211, 155–164. [Google Scholar] [CrossRef]
- Kugbe, J.X.; Kombat, R.; Atakora, W. Secondary and micronutrient inclusion in fertilizer formulation impact on maize growth and yield across northern Ghana. Cogent Food Agric. 2019, 5, 1700030. [Google Scholar] [CrossRef]
- Buri, M.M.; Masunaga, T.; Wakatsuki, T. Sulfur and zinc levels as limiting factors to rice production in West Africa lowlands. Geoderma 2000, 94, 23–42. [Google Scholar] [CrossRef]
- MOFA. Facts and Figures 2016. Statistics, Research and Information Directorate (SRID); Ministry of Food and Agriculture (MoFA): Accra, Ghana, 2017.
- Acquaye, D.K.; Beringer, H. Sulfur in Ghanaian soils. Plant Soil 1989, 113, 197–203. [Google Scholar] [CrossRef]
- Acquaye, D.K.; Kang, B.T. Sulfur status and forms in some surface soils of Ghana. Soil Sci. 1987, 144, 43–52. [Google Scholar] [CrossRef]
- Safo, E.Y.; Sekou, E.T. Soluble sulphate status of some forest soil of Ghana. Ghana J. Agric. Sci. 1976, 9, 189–192. [Google Scholar]
- Neina, D.; Agyarko-Mintah, E. Duration of cultivation has varied impacts on soil charge properties in different agro-ecological zones. Land 2022, 11, 1633. [Google Scholar] [CrossRef]
- Fox, R.L.; Olson, R.A.; Rhoades, H.F. Evaluating the sulfur status of soils by plant and soil tests. Soil Sci. Soc. Am. J. 1964, 28, 243–246. [Google Scholar] [CrossRef]
- Osunbitan, J.A.; Oyedele, D.J.; Adekalu, K.O. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil Tillage Res. 2005, 82, 57–64. [Google Scholar] [CrossRef]
- Romaneckas, K.; Kimbirauskienė, R.; Sinkevičienė, A. Impact of Tillage Intensity on Planosol Bulk Density, Pore Size Distribution, and Water Capacity in Faba Bean Cultivation. Agronomy 2022, 12, 2311. [Google Scholar] [CrossRef]
- Neina, D. Ecological and Edaphic Drivers of Yam Production in West Africa. Appl. Environ. Soil Sci. 2021, 2021, 5019481. [Google Scholar] [CrossRef]
- Benneh, G.; Agyepong, G.T. Land Degradation in Ghana; Commonwealth Secretariat Marlborough House: London, UK, 1990. [Google Scholar]
- Hoyle, F.C.; Baldock, J.A.; Murphy, D.V. Soil Organic Carbon—Role in Rainfed Farming Systems. In Rainfed Farming Systems; Springer: Dordrecht, The Netherlands, 2011; pp. 339–361. [Google Scholar]
- Naeem, M.; Mehboob, N.; Farooq, M.; Farooq, S.; Hussain, S.; Ali, H.M.; Hussain, M. Impact of Different Barley-Based Cropping Systems on Soil Physicochemical Properties and Barley Growth under Conventional and Conservation Tillage Systems. Agronomy 2021, 11, 8. [Google Scholar] [CrossRef]
- Brown, K.A. Sulphur in the environment: A review. Environ. Pollut Ser. Chem. Phys. 1982, 3, 47–80. [Google Scholar] [CrossRef]
- Kumar, U.; Cheng, M.; Islam, M.J.; Maniruzzaman, M.; Nasreen, S.S.; Haque, M.E.; Rahman, M.T.; Jahiruddin, M.; Bell, R.W.; Jahangir, M. Long-term Conservation Agriculture increases sulfur pools in soils together with increased soil organic carbon compared to conventional practices. Soil Tillage Res. 2022, 223, 105474. [Google Scholar] [CrossRef]
- Nor, Y.M. Sulphur mineralization and adsorption in soils. Plant Soil 1981, 60, 451–459. [Google Scholar] [CrossRef]
- Kulczycki, G. The effect of elemental sulfur fertilization on plant yields and soil properties. Adv. Agron. 2021, 167, 105–181. [Google Scholar] [CrossRef]
- Eriksen, J. Gross sulphur mineralisation–immobilisation turnover in soil amended with plant residues. Soil Biol. Biochem. 2005, 37, 2216–2224. [Google Scholar] [CrossRef]
- Couëdel, A.; Alletto, L.; Justes, É. Crucifer-legume cover crop mixtures provide effective sulphate catch crop and sulphur green manure services. Plant Soil 2018, 426, 61–76. [Google Scholar] [CrossRef]
- Marzluf, G.A. Genetics and Molecular Genetics of Sulfur Assimilation in the Fungi. In Advances in Genetics; Hall, J.C., Dunlap, J.C., Eds.; Academic Press: Cambridge, MA, USA, 1994; pp. 187–206. ISBN 0065-2660. [Google Scholar]
- Grobler, L.; Bloem, A.A.; Claassens, A.S. A critical soil sulphur level for maize (Zea mays L.) grown in a glasshouse. S. Afr. J. Plant Soil 1999, 16, 204–206. [Google Scholar] [CrossRef]
- Scaife, A.; Burns, I.G. The sulphate-S/total S ratio in plants as an index of their sulphur status. Plant Soil 1986, 91, 61–71. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, H.; Zhao, Z.-Q.; Cui, L.; Wang, S.; Liu, C.-Q. Sulfur dynamics in forest soil profiles developed on granite under contrasting climate conditions. Sci. Total Environ. 2021, 797, 149025. [Google Scholar] [CrossRef] [PubMed]
- Amberger, A. Soil Fertility and Plant Nutrition in the Tropics and Subtropics; IFA, International Fertilizer Industry Association: Paris, France; International Potash Institute: Zug, Switzerland, 2006. [Google Scholar]
- Tanikawa, T.; Ishizuka, K.; Imaya, A. Extractable Sulfate Content in Japanese Forest Soils. J. For. Res. 1999, 4, 191–194. [Google Scholar] [CrossRef]
- Jaggi, A.C.; Aulakh, M.S.; Sharma, R. Temperature effects on soil organic sulphur mineralization and elemental sulphur oxidation in subtropical soils of varying pH. Nutr. Cycl. Agroecosyst. 1999, 54, 175–182. [Google Scholar] [CrossRef]
- Williams, C.H. Some factors affecting the mineralization of organic sulphur in soils. Plant Soil 1967, 26, 205–223. [Google Scholar] [CrossRef]
- Saito, K.; Nelson, A.; Zwart, S.J.; Niang, A.; Sow, A.; Yoshida, H.; Wopereis, M.C. Towards of Biophysical Determinants of Yield Gaps and the Potential for Expansion of the Rice Area in Africa. In Realizing Africa’s Rice Promise; Wopereis, M.C.S., Johnson, D.E., Ahmadi, N., Tollens, E., Jalloh, A., Eds.; CAB International: Wallingford, UK, 2013; pp. 188–203. [Google Scholar]
- Cate, R.B.; Nelson, L.A. A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Sci. Soc. Am. J. 1971, 35, 658–660. [Google Scholar] [CrossRef]
- Meyer, J.H.; Wood, R.A.; Du Preez, P. A nutrient survey of sugarcane in the South African industry with special reference to trace elements. In Proceedings of the South African Sugar Technologists’ Association; Sasta: Durban, South Africa, 1971; pp. 196–203. [Google Scholar]
- Chowdhury, M.A.H.; Sultana, T.; Rahman, M.A.; Saha, B.K.; Chowdhury, T.; Tarafder, S. Sulphur fertilization enhanced yield, its uptake, use efficiency and economic returns of Aloe vera L. Heliyon 2020, 6, e05726. [Google Scholar] [CrossRef]
- Thangasamy, A.; Gorrepati, K.; Ghodke, P.H.; Tp, S.A.; Jadhav, M.; Banerjee, K.; Singh, M. Effects of sulfur fertilization on yield, biochemical quality, and thiosulfinate content of garlic. Sci. Hortic. 2021, 289, 110442. [Google Scholar] [CrossRef]
- de Borja Reis, A.F.; Rosso, L.H.M.; Davidson, D.; Kovács, P.; Purcell, L.C.; Below, F.E.; Casteel, S.N.; Knott, C.; Kandel, H.; Naeve, S.L.; et al. Sulfur fertilization in soybean: A meta-analysis on yield and seed composition. Eur. J. Agron. 2021, 127, 126285. [Google Scholar] [CrossRef]
- Kumar, S.; Meena, R.S.; Singh, R.K.; Munir, T.M.; Datta, R.; Danish, S.; Yadav, G.S.; Kumar, S. Soil microbial and nutrient dynamics under different sowings environment of Indian mustard (Brassica juncea L.) in rice based cropping system. Sci. Rep. 2021, 11, 5289. [Google Scholar] [CrossRef]
- Burkitbayev, M.; Bachilova, N.; Kurmanbayeva, M.; Tolenova, K.; Yerezhepova, N.; Zhumagul, M.; Mamurova, A.; Turysbek, B.; Demeu, G. Effect of sulfur-containing agrochemicals on growth, yield, and protein content of soybeans (Glycine max (L.) Merr). Saudi J. Biol. Sci. 2021, 28, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, H.; Paulsen, H.M.; Gau, A.E.; Link, W.; Jürgens, H.U.; Sass, O.; Dieterich, R. Seed protein amino acid composition of important local grain legumes Lupinus angustifolius L., Lupinus luteus L., Pisum sativum L. and Vicia faba L. Plant Breed 2011, 130, 156–164. [Google Scholar] [CrossRef]
- Neina, D.; Buerkert, A.; Joergensen, R.G. Potential mineralizable N and P mineralization of local organic materials in tantalite mine soils. Appl. Soil Ecol. 2016, 108, 211–220. [Google Scholar] [CrossRef]
- Bao, Y.; Guan, L.; Zhou, Q.; Wang, H.; Yan, L. Various sulphur fractions changes during different manure composting. Bioresour. Technol. 2010, 101, 7841–7848. [Google Scholar] [CrossRef] [PubMed]
- Muscolo, A.; Marra, F.; Canino, F.; Maffia, A.; Mallamaci, C.; Russo, M. Growth, nutritional quality and antioxidant capacity of lettuce grown on two different soils with sulphur-based fertilizer, organic and chemical fertilizers. Sci. Hortic. 2022, 305, 111421. [Google Scholar] [CrossRef]
Site | Bulk Density | Sand | Silt | Clay | Textural Class |
---|---|---|---|---|---|
(g cm−3) | (%) | (%) | (%) | ||
Dompem (Forest zone) | |||||
Native vegetation | 1.0 ± 0.1 | 60.0 | 16.0 | 24.0 | Sandy clay loam |
Old cocoa | 1.1 ± 0.2 | 38.4 | 36.6 | 25.0 | Loam |
Young cocoa | 1.2 ± 0.1 | 44.6 | 26.7 | 28.8 | Clay loam |
Vegetable farm | 0.9 ± 0.2 | 43.0 | 25.8 | 31.3 | Clay loam |
Sefwi—Ahokwa (Semi-Deciduous Forest zone) | |||||
Native vegetation | 0.9 ± 0.1 | 71.8 | 7.7 | 20.5 | Sandy clay loam |
Oil palm | 1.2 ± 0.3 | 82.4 | 4.1 | 13.5 | Loamy sand |
Cocoa | 1.3 ± 0.2 | 64.9 | 11.6 | 23.5 | Sandy clay loam |
Adansam (Forest-Savannah Transition zone) | |||||
Native vegetation | 1.2 ± 0.1 | 90.0 | 4.0 | 6.0 | Sand |
Mango | 1.3 ± 0.1 | 88.0 | 6.0 | 6.0 | Sand |
Yam (Ferric Luvisol) | 1.1 ± 0.1 | 90.0 | 4.0 | 6.0 | Sand |
Yam (Fluvisol) | 1.2 ± 0.1 | 95.0 | 2.0 | 3.0 | Sand |
Lito (Guinea Savannah zone) | |||||
Native vegetation | 1.7 ± 0.0 | 69.2 | 11.8 | 19.0 | Sandy loam |
Yam | 1.3 ± 0.2 | 70.0 | 17.5 | 12.5 | Sandy loam |
Grassland | 1.7 ± 0.1 | 70.8 | 7.7 | 21.5 | Sandy clay loam |
Mixed yam | 1.5 ± 0.1 | 79.5 | 7.0 | 13.5 | Sandy loam |
Wallembelle (Guinea Savannah zone) | |||||
Native vegetation | 1.4 ± 0.1 | 79.0 | 6.5 | 14.5 | Sandy loam |
Maize | 1.5 ± 0.2 | 76.8 | 7.2 | 16.0 | Sandy loam |
Soybean | 1.5 ± 0.1 | 86.2 | 4.8 | 9.0 | Loamy sand |
Site | Soil pH | Total C | Total S | Sulphate |
---|---|---|---|---|
(g kg−1) | (mg kg−1) | (mg kg−1) | ||
Dompem (Forest zone) | ||||
Native vegetation | 4.5 ± 0.2 | 20.9 ± 9.4 | 597.2 ± 109.0 | 4.8 ± 0.2 a |
Old cocoa | 5.2 ± 0.2 | 18.4 ± 8.3 | 456.0 ± 100.8 | 23.4 ± 2.7 b |
Young cocoa | 4.9 ± 0.2 | 16.6 ± 7.4 | 398.0 ± 56.2 | 25.8 ± 2.7 b |
Vegetable farm | 5.2 ± 0.1 | 19.4 ± 8.7 | 516.2 ± 48.3 | 6.9 ± 1.2 c |
p-value | - | >0.05 | >0.05 | 0.024 |
Sefwi—Ahokwa (Semi-Deciduous Forest zone) | ||||
Native vegetation | 6.2 ± 0.4 | 22.0 ± 9.8 | 138.8 ± 27.6 | 14.8 ± 0.6 a |
Oil palm | 6.4 ± 0.3 | 14.9 ± 6.7 | 106.8 ± 25.5 | 8.7 ± 0.2 b |
Cocoa | 6.2 ± 0.2 | 14.2 ± 6.4 | 121.4 ± 36.2 | 15.4 ± 0.2 a |
p-value | - | >0.05 | >0.05 | 0.05 |
Adansam (Forest-Savannah Transition zone) | ||||
Native vegetation | 5.9 ± 0.1 | 5.2 ± 2.3 a | BD | 7.5 ± 0.6 |
Mango | 6.1 ± 0.1 | 6.5 ± 2.9 a | 498.7 ± 105.0 | 7.2 ± 0.2 |
Yam (Ferric Luvisol) | 6.4 ± 0.1 | 7.4 ± 3.3 b | 259.0 ± 0.0 * | 7.1 ± 0.1 |
Yam (Fluvisol) | 6.5 ± 0.2 | 4.4 ± 2.0 c | BD | 6.9 ± 0.6 |
p-value | - | 0.001 | - | >0.05 |
Lito (Guinea Savannah zone) | ||||
Native vegetation | 5.4 ± 0.1 | 6.8 ± 3.0 | 31.4 ± 18.4 | 11.7± 0.6 a |
Yam | 5.8 ± 0.1 | 8.1 ± 3.6 | 69.6 ± 40.8 | 11.6 ± 0.3 a |
Grassland | 5.4 ± 0.3 | 11.8 ± 5.3 | 95.8 ± 25.2 | 6.9 ± 0.4 b |
Mixed yam | 5.8 ± 0.3 | 8.8 ± 4.0 | 147.1 ± 72.6 | 7.2 ± 0.8 b |
p-value | - | >0.05 | - | <0.001 |
Wallembelle (Guinea Savannah zone) | ||||
Native vegetation | 6.6 ± 0.1 | 7.8 ± 3.5 | 230.0 ± 0.0 * | 7.9 ± 0.2 |
Maize | 6.5 ± 0.1 | 17.6 ± 7.9 | 603.3 ± 27.5 | 9.2 ± 0.3 |
Soybean | 5.8 ± 0.1 | 7.0 ± 3.1 | 339.5 ± 91.4 | 8.1 ± 0.6 |
p-value | - | >0.05 | - | >0.05 |
Farm Type | 1 Soil pH | 2 δpH | 3 Total C | Total S | Sulphate |
---|---|---|---|---|---|
Water | g kg−1 | mg kg−1 | mg kg−1 | ||
Dompem | |||||
Year one | 4.1 ± 0.2 | −0.5 ± 0.1 | 33.2 ± 6.9 | 236.2 ± 40.2 a | 11.3 ± 1.3 a |
Three years | 4.4 ± 0.2 | −0.4 ± 0.0 | 25.5 ± 4.7 | 208.4 ± 57.5 b | 12.4 ± 2.0 a |
Five years | 4.5 ± 0.1 | −0.5 ± 0.1 | 18.2 ± 1.3 | 117.1 ± 17.0 c | 12.0 ± 1.8 a |
Ten years | 4.5 ± 0.1 | −0.6 ± 0.0 | 19.9 ± 3.4 | 98.5 ± 13.1 d | 5.8 ± 1.1 b |
p-value | - | >0.05 | >0.05 | 0.043 | 0.004 |
Adansam | |||||
Year one | 6.6 ± 0.3 | −0.2 ± 0.2 | 8.6 ± 1.7 | 54.6 ± 1.7 a | 5.7 ± 0.7 a |
Three years | 6.3 ± 0.0 | −0.1 ± 0.2 | 10.4 ± 0.8 | 61.3 ± 9.1 a | 6.7 ± 0.7 a |
Five years | 6.4 ± 0.1 | 0.0 ± 0.2 | 8.3 ± 1.3 | 39.7 ± 6.8 ab | 16.3 ± 1.9 b |
Ten years | 6.0 ± 0.1 | 0.0 ± 0.1 | 10.7 ± 0.8 | 73.3 ± 7.5 ac | 12.4 ± 1.8 b |
p-value | - | - | >0.05 | 0.023 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neina, D.; Adolph, B. Sulphur Contents in Arable Soils from Four Agro-Ecological Zones of Ghana. Land 2022, 11, 1866. https://doi.org/10.3390/land11101866
Neina D, Adolph B. Sulphur Contents in Arable Soils from Four Agro-Ecological Zones of Ghana. Land. 2022; 11(10):1866. https://doi.org/10.3390/land11101866
Chicago/Turabian StyleNeina, Dora, and Barbara Adolph. 2022. "Sulphur Contents in Arable Soils from Four Agro-Ecological Zones of Ghana" Land 11, no. 10: 1866. https://doi.org/10.3390/land11101866
APA StyleNeina, D., & Adolph, B. (2022). Sulphur Contents in Arable Soils from Four Agro-Ecological Zones of Ghana. Land, 11(10), 1866. https://doi.org/10.3390/land11101866