Anthropogenic Transformation of the River Basins of the Northwestern Slope of the Crimean Mountains (The Crimean Peninsula)
Abstract
:1. Introduction
2. Materials and Methods
- —rank of anthropogenic transformation by type of use (protected areas—1; forests—2; swamps and wetlands—3; meadows—4; gardens and vineyards—5; arable land—6; rural development—7; urban development—8; reservoirs, canals—9; land used for industrial purposes—10).
- —rank area (%).
- —index of the depth of transformation (protected areas—1; forests—1.05; swamps, floodplains, wetlands—1.1; meadows—1.15; gardens, vineyards—1.2; arable land—1.25; rural development—1.3; urban development—1.35; reservoirs—1.4; industrial land—1.5).
- —number of divisions within the study region.
- is the area of the type of land use, km2, %.
- —rank, or landscape disturbance index (1—forest areas and tree and shrub plantations; 2—under water and swamps; 3—pastures; 4—arable land (including irrigated); 5—industrial-transport and residential areas).
- —scanning area.
- —serial number of the type of disturbance.
- —number of types of disturbance.
- —numerical coefficient of the degree of anthropogenic transformation (1—protected areas, undisturbed natural areas; 2—hayfields; 3—grazing, fallow land; 4—cultivated land, arable land, rice paddies; 5—cottages and similar lands; 6—quarries, artificial ponds and water bodies, roads, cemeteries; 7—building development; 8—rural development and adjacent territories; 9—urban development and adjacent territories, industrial type zones).
- —area of the natural-territorial complex.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smeraldo, S.; Bosso, L.; Fraissinet, M.; Bordignon, L.; Brunelli, M.; Ancillotto, L.; Russo, D. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 2020, 29, 1959–1976. [Google Scholar] [CrossRef]
- Tian, C.; Cheng, L.L.; Yin, T.T. Impacts of anthropogenic and biophysical factors on ecological land using logistic regression and random forest: A case study in Mentougou District, Beijing, China. J. Mt. Sci. 2022, 19, 433–445. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Wen, S.; Yu, C.; Lin, F.; Diao, X. Comparative Assessment of Microplastics in Surface Water and Sediments of Meishe River, Haikou, China. Sustainability 2022, 14, 13099. [Google Scholar] [CrossRef]
- Kiefer, K.; Müller, A.; Singer, H.; Hollender, J. New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res. 2019, 165, 114972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahmardeh Behrooz, R.; Esmaili-sari, A.; Urbaniak, M.; Chakraborty, P. Assessing diazinon pollution in the three major rivers flowing into the Caspian Sea (Iran). Water 2021, 13, 335. [Google Scholar] [CrossRef]
- de Aquino Martins, P.T.; Riedel, P.S.; de Carvalho Milanelli, J.C. Sensitivity mapping of oil pollution incidents in land environments. Acta Scientiarum. Technology 2018, 40, e30219. [Google Scholar] [CrossRef] [Green Version]
- Kisić, I.; Hrenović, J.; Zgorelec, Ž.; Durn, G.; Brkić, V.; Delač, D. Bioremediation of agriculture soil contaminated by organic pollutants. Energies 2022, 15, 1561. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Rong, S.; Wu, J.; Cao, X.; Sun, Y. Comprehensive Ecological Risk Assessment of Heavy Metals Based on Species Sensitivity Distribution in Aquatic of Coastal Areas in Hong Kong. Int. J. Environ. Res. Public Health 2022, 19, 13376. [Google Scholar] [CrossRef] [PubMed]
- Kombate, A.; Folega, F.; Atakpama, W.; Dourma, M.; Wala, K.; Goïta, K. Characterization of Land-Cover Changes and ForestCover Dynamics in Togo between 1985 and 2020 from Landsat Images Using Google Earth Engine. Land 2022, 11, 1889. [Google Scholar] [CrossRef]
- Ding, Y.; Feng, H.; Zou, B. Remote Sensing-Based Estimation on Hydrological Response to Land Use and Cover Change. Forests 2022, 13, 1749. [Google Scholar] [CrossRef]
- Machado, A. An index of naturalness. J. Nat. Conserv. 2004, 12, 95–110. [Google Scholar] [CrossRef]
- Walz, U.; Stein, C. Indicators of hemeroby for the monitoring of landscapes in Germany. J. Nat. Conserv. 2014, 22, 279–289. [Google Scholar] [CrossRef]
- Ferrari, C.; Pezzi, G.; Diani, L.; Corazza, M. Evaluating landscape quality with vegetation naturalness maps: An index and some inferences. Appl. Veg. Sci. 2009, 11, 243–250. [Google Scholar] [CrossRef]
- Krajewski, P.; Solecka, I. Landscape change index as a tool for spatial analysis. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 072014. [Google Scholar] [CrossRef]
- De Pablo, C.L.; Roldán-Martín, M.J.; De Agar, P.M. Magnitude and Significance in Landscape Change. Landsc. Res. 2012, 37, 571–589. [Google Scholar] [CrossRef]
- Jim, B. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2018, 12, 7–21. [Google Scholar] [CrossRef]
- Macklin, M.G.; Lewin, J. The rivers of civilization. Quat. Sci. Rev. 2015, 114, 228–244. [Google Scholar] [CrossRef]
- Gunes, G. The change of metal pollution in the water and sediment of the Bartın River in rainy and dry seasons. Environ. Eng. Res. 2022, 27, 200701. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.D.; Liu, T.; Lin, L. The river chief system and river pollution control in China: A case study of Foshan. Water 2019, 11, 1606. [Google Scholar] [CrossRef] [Green Version]
- Tiyasha, M.T.T.; Mundher Yaseen, Z. A survey on river water quality modelling using artificial intelligence models: 2000-2020. J. Hydrol. 2020, 585, 124670. [Google Scholar] [CrossRef]
- Hyka, I.; Hysa, A.; Dervishi, S.; Solomun, M.K.; Kuriqi, A.; Vishwakarma, D.K.; Sestras, P. Spatiotemporal Dynamics of Landscape Transformation in Western Balkans’ Metropolitan Areas. Land 2022, 11, 1892. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y. Does anthropogenic land use change play a role in changes of precipitation frequency and intensity over the Loess Plateau of China? Remote Sens. 2018, 10, 1818. [Google Scholar] [CrossRef] [Green Version]
- Csorba, P.; Szabó, S. Degree of human transformation of landscapes: A case study from Hungary. Hung. Geogr. Bull. 2009, 58, 91–99. [Google Scholar]
- Seguin, J.; Bintliff, J.L.; Grootes, P.M.; Bauersachs, T.; Dörfler, W.; Heymann, C.; Unkel, I. 2500 years of anthropogenic and climatic landscape transformation in the Stymphalia polje, Greece. Quat. Sci. Rev. 2019, 213, 133–154. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Ren, B.; Luo, J.; Yuan, J.; Ding, X.; Bian, H.; Yao, X. Trends and health risks of dissolved heavy metal pollution in global river and lake water from 1970 to 2017. Rev. Environ. Contam. Toxicol. 2019, 251, 1–24. [Google Scholar] [CrossRef]
- Crawford, S.E.; Brinkmann, M.; Ouellet, J.D.; Lehmkuhl, F.; Reicherter, K.; Schwarzbauer, J.; Bellanova, P.; Letmathe, P.; Blank, L.M.; Weber, R.; et al. Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. J. Hazard Mater. 2022, 421, 126691. [Google Scholar] [CrossRef]
- Palmer, M.A.; Lettenmaier, D.P.; LeRoy Poff, N.; Postel, S.L.; Richter, B.; Warner, R. Climate Change and River Ecosystems: Protection and Adaptation Options. Environ. Manag. 2009, 44, 1053–1068. [Google Scholar] [CrossRef] [PubMed]
- Civitarese Matteucci, S.; Cartei, G.F. The Impact of the European Landscape Convention on Landscape Planning in Spain, Italy and England. J. Environ. Law 2022, 34, 307–330. [Google Scholar] [CrossRef]
- D’yakonov, K.N.; Khoroshev, A.V. Landscape Planning on the Way to Integration in Regional Policy. Her. Russ. Acad. Sci. 2022, 92, 297–305. [Google Scholar] [CrossRef]
- Carta, M.; Gisotti, M.R.; Lucchesi, F. Settlements and Urban Morphological Quality in Landscape Planning–Analytical Models and Regulating Tools in the Landscape Plan of Regione Toscana. Sustainability 2022, 14, 1851. [Google Scholar] [CrossRef]
- Biche-ool, T.N. Territorial Differentiation of Anthropogenic Transformation of the Republic of Tuva. Bull. Udmurt Univ. Ser. Biol. Earth Sci. 2021, 31, 46–56. [Google Scholar] [CrossRef]
- Ulengov, R.A.; Rakhimov, I.I. Anthropogenic Transformation of Geosystems of the Republic of Tatarstan and the Modern Bioecological Situation (on the Example of Avifauna); Novoe Znanie: Kazan, Russia, 2009. [Google Scholar]
- Nikolaeva, N.A. Assessment of Man-Made Changes of Landscapes of Western Yakutia. Ecol. Urban Areas 2014, 4, 92–95. [Google Scholar]
- Nefedova, M.V.; Kulenko, A.S. Analysis of anthropogenic transformation of landscapes of Andropovsky district of Stavropol Krai. Trends Dev. Sci. Educ. 2021, 70–72, 125–130. [Google Scholar] [CrossRef]
- Smetanova, M.; Fedotov, Y.; Maskaykin, V.; Kiryushina, T. Ecological and Economic Balance for the Territory of Staroshaygovsky District of the Republic of Mordovia. Mod. Probl. Territ. Dev. 2018, 4, 7. [Google Scholar]
- Ryabovol, I.V.; Mishchenko, A.A. Anthropogenic transformation of landscapes of Gulkevichi district and its assessment. In Regional Geographical Research; Pogorelov, A.V., Ed.; Kuban State University: Krasnodar, Russia, 2020; pp. 293–297. [Google Scholar]
- Dulova, K.A. Assessment of the degree of anthropogenic transformation of the Sol-Iletsk urban district. In Intellectual Potential of Society as a Driver of Innovative Development of Science; Omega Sciences LLC: Orenburg, Russia, 2015; pp. 230–235. [Google Scholar]
- Lisetskii, F.; Pozachenyuk, E.; Zelenskaya, E. Crimea: The History of Interaction between Man and Nature; Nova Science Publishers Inc.: New York, NY, USA, 2019. [Google Scholar]
- Pozachenyuk, K.; Yakovenko, I. Vine landscapes in Crimea: Evolution, problems, prospects. Misc. Geogr. 2018, 22, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Dragan, N.A.; Alshevbi, F.H.S. Assessment of transformation of agricultural lands of the plain Crimea. Sci. Notes V.I. Vernadsky Taurida Natl. Univ. Geogr. 1998, 6, C.6–10. [Google Scholar]
- Pozachenyuk, E.A. Ecological Expertise: Natural and Economic Systems; Tavrichesky Ecological Institute: Simferopol, Ukraine, 2003. [Google Scholar]
- Pozachenyuk, E.A.; Petlyukova, E.A. Assessment of Anthropogenic Transformation of Landscapes of the Central Foothills of the Main Ridge of the Crimean Mountains. In Anthropogenic Transformation of Geospatial Space; Kanishchev, S.N., Ed.; Volgograd State University: Volgograd, Russia, 2015; pp. 317–323. [Google Scholar]
- Ergina, E.I.; Shadrina, A.Y. Converting Landscapes of the Kerch Peninsula. Sci. Notes V.I. Vernadsky Crime. Fed. Univ. Geogr. Geol. 2016, 3, 203–211. [Google Scholar]
- Aleksashkin, I.V.; Gorbunov, R.V.; Zavalishina, A.A. The Degree of Transformation of the Landscapes of the Vicinity of the Village Trudolyubovka, Bakhchisarai District. Cult. Peoples Black Sea Reg. 2009, 162, 7–11. [Google Scholar]
- Shishchenko, P.G. Applied Physical Geography; High School: Kyiv, USSR, 1988. [Google Scholar]
- Kochurov, B.I. Geoecology: Ecodiagnostics and Ecological and Economic Balance of the Territory; SGU: Smolensk, Russia, 1999. [Google Scholar]
- Rulev, A.S. Landscape-Geographical Approach in Agroforestry; VNIALMI: Volgograd, Russia, 2007. [Google Scholar]
- Chibilyov, A., Jr.; Grigorevsky, D.V.; Meleshkin, D.S. Spatial Assessment of the Anthropogenic Load Level in the Steppe Regions of Russia. Proc. Kazan Univ. Nat. Sci. Ser. 2019, 61, 590–606. [Google Scholar] [CrossRef]
- Zanozin, V.V.; Barmin, A.N.; Valov, M.V. Remote sensing and GIS in modeling landscape naturalness. Vestn. North-East. Fed. Univ. Earth Sci. 2019, 2, 74–84. [Google Scholar] [CrossRef]
- Drozdov, A.V. Landscape Planning with Elements of Engineering Biology; Association of Scientific Publications KMK: Moscow, Russia, 2006. [Google Scholar]
- Antipov, A.I. Landscape Planning: Tools and Experience in Implementation; Federal Agency for Nature Conservation: Bonn, Germany, 2005. [Google Scholar]
- Kozyreva, Y.V.; Nenasheva, G.I.; Volkova, A.K.; Legacheva, N.M.; Prudnikova, N.G.; Ignatenko, M.N. Assessment of Man-Made Transformation of River Basins Natural Complexes (Example of the River Kamenka, Altai). Monit. Sci. Technol. 2019, 1, 28–35. [Google Scholar] [CrossRef]
- Andreev, V.H.; Hapich, H.; Kovalenko, V. Impact of economic activity on geoecological transformation of the basin of the Zhovtenka River (Ukraine). J. Geol. Geogr. Geoecol. 2021, 30, 3–12. [Google Scholar] [CrossRef]
- Volchak, A.A.; Akaronka, I.V. Assesment of Anthropogenic Conversion of the Small River Water Countries (on the Example of River Lesnaya). Land Belarus 2021, 1, 51–59. [Google Scholar]
- Krasnoyarova, B.A.; Sharabarina, S.N.; Harms, E.O. Anthropogenic Transformation of the Ob-Irtysh Catchment: Research Review. Proc. Altai Branch Russ. Geogr. Soc. 2017, 1, 15–20. [Google Scholar]
- Vlasova, A.N. Methodological Approaches to Landscape Planning of Salgir River Basin. Izv. Vuzov. Sev.-Kavk. Region. Nat. Sci. 2017, 2, 84–91. [Google Scholar] [CrossRef]
- Pozachenyuk, E.A.; Ergina, E.I.; Oliferov, A.N.; Mikhailov, V.A.; Vlasova, A.N.; Kudrjan, E.A.; Penno, M.V.; Kalinchuk, I.V. Analysis of Factors of the Salgir River’s Water Resources Formation Under the Condition of Climate Changing. Sci. Notes V.I. Vernadsky Taurida Natl. Univ. Geogr. 2014, 2, 118–138. [Google Scholar]
- Frascaroli, F.; Parrinello, G.; Root-Bernstein, M. Linking contemporary river restoration to economics, technology, politics, and society: Perspectives from a historical case study of the Po River Basin, Italy. Ambio 2021, 50, 492–504. [Google Scholar] [CrossRef]
- Timchenko, Z.V.; Tabunshchik, V.A.; Zelentsova, M.G. The characteristics of the Dzhankoy Region Rivers and Dzhankoy Town Okrug of the Republic of the Crimea. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 052038. [Google Scholar] [CrossRef]
- Pozаchеnyuk, E.A.; Тimchenko, Z.V. The Modern Landscapes of the River Uskut. Constr. Econ. Environ. Manag. 2017, 2, 270–283. [Google Scholar]
- Kalinchuk, I.V.; Mikhailov, V.A.; Pozachenyuk, E.A. Estimation of Anthropogenic Transformation of Plain Crimean Landscapes. Sci. Bull. Belgorod State Univ. Nat. Sci. 2016, 25, 156–168. [Google Scholar]
- Zavalnyuk, I.V. Environmental Audit of Territories (on the Example of the Plain Crimea); Kherson State University: Kherson, Ukraine, 2004. [Google Scholar]
- Memetova, R. Antropogenization Processes of Landscape of the Foothill of the Main Ridge of Crimean Mountains. Sci. XXI Century 2015, 9–10, 23–31. [Google Scholar]
- Penno, M.V.; Panchenko, A.A. The current state of coastal and marine nature management in the area of the Gulf of Feodosia. Ecol. Saf. Coast. Shelf Zones Sea 2014, 29, 80–85. [Google Scholar]
- United Nations. Resolution Adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission Pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313). 2017. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_71_313.pdf (accessed on 15 September 2022).
- Copernicus DEM—Global and European Digital Elevation Model. Available online: https://doi.org/10.5270/ESA-c5d3d65 (accessed on 15 September 2022).
- Sarkar, D.; Mondal, P.; Sutradhar, S.; Sarkar, P. Morphometric Analysis Using SRTM-DEM and GIS of Nagar River Basin, Indo-Bangladesh Barind Tract. J. Indian Soc. Remote Sens. 2020, 48, 597–614. [Google Scholar] [CrossRef]
- Samsonov, T.E. Fundamentals of Geoinformatics: A Workshop in ArcGIS; Moscow State University: Moscow, Russia, 2018. [Google Scholar] [CrossRef]
- Wrbka, T.; Erb, K.H.; Schulz, N.B.; Peterseil, J.; Hahn, C.; Haberl, H. Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 2004, 21, 289–306. [Google Scholar] [CrossRef]
- Zanozin, V.V. Structure and Modern Anthropogenic Transformation of the Central Area of the Volga River Delta Landscape; Perm State National Research University: Perm, Russia, 2021. [Google Scholar]
- Alshevbi, F.S. Transformation of agricultural lands of the plain Crimea. Cult. Peoples Black Sea Reg. 1997, 2, 16–18. [Google Scholar]
- Mihaylov, V.A. Evaluation of anthropogenic transformation of the landscape using GIS (on the example of the Crimean Sivash). Mod. Sci. Res. Innov. 2012, 10, 16. [Google Scholar]
- Petlyukova, E.A. Structure of land use and anthropogenic transformation of landscapes of the Central Foothills of the Main Ridge of the Crimean Mountains. In Landscape Studies: State, Problems, Prospects; Melnik, A., Ed.; Publishing Center of the Ivan Franko Lviv National University: Lviv, Ukraine, 2014; pp. 165–167. [Google Scholar]
- Chekmareva, T.M.; Sidorova, M.A. Ekologicheskaya otsenka anthropogenic transformation of landscapes of the village of Kacha of the Sevastopol region of the Crimea. Sci. Work. Sevastopol Natl. Univ. Nucl. Energy Ind. 2013, 4, 107–113. [Google Scholar]
- Ivankova, T. Assessment of the Degree of Anthropogenic Load in the Basin of the Small Alma River. Water Supply Sanit. Tech. 2019, 12, 4–12. [Google Scholar] [CrossRef]
- Oshkader, A.V.; Stepanova, A.V. Assessment of the ecological and economic balance of the Republic of Crimea. In Ecological and Geographical Problems of the Regions of Russia; Kazantsev, I.V., Ed.; Volga State Social and Humanitarian Academy: Samara, Russia, 2016; pp. 250–254. [Google Scholar]
- Federal Law «On Environmental Protection». Available online: https://base.garant.ru/77322728/ (accessed on 15 September 2022).
- Boeuf, B.; Fritsch, O.; Martin-Ortega, J. Undermining European environmental policy goals? The EU water framework directive and the politics of exemptions. Water 2016, 8, 388. [Google Scholar] [CrossRef] [Green Version]
- Argaz, A. 1d model application for integrated water resources planning and evaluation: Case study of Souss River Basin, Morocco. Larhyss J. 2018, 36, 217–229. [Google Scholar]
- Molle, F. River-basin planning and management: The social life of a concept. Geoforum 2009, 40, 484–494. [Google Scholar] [CrossRef]
- Imbulana, U.S. River Basin Planning for Water Security in Sri Lanka. In Water Security in Asia; Springer: Cham, Switzerland, 2021; pp. 85–97. [Google Scholar]
- Hoyuela Jayo, J.A. Planning and Management of Complex Landscapes: The Case of Rio de Janeiro, Carioca Landscapes. Available online: https://doi.org/10.7275/79x7-7a96 (accessed on 15 September 2022).
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B 2020, 375, 20190104. [Google Scholar] [CrossRef] [Green Version]
- Gorbunov, R.; Gorbunova, T.; Kononova, N.; Priymak, A.; Salnikov, A.; Drygval, A.; Lebedev, Y. Spatiotemporal aspects of interannual changes precipitation in the Crimea. J. Arid. Environ. 2020, 183, 104280. [Google Scholar] [CrossRef]
- Gorbunov, R.V.; Gorbunova, T.Y.; Drygval, A.V.; Tabunshchik, V.A. Change of Air Temperature in Crimea. Environ. Hum. Ecol. Stud. 2020, 10, 370–383. [Google Scholar] [CrossRef]
Indicators | Zapadnyy Bulganak | Alma | Kacha | Belbek | Chernaya |
---|---|---|---|---|---|
Coefficient of anthropogenic transformation | 6.20 | 3.84 | 3.49 | 3.17 | 2.52 |
Land degradation index | 3.64 | 2.03 | 1.74 | 1.65 | 1.01 |
Urbanity index | 0.17 | −0.48 | −0.56 | −0.77 | −0.95 |
Degree of anthropogenic transformation | 4.02 | 2.30 | 1.46 | 1.36 | 1.49 |
Coefficients of absolute tension of the ecological and economic balance of the territory | 11.98 | 0.25 | 0.33 | 0.28 | 0.07 |
Coefficients of relative tension of the ecological and economic balance of the territory | 1.46 | 0.33 | 0.28 | 0.17 | 0.11 |
Indicators | Zapadnyy Bulganak | Alma | Kacha | Belbek | Chernaya |
---|---|---|---|---|---|
Coefficient of anthropogenic transformation | 6.23 | 3.90 | 3.48 | 3.21 | 2.46 |
Land degradation index | 3.63 | 2.07 | 1.75 | 1.67 | 1.03 |
Urbanity index | 0.26 | −0.15 | −0.14 | −0.37 | −0.42 |
Degree of anthropogenic transformation | 4.02 | 2.34 | 1.87 | 1.39 | 1.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabunshchik, V.; Gorbunov, R.; Gorbunova, T. Anthropogenic Transformation of the River Basins of the Northwestern Slope of the Crimean Mountains (The Crimean Peninsula). Land 2022, 11, 2121. https://doi.org/10.3390/land11122121
Tabunshchik V, Gorbunov R, Gorbunova T. Anthropogenic Transformation of the River Basins of the Northwestern Slope of the Crimean Mountains (The Crimean Peninsula). Land. 2022; 11(12):2121. https://doi.org/10.3390/land11122121
Chicago/Turabian StyleTabunshchik, Vladimir, Roman Gorbunov, and Tatiana Gorbunova. 2022. "Anthropogenic Transformation of the River Basins of the Northwestern Slope of the Crimean Mountains (The Crimean Peninsula)" Land 11, no. 12: 2121. https://doi.org/10.3390/land11122121
APA StyleTabunshchik, V., Gorbunov, R., & Gorbunova, T. (2022). Anthropogenic Transformation of the River Basins of the Northwestern Slope of the Crimean Mountains (The Crimean Peninsula). Land, 11(12), 2121. https://doi.org/10.3390/land11122121