“The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Processing for Mapping Flood Inundation Intensity
2.4. Analyses of Landscape Characteristics along Jialu River
2.4.1. Land Cover Composition
2.4.2. Topographic Metrics
2.5. Spatial Correlation Analysis
2.6. GeoDector Model Spatial Correlation Analysis
3. Results
3.1. Rainfall and Flooding Distribution during the 20 July 2021 Flood Event
3.2. Landscape Characteristics of the Jialu River System
3.3. Correlations between Landscape Characteristics Metrics and Flood Inundation Intensity
3.4. Effects of interactions between Landscape Characteristics Metrics on Flood Inundation Intensity
3.5. Green Infrastructure Planning
4. Discussion
4.1. Planning Flood Mitigation Efforts in Zhengzhou since 1990s
4.2. Mitigation Strategies for the Upper, Middle and Lower Regions of Jialu River System
4.3. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; Matthews, J.B.R.; Berger, S.; et al. IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K. Flood Risk and Climate Change: Global and Regional Perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Muis, S.; Güneralp, B.; Jongman, B.; Aerts, J.C.J.H.; Ward, P.J. Flood Risk and Adaptation Strategies under Climate Change and Urban Expansion: A Probabilistic Analysis Using Global Data. Sci. Total Environ. 2015, 538, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; Allen, S.K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Forzieri, G.; Bianchi, A.; Batista e Silva, F.; Herrera, M.A.M.; Leblois, A.; Lavalle, C.; Aerts, J.C.J.H.; Feyen, L. Escalating Impacts of Climate Extremes on Critical Infrastructures in Europe. Glob. Environ. Chang.-Hum. Policy Dimens. 2018, 48, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Myhre, G.; Alterskjaer, K.; Stjern, C.W.; Hodnebrog, O.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of Extreme Precipitation Increases Extensively with Event Rareness under Global Warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Xia, J.; Huang, J.; Jiang, T. Flood Risk and Its Reduction in China. Adv. Water Resour. 2019, 130, 37–45. [Google Scholar] [CrossRef]
- Roy, A.H.; Wenger, S.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Shuster, W.D.; Thurston, H.W.; Brown, R.R. Impediments and Solutions to Sustainable, Watershed-Scale Urban Stormwater Management: Lessons from Australia and the United States. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef]
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstockf, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and Restoring Europe’s Waters: An Analysis of the Future Development Needs of the Water Framework Directive. Sci. Total Environ. 2019, 658, 1228–1238. [Google Scholar] [CrossRef]
- Luo, P.; He, B.; Takara, K.; Xiong, Y.E.; Nouer, D.; Duan, W.; Fukushi, K. Historical Assessment of Chinese and Japanese Flood Management Policies and Implications for Managing Future Floods. Environ. Sci. Policy 2015, 48, 265–277. [Google Scholar] [CrossRef] [Green Version]
- The Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019). Available online: https://reliefweb.int/report/world/human-cost-disasters-overview-last-20-years-2000-2019 (accessed on 10 March 2022).
- Yan, D.; Liu, J.; Shao, W.; Mei, C. Evolution of Urban Flooding in China. Proc. IAHS 2020, 383, 193–199. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Liang, S.; Zhu, B.; Yao, Y.; Meng, S.; Lu, C. Quantifying the Response of Potential Flooding Risk to Urban Growth in Beijing. Sci. Total Environ. 2020, 705, 135868. [Google Scholar] [CrossRef]
- Wu, H.-L.; Cheng, W.-C.; Shen, S.-L.; Lin, M.-Y.; Arulrajah, A. Variation of Hydro-Environment during Past Four Decades with Underground Sponge City Planning to Control Flash Floods in Wuhan, China: An Overview. Undergr. Space 2020, 5, 184–198. [Google Scholar] [CrossRef]
- Lyu, H.-M.; Wang, G.-F.; Shen, J.S.; Lu, L.-H.; Wang, G.-Q. Analysis and GIS Mapping of Flooding Hazards on 10 May 2016, Guangzhou, China. Water 2016, 8, 447. [Google Scholar] [CrossRef] [Green Version]
- U.S. Billion-Dollar Weather and Climate Disasters. Available online: https://www.ncei.noaa.gov/access/billions/ (accessed on 21 May 2022).
- Wing, O.E.J.; Lehman, W.; Bates, P.D.; Sampson, C.C.; Quinn, N.; Smith, A.M.; Neal, J.C.; Porter, J.R.; Kousky, C. Inequitable Patterns of US Flood Risk in the Anthropocene. Nat. Clim. Chang. 2022, 12, 156–162. [Google Scholar] [CrossRef]
- Thieken, A.H.; Kienzler, S.; Kreibich, H.; Kuhlicke, C.; Kunz, M.; Muehr, B.; Mueller, M.; Otto, A.; Petrow, T.; Pisi, S.; et al. Review of the Flood Risk Management System in Germany after the Major Flood in 2013. Ecol. Soc. 2016, 21, 51. [Google Scholar] [CrossRef]
- Hattermann, F.F.; Wortmann, M.; Liersch, S.; Toumi, R.; Sparks, N.; Genillard, C.; Schröter, K.; Steinhausen, M.; Gyalai-Korpos, M.; Máté, K.; et al. Simulation of Flood Hazard and Risk in the Danube Basin with the Future Danube Model. Clim. Serv. 2018, 12, 14–26. [Google Scholar] [CrossRef]
- Fitobor, K.; Ulanczyk, R.; Kolecka, K.; Ramm, K.; Wlodarek, I.; Zima, P.; Kalinowska, D.; Wielgat, P.; Mikulska, M.; Antonczyk, D.; et al. Extreme Weather Layer Method for Implementation of Nature-Based Solutions for Climate Adaptation: Case Study SłUpsk. Sci. Total Environ. 2022, 842, 156751. [Google Scholar] [CrossRef]
- Lee, Y.; Brody, S.D. Examining the Impact of Land Use on Flood Losses in Seoul, Korea. Land Use Pol. 2018, 70, 500–509. [Google Scholar] [CrossRef]
- Li, L.; Bergen, J.M. Green Infrastructure for Sustainable Urban Water Management: Practices of Five Forerunner Cities. Cities 2018, 74, 126–133. [Google Scholar] [CrossRef]
- Chang, N.-B.; Lu, J.-W.; Chui, T.F.M.; Hartshorn, N. Global Policy Analysis of Low Impact Development for Stormwater Management in Urban Regions. Land Use Pol. 2018, 70, 368–383. [Google Scholar] [CrossRef]
- Investigation Report on “The 20 July 2021” Major Rainstorm Disaster in Zhengzhou, Henan Province, China. Available online: https://www.mem.gov.cn/xw/bndt/202201/t20220121_407106.shtml (accessed on 22 January 2022).
- Zhang, K.; Shen, J.; Han, H.; Jia, Y. Urban River Health Analysis of the Jialu River in Zhengzhou City Using the Improved Fuzzy Matter-Element Extension Model. Water 2019, 11, 1190. [Google Scholar] [CrossRef]
- Dhakal, K.P.; Chevalier, L.R. Urban Stormwater Governance: The Need for a Paradigm Shift. Environ. Manag. 2016, 57, 1112–1124. [Google Scholar] [CrossRef] [PubMed]
- Omitaomu, O.A.; Kotikot, S.M.; Parish, E.S. Planning Green Infrastructure Placement Based on Projected Precipitation Data. J. Environ. Manag. 2021, 279, 111718. [Google Scholar] [CrossRef] [PubMed]
- Montz, B.E.; Tobin, G.A. Livin’ Large with Levees: Lessons Learned and Lost. Nat. Hazards Rev. 2008, 9, 150–157. [Google Scholar] [CrossRef]
- Ahern, J. From Fail-Safe to Safe-to-Fail: Sustainability and Resilience in the New Urban World. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef] [Green Version]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and Implementation of Low Impact Development—A Review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Collins, A.M.; Cheshmehzangi, A.; Chan, F.K.S. Identifying Enablers and Barriers to the Implementation of the Green Infrastructure for Urban Flood Management: A Comparative Analysis of the UK and China. Urban For. Urban Green. 2020, 54, 126770. [Google Scholar] [CrossRef]
- Howe, C.; Mitchell, C. Water Sensitive Cities; IWA Publishing: London, UK, 2012; pp. 29–39. [Google Scholar]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Wang, X.C.; Ren, N.; Li, G.; Ding, J.; Liang, H. Implementation of a Specific Urban Water Management-Sponge City. Sci. Total Environ. 2019, 652, 147–162. [Google Scholar] [CrossRef]
- US EPA. What Is Green Infrastructure? Available online: https://www.epa.gov/green-infrastructure/what-green-infrastructure (accessed on 26 March 2022).
- Dige, G.; Eichler, L.; Vermeulen, J.; Ferreira, A.; Rademaekers, K.; Adriaenssens, V.; Kolaszewska, D. Green Infrastructure and Flood Management: Promoting Cost-Efficient Flood Risk Reduction via Green Infrastructure Solutions; European Environment Agency (EEA) Report: Copenhagen K, Denmark, 2017. [Google Scholar]
- Wang, J.; Banzhaf, E. Towards a Better Understanding of Green Infrastructure: A Critical Review. Ecol. Indic. 2018, 85, 758–772. [Google Scholar] [CrossRef]
- Li, L.; Van Eetvelde, V.; Cheng, X.; Uyttenhove, P. Assessing Stormwater Runoff Reduction Capacity of Existing Green Infrastructure in the City of Ghent. Int. J. Sustain. Dev. World Ecol. 2020, 27, 749–761. [Google Scholar] [CrossRef]
- Schuch, G.; Serrao-Neumann, S.; Morgan, E.; Choy, D.L. Water in the City: Green Open Spaces, Land Use Planning and Flood Management—An Australian Case Study. Land Use Pol. 2017, 63, 539–550. [Google Scholar] [CrossRef]
- Liao, K.-H. From Flood Control to Flood Adaptation: A Case Study on the Lower Green River Valley and the City of Kent in King County, Washington. Nat. Hazards 2014, 71, 723–750. [Google Scholar] [CrossRef]
- Hansen, R.; Rall, E.; Chapman, E.; Rolf, W.; Pauleit, S. Urban Green Infrastructure Planning: A Guide for Practitioners. Green Surge. 2017. Available online: http://greensurge.eu/working-packages/wp5/ (accessed on 26 January 2022).
- Ahiablame, L.; Shakya, R. Modeling Flood Reduction Effects of Low Impact Development at a Watershed Scale. J. Environ. Manag. 2016, 171, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Hydrological Impacts of Land Use-Land Cover Change and Detention Basins on Urban Flood Hazard: A Case Study of Poisar River Basin, Mumbai, India. Nat. Hazards 2017, 87, 1267–1283. [Google Scholar] [CrossRef]
- Ahmed, S.; Meenar, M.; Alam, A. Designing a Blue-Green Infrastructure (BGI) Network: Toward Water-Sensitive Urban Growth Planning in Dhaka, Bangladesh. Land 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Meerow, S.; Newell, J.P.; Lindquist, M. Enhancing Landscape Connectivity through Multifunctional Green Infrastructure Corridor Modeling and Design. Urban For. Urban Green. 2019, 38, 305–317. [Google Scholar] [CrossRef]
- Li, L.; Uyttenhove, P.; Vaneetvelde, V. Planning Green Infrastructure to Mitigate Urban Surface Water Flooding Risk—A Methodology to Identify Priority Areas Applied in the City of Ghent. Landsc. Urban Plan. 2020, 194, 103703. [Google Scholar] [CrossRef]
- Shen, Z.; Hou, X.; Li, W.; Aini, G. Relating Landscape Characteristics to Non-Point Source Pollution in a Typical Urbanized Watershed in the Municipality of Beijing. Landsc. Urban Plan. 2014, 123, 96–107. [Google Scholar] [CrossRef]
- Veettil, A.V.; Mishra, A.K. Multiscale Hydrological Drought Analysis: Role of Climate, Catchment and Morphological Variables and Associated Thresholds. J. Hydrol. 2020, 582, 124533. [Google Scholar] [CrossRef]
- Borah, S.B.; Sivasankar, T.; Ramya, M.N.S.; Raju, P.L.N. Flood Inundation Mapping and Monitoring in Kaziranga National Park, Assam Using Sentinel-1 SAR Data. Environ. Monit. Assess. 2018, 190, 520. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Chen, Y.; Liang, F.; Liu, H. Assessment of Future Flash Flood Inundations in Coastal Regions under Climate Change Scenarios—A Case Study of Hadahe River Basin in Northeastern China. Sci. Total Environ. 2019, 693, 133550. [Google Scholar] [CrossRef]
- Mu, B.; Mayer, A.L.; He, R.; Tian, G. Land Use Dynamics and Policy Implications in Central China: A Case Study of Zhengzhou. Cities 2016, 58, 39–49. [Google Scholar] [CrossRef]
- Population by Year—Zhengzhou Bureau of Statistics. Available online: http://tjj.zhengzhou.gov.cn/ndsj/3134558.jhtml (accessed on 5 January 2022).
- Ren, J.; Yang, J.; Zhang, Y.; Xiao, X.; Xia, J.C.; Li, X.; Wang, S. Exploring Thermal Comfort of Urban Buildings Based on Local Climate Zones. J. Clean. Prod. 2022, 340, 130744. [Google Scholar] [CrossRef]
- Zhengzhou Water Resources Bulletin on 2020. Available online: http://public.zhengzhou.gov.cn/D12Y/6283515.jhtml (accessed on 5 January 2022).
- Martinis, S.; Twele, A.; Voigt, S. Towards Operational near Real-Time Flood Detection Using a Split-Based Automatic Thresholding Procedure on High Resolution TerraSAR-X Data. Nat. Hazards Earth Syst. Sci. 2009, 9, 303–314. [Google Scholar] [CrossRef]
- Chung, H.-W.; Liu, C.-C.; Cheng, I.-F.; Lee, Y.-R.; Shieh, M.-C. Rapid Response to a Typhoon-Induced Flood with an SAR-Derived Map of Inundated Areas: Case Study and Validation. Remote Sens. 2015, 7, 11954–11973. [Google Scholar] [CrossRef] [Green Version]
- Devrani, R.; Srivastava, P.; Kumar, R.; Kasana, P. Characterization and Assessment of Flood Inundated Areas of Lower Brahmaputra River Basin Using Multitemporal Synthetic Aperture Radar Data: A Case Study from NE India. Geol. J. 2022, 57, 622–646. [Google Scholar] [CrossRef]
- Shen, Z.; Xu, X.; Xu, S.; Sun, D. A Comparative Study of Land Development Patterns and Regional Thermal Environments (RTEs) in Typical Urban Agglomerations of China and America: A Case Study of Beijing-Tianjin-Hebei (BTH) and Boswash. Sci. Total Environ. 2022, 803, 149735. [Google Scholar] [CrossRef]
- Rajbanshi, J.; Das, S.; Patel, P.P. Planform Changes and Alterations of Longitudinal Connectivity Caused by the 2019 Flood Event on the Braided Brahmaputra River in Assam, India. Geomorphology 2022, 403, 108174. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Zhang, H.; Dalla Fontana, G.; Tarolli, P. Identifying Dominant Factors of Waterlogging Events in Metropolitan Coastal Cities: The Case Study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [Google Scholar] [CrossRef]
- Miller, J.D.; Brewer, T. Refining Flood Estimation in Urbanized Catchments Using Landscape Metrics. Landsc. Urban Plan. 2018, 175, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Wang, Q.; Wang, H.; Lin, Y.; Song, J.; Cui, T.; Fan, M. Does Landscape Pattern Influence the Intensity of Drought and Flood? Ecol. Indic. 2019, 103, 173–181. [Google Scholar] [CrossRef]
- Bruzzone, L.; Cossu, R.; Vernazza, G. Detection of Land-Cover Transitions by Combining Multidate Classifiers. Pattern Recognit. Lett. 2004, 25, 1491–1500. [Google Scholar] [CrossRef]
- Gatis, N.; Carless, D.; Luscombe, D.J.; Brazier, R.E.; Anderson, K. An Operational Land Cover and Land Cover Change Toolbox: Processing Open-Source Data with Open-Source Software. Ecol. Solut. Evid. 2022, 3, e12162. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. 2020. Available online: https://www.rstudio.com/ (accessed on 29 August 2021).
- Chatzimentor, A.; Apostolopoulou, E.; Mazaris, A.D. A Review of Green Infrastructure Research in Europe: Challenges and Opportunities. Landsc. Urban Plan. 2020, 198, 103775. [Google Scholar] [CrossRef]
- Weber, T.; Sloan, A.; Wolf, J. Maryland’s Green Infrastructure Assessment: Development of a Comprehensive Approach to Land Conservation. Landsc. Urban Plan. 2006, 77, 94–110. [Google Scholar] [CrossRef]
- Li, W.; Zhou, W.; Bai, Y.; Pickett, S.T.A.; Han, L. The Smart Growth of Chinese Cities: Opportunities Offered by Vacant Land. Land Degrad. Dev. 2018, 29, 3512–3520. [Google Scholar] [CrossRef]
- Lei, K.; Pan, H.; Lin, C. A Landscape Approach towards Ecological Restoration and Sustainable Development of Mining Areas. Ecol. Eng. 2016, 90, 320–325. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Nampak, H.; Bui, Q.-T.; Tran, Q.-A.; Nguyen, Q.-P. Hybrid Artificial Intelligence Approach Based on Neural Fuzzy Inference Model and Metaheuristic Optimization for Flood Susceptibilitgy Modeling in a High-Frequency Tropical Cyclone Area Using GIS. J. Hydrol. 2016, 540, 317–330. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Land Use Change and Driving Factors in Rural China during the Period 1995–2015. Land Use Pol. 2020, 99, 105048. [Google Scholar] [CrossRef]
- Anselin, L. Exploring Spatial Data with GeoDaTM: A Workbook; Center for Spatially Integrated Social Science, University of Illinois: Urbana, IL, USA, 2005. [Google Scholar]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Hu, D.; Meng, Q.; Zhang, L.; Zhang, Y. Spatial Quantitative Analysis of the Potential Driving Factors of Land Surface Temperature in Different “Centers” of Polycentric Cities: A Case Study in Tianjin, China. Sci. Total Environ. 2020, 706, 135244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Song, H.; Zhou, B.; Wang, L.; Yang, A.; Wang, T.; Kong, H.; Chen, Y.; Zhou, S.; Fu, S. Effects of Air Pollutants and Their Interactive Environmental Factors on Winter Wheat Yield. J. Clean. Prod. 2021, 305, 127230. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M.; Zhang, Z.; Hu, T.; Xing, J.; He, Z.; Liu, X. Geographical Detection of Urban Thermal Environment Based on the Local Climate Zones: A Case Study in Wuhan, China. Remote Sens. 2022, 14, 1067. [Google Scholar] [CrossRef]
- Hammami, S.; Zouhri, L.; Souissi, D.; Souei, A.; Zghibi, A.; Marzougui, A.; Dlala, M. Application of the GIS Based Multi-Criteria Decision Analysis and Analytical Hierarchy Process (AHP) in the Flood Susceptibility Mapping (Tunisia). Arab. J. Geosci. 2019, 12, 653. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Lu, J. Assessment of Long and Short-Term Flood Risk Using the Multi-Criteria Analysis Model with the AHP-Entropy Method in Poyang Lake Basin. Int. J. Disaster Risk Reduct. 2022, 75, 102968. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Zhou, R.; Wu, W.; Huang, N. Evaluating the Runoff Storage Supply-Demand Structure of Green Infrastructure for Urban Flood Management. J. Clean. Prod. 2021, 280, 124420. [Google Scholar] [CrossRef]
- Oudin, L.; Salavati, B.; Furusho-Percot, C.; Ribstein, P.; Saadi, M. Hydrological Impacts of Urbanization at the Catchment Scale. J. Hydrol. 2018, 559, 774–786. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Xie, Z.; Zhao, F.; Li, Y.; Yang, S.; Zhang, Y.; Yin, S.; Chen, S.; Li, X.; Zhao, S.; et al. Permeability Control and Flood Risk Assessment of Urban Underlying Surface: A Case Study of Runcheng South Area, Kunming. Nat. Hazards 2022, 111, 661–686. [Google Scholar] [CrossRef]
- Sohn, W.; Bae, J.; Newman, G. Green Infrastructure for Coastal Flood Protection: The Longitudinal Impacts of Green Infrastructure Patterns on Flood Damage. Appl. Geogr. 2021, 135, 102565. [Google Scholar] [CrossRef]
- Deng, X.; Xu, Y. Degrading Flood Regulation Function of River Systems in the Urbanization Process. Sci. Total Environ. 2018, 622–623, 1379–1390. [Google Scholar] [CrossRef]
- Patel, D.P.; Srivastava, P.K. Flood Hazards Mitigation Analysis Using Remote Sensing and GIS: Correspondence with Town Planning Scheme. Water Resour Manag. 2013, 27, 2353–2368. [Google Scholar] [CrossRef]
- Grabs, W. Benchmarking Flood Risk Reduction in the Elbe River. J. Flood Risk Manag. 2016, 9, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Serra-Llobet, A.; Jähnig, S.C.; Geist, J.; Kondolf, G.M.; Damm, C.; Scholz, M.; Lund, J.; Opperman, J.J.; Yarnell, S.M.; Pawley, A.; et al. Restoring Rivers and Floodplains for Habitat and Flood Risk Reduction: Experiences in Multi-Benefit Floodplain Management from California and Germany. Front. Environ. Sci. 2022, 9, 778568. [Google Scholar]
- McCullough, C.D.; van Etten, E.J.B. Ecological Restoration of Novel Lake Districts: New Approaches for New Landscapes. Mine Water Env. 2011, 30, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Lu, C.; Wang, J.; Sun, Q.; He, X.; Cao, G.; Zhao, Y.; Yan, L.; Gong, B. Using Storage of Coal-Mining Subsidence Area for Minimizing Flood. J. Hydrol. 2019, 572, 571–581. [Google Scholar] [CrossRef]
- Gumiero, B.; Mant, J.; Hein, T.; Elso, J.; Boz, B. Linking the Restoration of Rivers and Riparian Zones/Wetlands in Europe: Sharing Knowledge through Case Studies. Ecol. Eng. 2013, 56, 36–50. [Google Scholar] [CrossRef]
- Seo, D.; Kwon, Y. Sustainable Strategies for the Dynamic Equilibrium of the Urban Stream, Cheonggyecheon. IOP Conf. Ser. Earth Environ. Sci. 2018, 143, 012068. [Google Scholar] [CrossRef] [Green Version]
- van Vuren, S.; Paarlberg, A.; Havinga, H. The Aftermath of “Room for the River” and Restoration Works: Coping with Excessive Maintenance Dredging. J. Hydro-Environ. Res. 2015, 9, 172–186. [Google Scholar] [CrossRef]
- Lee, R.J. Vacant Land, Flood Exposure, and Urbanization: Examining Land Cover Change in the Dallas-Fort Worth Metro Area. Landsc. Urban Plan. 2021, 209, 104047. [Google Scholar] [CrossRef]
- Lei, C.; Wang, Q.; Wang, Y.; Han, L.; Yuan, J.; Yang, L.; Xu, Y. Spatially Non-Stationary Relationships between Urbanization and the Characteristics and Storage-Regulation Capacities of River Systems in the Tai Lake Plain, China. Sci. Total Environ. 2022, 824, 153684. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, C.; Zhang, G.; Xing, L.; Zhong, Q.; Liu, J.; Lin, Y.; Zheng, X.; Yang, N.; Sun, H.; et al. Effects of Urbanization on Landscape Patterns in the Middle Reaches of the Yangtze River Region. Land 2021, 10, 1025. [Google Scholar] [CrossRef]
- Singh, R.; Tiwari, A.K.; Singh, G.S. Managing Riparian Zones for River Health Improvement: An Integrated Approach. Landsc. Ecol. Eng. 2021, 17, 195–223. [Google Scholar] [CrossRef]
- Serra-Llobet, A.; Kondolf, G.M.; Magdaleno, F.; Keenan-Jones, D. Flood Diversions and Bypasses: Benefits and Challenges. WIREs Water 2022, 9, e1562. [Google Scholar] [CrossRef]
- Singer, M.B.; Aalto, R.; James, L.A. Status of the Lower Sacramento Valley Flood-Control System within the Context of Its Natural Geomorphic Setting. Nat. Hazards Rev. 2008, 9, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Xu, Y.; Xu, Y.; Wu, L.; Wang, Y.; Han, L. Spatial Hydrological Responses to Land Use and Land Cover Changes in a Typical Catchment of the Yangtze River Delta Region. CATENA 2018, 170, 305–315. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Hu, Z.; Zhang, G.; Liu, J.; Lyu, Y.; Gu, Y.; Huang, X.; Zhang, Q.; Liu, L. Flood Risk Assessment of Subway Systems in Metropolitan Areas under Land Subsidence Scenario: A Case Study of Beijing. Remote Sens. 2021, 13, 637. [Google Scholar] [CrossRef]
- Shin, E.; Kim, H.-J.; Rhee, D.S.; Eom, T.; Song, C.G. Spatiotemporal Flood Risk Assessment of Underground Space Considering Flood Intensity and Escape Route. Nat. Hazards 2021, 109, 1539–1555. [Google Scholar] [CrossRef]
- Colombo, L.; Gattinoni, P.; Scesi, L. Stochastic Modelling of Groundwater Flow for Hazard Assessment along the Underground Infrastructures in Milan (Northern Italy). Tunn. Undergr. Space Technol. 2018, 79, 110–120. [Google Scholar] [CrossRef]
- Uribe, C.H.A.; Brenes, R.B.; Hack, J. Potential of Retrofitted Urban Green Infrastructure to Reduce Runoff-A Model Implementation with Site-Specific Constraints at Neighborhood Scale. Urban For. Urban Green. 2022, 69, 127499. [Google Scholar] [CrossRef]
- Sun, X.; Li, R.; Shan, X.; Xu, H.; Wang, J. Assessment of Climate Change Impacts and Urban Flood Management Schemes in Central Shanghai. Int. J. Disaster Risk Reduct. 2021, 65, 102563. [Google Scholar] [CrossRef]
Overall accuracy | Kappa coefficient | |
92% | 0.88 | |
Producer’s accuracy | User’s accuracy | |
Greenspace | 96.34% | 78.38% |
Water body | 98.27% | 98.72% |
Impervious surfaces | 89.98% | 91.61% |
Crop land | 74.31% | 93.87% |
Vacant land | 81.37% | 78.58% |
Mine | 99.91% | 94.52% |
Land Use Categorization | Description | |
---|---|---|
Green infrastructure [66] | Greenspace | Lands for all woodlands, tree resources, and associated vegetation in the urban core, suburb, and exurb data. |
Water body | Areas of open water and lands with water tables at or near the surface for prolonged periods of the year, such as rivers, lakes, canals, and reservoirs. | |
Impervious surfaces [13] | Lands for buildings, parking lots, roads, driveways, and sidewalks. Impervious surfaces have become the most intuitive indicator in the process of urbanization. | |
Crop land | Agriculture includes crops, horticulture, fruit growing, and ponds. | |
Vacant land [67] | Bare without construction structure, empty with some weeds, paved by demolished construction structure. | |
Mine [68] | Open pits after mining. |
Criterion | Result |
---|---|
Nonlinear weakening | |
Univariate weakening | |
Bivariate enhancement | |
Independent | |
Nonlinear enhancement |
Landscape Characteristics Indexes | Region | Moran’s I | z-Value |
---|---|---|---|
UJLR | −0.111 * | −46.0514 | |
GSP | MJLR | −0.008 * | −3.6925 |
LJLR | 0.054 * | 25.2206 | |
UJLR | 0.034 * | 14.46 | |
WATERP | MJLR | 0.046 * | 20.649 |
LJLR | 0.125 * | 58.3441 | |
UJLR | 0.032 * | 13.4869 | |
ISP | MJLR | −0.071 * | −31.868 |
LJLR | −0.031 * | −14.7318 | |
UJLR | −0.125 * | −51.531 | |
CROPP | MJLR | −0.016 * | −7.2654 |
LJLR | −0.095 * | −43.7756 | |
UJLR | 0.106 * | 44.3297 | |
VACANTP | MJLR | 0.117 * | 53.2758 |
LJLR | 0.141 * | 68.2781 | |
UJLR | 0.23 * | 92.1752 | |
MINEP | MJLR | 0 | 0 |
LJLR | 0 | 0 | |
UJLR | 0.1 * | 42.61 | |
RE | MJLR | −0.009 * | −3.8947 |
LJLR | 0.031 * | 14.2551 | |
UJLR | 0.066 * | 28.3868 | |
TWI | MJLR | 0.028 * | 12.3081 |
LJLR | 0.044 * | 20.4663 |
GSP | WATERP | ISP | CROPP | VACANTP | MINEP | RE | TWI | ||
---|---|---|---|---|---|---|---|---|---|
UJLR | GSP | 0.033 | □ | □ | □ | ∆ | ∆ | □ | □ |
WATERP | 0.060 | 0.024 | □ | ∆ | □ | □ | □ | ∆ | |
ISP | 0.051 | 0.033 | 0.007 | □ | □ | □ | □ | □ | |
CROPP | 0.082 | 0.047 | 0.036 | 0.026 | □ | ∆ | □ | ∆ | |
VACANTP | 0.055 | 0.066 | 0.052 | 0.076 | 0.041 | □ | □ | □ | |
MINEP | 0.099 | 0.111 | 0.100 | 0.104 | 0.129 | 0.084 | ∆ | ∆ | |
RE | 0.073 | 0.044 | 0.036 | 0.045 | 0.068 | 0.088 | 0.018 | □ | |
TWI | 0.063 | 0.042 | 0.032 | 0.046 | 0.065 | 0.101 | 0.044 | 0.020 | |
MJLR | GSP | 0.007 | □ | □ | □ | □ | - | □ | □ |
WATERP | 0.032 | 0.022 | □ | □ | □ | - | □ | □ | |
ISP | 0.026 | 0.031 | 0.007 | □ | ∆ | - | □ | □ | |
CROPP | 0.016 | 0.025 | 0.012 | 0.002 | ∆ | - | □ | □ | |
VACANTP | 0.030 | 0.047 | 0.028 | 0.024 | 0.023 | - | □ | □ | |
MINEP | - | - | - | - | - | - | - | - | |
RE | 0.008 | 0.023 | 0.009 | 0.005 | 0.023 | - | 0.000 | □ | |
TWI | 0.008 | 0.023 | 0.009 | 0.002 | 0.024 | - | 0.001 | 0.000 | |
LJLR | GSP | 0.017 | ∆ | ∆ | □ | □ | - | □ | □ |
WATERP | 0.066 | 0.052 | □ | ∆ | ∆ | - | ∆ | ∆ | |
ISP | 0.037 | 0.084 | 0.031 | ∆ | □ | - | □ | □ | |
CROPP | 0.048 | 0.070 | 0.049 | 0.024 | ∆ | - | □ | □ | |
VACANTP | 0.048 | 0.078 | 0.066 | 0.046 | 0.030 | - | □ | ∆ | |
MINEP | - | - | - | - | - | - | - | - | |
RE | 0.019 | 0.053 | 0.037 | 0.027 | 0.033 | - | 0.001 | □ | |
TWI | 0.023 | 0.055 | 0.036 | 0.032 | 0.034 | - | 0.007 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Gao, Y.G.; Zhang, Y.; Li, H.; Li, Z.; Zhou, Z.; Tian, G.; Lei, Y. “The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics. Land 2022, 11, 1921. https://doi.org/10.3390/land11111921
Duan Y, Gao YG, Zhang Y, Li H, Li Z, Zhou Z, Tian G, Lei Y. “The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics. Land. 2022; 11(11):1921. https://doi.org/10.3390/land11111921
Chicago/Turabian StyleDuan, Yanbo, Yu Gary Gao, Yusen Zhang, Huawei Li, Zhonghui Li, Ziying Zhou, Guohang Tian, and Yakai Lei. 2022. "“The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics" Land 11, no. 11: 1921. https://doi.org/10.3390/land11111921
APA StyleDuan, Y., Gao, Y. G., Zhang, Y., Li, H., Li, Z., Zhou, Z., Tian, G., & Lei, Y. (2022). “The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics. Land, 11(11), 1921. https://doi.org/10.3390/land11111921