Spatiotemporal Evolution of Mountainous Ecosystem Services in an Arid Region and Its Influencing Factors: A Case Study of the Tianshan Mountains in Xinjiang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Ecosystem Service Evaluation
2.3.1. Habitat Quality
2.3.2. Soil Retention
2.3.3. Water Yield
2.3.4. Carbon Storage
2.4. Trade-Offs and Synergies among ESs
2.5. Ecosystem Service Hotspots
2.6. Selection of Driving Factors
2.7. Optimal Parameter-Based Geographical Detector Model
3. Results
3.1. The Spatiotemporal Evolution of Ecosystem Services
3.2. Trade-Offs and Synergies of Ecosystem Services
3.3. Spatiotemporal Variation in Ecosystem Service Hotspots
3.4. Mechanism Underlying the Spatial Variation of Ecosystem Services
3.4.1. Comparison of the Influencing Factors between Different Ecosystem Services
3.4.2. Interactive Effect of Driving Factors
4. Discussion
4.1. Validation of Ecosystem Service Results in the Tianshan Mountains
4.2. Implications and Suggestions for Ecosystem Management
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.; Postel, S.; Bawa, K.; Kaufman, L. Nature’s Services: Societal Dependence on Natural Ecosystems; Bibliovault OAI Repository, the University of Chicago Press: Chicago, IL, USA, 1997. [Google Scholar]
- Reid, W.; Mooney, H.; Cropper, A.; Capistrano, D.; Carpenter, S.; Chopra, K. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Rieb, J.T.; Chaplin-Kramer, R.; Daily, G.C.; Armsworth, P.R.; Böhning-Gaese, K.; Bonn, A.; Cumming, G.S.; Eigenbrod, F.; Grimm, V.; Jackson, B.M.; et al. When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models. BioScience 2017, 67, 820–833. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E.; Ge, Q.; Zhang, X.; Yu, C. Spatial Heterogeneity of Ecosystem Services and Their Trade-Offs in the Hengduan Mountain Region, Southwest China. CATENA 2021, 207, 105632. [Google Scholar] [CrossRef]
- Ives, J.D.; Messerli, B. Mountains of the World: A Global Priority; Parthenon Publishing: New York, NY, USA; Carnforth, UK, 1997; ISBN 978-1-85070-781-3. [Google Scholar]
- Viviroli, D.; Kummu, M.; Meybeck, M.; Kallio, M.; Wada, Y. Increasing Dependence of Lowland Populations on Mountain Water Resources. Nat. Sustain. 2020, 3, 917–928. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; Turner, W.R.; Larsen, F.W.; Brooks, T.M.; Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots. In Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas; Zachos, F.E., Habel, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–22. ISBN 978-3-642-20992-5. [Google Scholar]
- Seidl, R.; Albrich, K.; Erb, K.; Formayer, H.; Leidinger, D.; Leitinger, G.; Tappeiner, U.; Tasser, E.; Rammer, W. What Drives the Future Supply of Regulating Ecosystem Services in a Mountain Forest Landscape? For. Ecol. Manag. 2019, 445, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, J.; Zhou, Z.; Ma, X.; Zhang, X. Response of Multiple Mountain Ecosystem Services on Environmental Gradients: How to Respond, and Where Should Be Priority Conservation? J. Clean. Prod. 2021, 278, 123264. [Google Scholar] [CrossRef]
- Gomes, L.C.; Bianchi, F.J.J.A.; Cardoso, I.M.; Fernandes Filho, E.I.; Schulte, R.P.O. Land Use Change Drives the Spatio-Temporal Variation of Ecosystem Services and Their Interactions along an Altitudinal Gradient in Brazil. Landsc. Ecol. 2020, 35, 1571–1586. [Google Scholar] [CrossRef]
- Lu, Y.; Han, F.; Liu, Q.; Wang, Z.; Wang, T.; Yang, Z. Evaluation of Potential for Nature-Based Recreation in the Qinghai-Tibet Plateau: A Spatial-Temporal Perspective. Int. J. Environ. Res. Public Health 2022, 19, 5753. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Wang, Y.; Zhang, Y.; Shen, J.; Qin, D.; Li, S. Trade-off Analyses of Multiple Mountain Ecosystem Services along Elevation, Vegetation Cover and Precipitation Gradients: A Case Study in the Taihang Mountains. Ecol. Indic. 2019, 103, 94–104. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Weibel, B. Global Assessment of Mountain Ecosystem Services Using Earth Observation Data. Ecosyst. Serv. 2020, 46, 101213. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Brunner, S.H.; Kienast, F. Mountain Ecosystem Services: Who Cares? Mt. Res. Dev. 2012, 32, S23–S34. [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.; Guan, M.; Zhang, B. A Novel Approach for the Identification of Conservation Priority Areas in Mountainous Regions Based on Balancing Multiple Ecosystem Services—A Case Study in the Hengduan Mountain Region. Glob. Ecol. Conserv. 2022, 38, e02195. [Google Scholar] [CrossRef]
- Elkin, C.; Gutiérrez, A.G.; Leuzinger, S.; Manusch, C.; Temperli, C.; Rasche, L.; Bugmann, H. A 2 °C Warmer World Is Not Safe for Ecosystem Services in the European Alps. Glob. Chang. Biol. 2013, 19, 1827–1840. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Liu, H.; Li, Q.; Wang, X.; Ma, W.; Liu, C.; Fang, X.; Tang, Y.; Shi, T.; Wang, Q.; et al. Human Expansion into Asian Highlands in the 21st Century and Its Effects. Nat. Commun. 2022, 13, 4955. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-05799-9. [Google Scholar]
- Liu, Q.; Yang, Z.; Han, F.; Wang, Z.; Wang, C. NDVI-Based Vegetation Dynamics and Their Response to Recent Climate Change: A Case Study in the Tianshan Mountains, China. Env. Earth Sci 2016, 75, 1189. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Sun, F.; Li, Z. Recent Vegetation Browning and Its Drivers on Tianshan Mountain, Central Asia. Ecol. Indic. 2021, 129, 107912. [Google Scholar] [CrossRef]
- Chen, T.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Jiang, L.; Chang, C.; Tuerhanjiang, L. Disentangling the Relative Impacts of Climate Change and Human Activities on Arid and Semiarid Grasslands in Central Asia during 1982–2015. Sci. Total Environ. 2019, 653, 1311–1325. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Wang, H.; Zhang, S. Climate Change with Elevation and Its Potential Impact on Water Resources in the Tianshan Mountains, Central Asia. Glob. Planet. Chang. 2015, 135, 28–37. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Deng, H.; Fang, G.; Li, Z. Changes in Central Asia’s Water Tower: Past, Present and Future. Sci. Rep. 2016, 6, 35458. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Jing, Y. Assessing and Predicting Changes of the Ecosystem Service Values Based on Land Use/Cover Change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [Google Scholar] [CrossRef]
- Pan, J.; Wei, S.; Li, Z. Spatiotemporal Pattern of Trade-Offs and Synergistic Relationships among Multiple Ecosystem Services in an Arid Inland River Basin in NW China. Ecol. Indic. 2020, 114, 106345. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, C.; Zhu, C.; Gao, Q. Ecosystem Service Trade-Offs and Identification of Eco-Optimal Regions in Urban Agglomerations in Arid Regions of China. J. Clean. Prod. 2022, 373, 133823. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Z.; Saiken, A.; Rui, S.; Liu, X. Natural Heritage Value of Xinjiang Tianshan and Global Comparative Analysis. J. Mt. Sci. 2012, 9, 262–273. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, G.; Chen, C.; Ochege, F.U.; Hellwich, O.; Zheng, H.; Hamdi, R.; Wu, S. Quantifying the Contribution of Climate Change and Human Activities to Biophysical Parameters in an Arid Region. Ecol. Indic. 2021, 129, 107996. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Xiao, W.; Yellishetty, M.; Yang, D. Identifying Ecosystem Service Bundles and the Spatiotemporal Characteristics of Trade-Offs and Synergies in Coal Mining Areas with a High Groundwater Table. Sci. Total Environ. 2022, 807, 151036. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Lü, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the Soil Erosion Control Service of Ecosystems Change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Z.; Li, J.; Fu, X.; Mu, X.; Li, T. Trade-Offs between Carbon Sequestration, Soil Retention and Water Yield in the Guanzhong-Tianshui Economic Region of China. J. Geogr. Sci. 2016, 26, 1449–1462. [Google Scholar] [CrossRef]
- Teng, H.; Hu, J.; Zhou, Y.; Zhou, L.; Shi, Z. Modelling and Mapping Soil Erosion Potential in China. J. Integr. Agric. 2019, 18, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, J.; Liu, Y.; Hai, X.; Shanguan, Z.; Deng, L. Driving Factors of Ecosystem Services and Their Spatiotemporal Change Assessment Based on Land Use Types in the Loess Plateau. J. Environ. Manag. 2022, 311, 114835. [Google Scholar] [CrossRef]
- Xue, C.; Zhang, H.; Wu, S.; Chen, J.; Chen, X. Spatial-Temporal Evolution of Ecosystem Services and Its Potential Drivers: A Geospatial Perspective from Bairin Left Banner, China. Ecol. Indic. 2022, 137, 108760. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, X.; Wu, P.; Hu, P.; Gao, X. Quantification and Spatially Explicit Driving Forces of the Incoordination between Ecosystem Service Supply and Social Demand at a Regional Scale. Ecol. Indic. 2022, 137, 108764. [Google Scholar] [CrossRef]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region: A Case Study in the Middle and Lower Reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Ma, X. Mechanism Analysis of Ecosystem Services (ES) Changes under the Proposed Supply-Demand Framework: A Case Study of Jiangsu Province, China. Ecol. Indic. 2022, 144, 109572. [Google Scholar] [CrossRef]
- Huang, X.; Luo, G.; Chen, C.; Peng, J.; Zhang, C.; Zhou, H.; Yao, B.; Ma, Z.; Xi, X. How Precipitation and Grazing Influence the Ecological Functions of Drought-Prone Grasslands on the Northern Slopes of the Tianshan Mountains, China? J. Arid Land 2021, 13, 88–97. [Google Scholar] [CrossRef]
- Hao, L.; Pan, C.; Fang, D.; Zhang, X.; Zhou, D.; Liu, P.; Liu, Y.; Sun, G. Quantifying the Effects of Overgrazing on Mountainous Watershed Vegetation Dynamics under a Changing Climate. Sci. Total Environ. 2018, 639, 1408–1420. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Liu, F.; Xu, E. Comparison of spatial-temporal evolution of habitat quality between Xinjiang Corps and Non-corps Region based on land use. Chin. J. Appl. Ecol. 2020, 31, 2341–2351. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, N.; Xiao, Y.; Hou, R.; Wei, S.; Ji, P. A dataset of soil conservation capacity assessment of the Three-North Shelter Forest Programme (2000–2020). China Sci. Data 2022, 7, 129–139. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Cheng, C.; Yin, L.; Feng, X.; Wei, X. Spatial-temporal changes and tradeoff/synergy relationship of ecosystem services in Xinjiang. Chin. J. Ecol. 2020, 39, 990–1000. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Yang, H.; Yu, X.; Zhang, Y.; Wang, C. Integrating Ecosystem Services Modeling into Effectiveness Assessment of National Protected Areas in a Typical Arid Region in China. J. Environ. Manag. 2021, 297, 113408. [Google Scholar] [CrossRef]
- Xu, L.; He, N.; Yu, G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 2019, 4, 90–96. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Ao, Z.; Deng, M.; Yang, C.; Wu, Y. Estimation of soil organic carbon storage of terrestrial ecosystem in arid western China. J. Arid Land Resour. Environ. 2018, 32, 132–137. (In Chinese) [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Nicolai, M.; Okem, A.; Petzold, J.; et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar]
- Liu, Q.; Yang, Z.; Wang, C.; Han, F. Temporal-Spatial Variations and Influencing Factor of Land Use Change in Xinjiang, Central Asia, from 1995 to 2015. Sustainability 2019, 11, 696. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Nan, H.; Huntingford, C.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Peng, S.; Ahlström, A.; Canadell, J.G.; Cong, N.; et al. Evidence for a Weakening Relationship between Interannual Temperature Variability and Northern Vegetation Activity. Nat. Commun. 2014, 5, 5018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Liu, G.; Li, Z.; Zhang, L.; Wang, Z. Processes and Driving Forces for Changing Vegetation Ecosystem Services: Insights from the Shaanxi Province of China. Ecol. Indic. 2020, 112, 106105. [Google Scholar] [CrossRef]
- Li, F.; Yin, X.; Shao, M. Natural and Anthropogenic Factors on China’s Ecosystem Services: Comparison and Spillover Effect Perspective. J. Environ. Manag. 2022, 324, 116064. [Google Scholar] [CrossRef]
- Zhang, L.; Lü, Y.; Fu, B.; Dong, Z.; Zeng, Y.; Wu, B. Mapping Ecosystem Services for China’s Ecoregions with a Biophysical Surrogate Approach. Landsc. Urban Plan. 2017, 161, 22–31. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Liu, Z.; Yang, Y. Mapping Spatial Non-Stationarity of Human-Natural Factors Associated with Agricultural Landscape Multifunctionality in Beijing–Tianjin–Hebei Region, China. Agric. Ecosyst. Environ. 2017, 246, 221–233. [Google Scholar] [CrossRef]
Data Set Name | Resolution | Data Source |
---|---|---|
Land-use data | 30 m | Resources and Environmental Sciences Data Center, Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 25 January 2022), including 6 primary types and 25 secondary types, with an overall evaluation accuracy greater than 80% [29] |
DEM | 90 m | Geospatial Data Cloud (http://www.gscloud.cn, accessed on 21 April 2022) |
NDVI | 30 m | National Ecosystem Science Data Center (http://www.nesdc.org.cn/, accessed on 25 January 2022) |
Meteorological data | 1000 m | National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/, accessed on 10 May 2022), including monthly average temperature, monthly average precipitation, monthly potential evapotranspiration, etc. |
Soil data | 1000 m | Food and Agriculture Organization of the United Nations (https://www.fao.org, accessed on 21 April 2022) |
Watershed boundary | - | National cryosphere Desert Data Center (http://www.ncdc.ac.cn, accessed on 21 April 2022) |
Population data | 100 m | WorldPop Datasets (https://www.worldpop.org/, accessed on 21 April 2022) |
GDP data | 1000 m | Resources and Environmental Sciences Data Center, Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 21 April 2022) |
Classification | Criteria |
---|---|
Area of extreme importance | Four ecosystem services exceeding their respective averages |
Area of high importance | Three ecosystem services exceeding their respective averages |
Area of medium importance | Two ecosystem services exceeding their respective averages |
Area of general importance | Only one ecosystem service exceeding its respective averages |
Non-critical area | No individual ecosystem service exceeding its respective averages |
Type | Influencing Factors | Unit | Code |
---|---|---|---|
topography | Elevation | m | ELE |
Slope gradient | ° | SLO | |
climate | Mean annual temperature | °C | MAP |
Mean annual precipitation | mm | MAT | |
land-use type | Land-use type | – | LU |
vegetation | Normalized difference vegetation index | – | NDVI |
socio-economic force | Gross domestic product density | 104 yuan/km2 | GDP |
Population density | person/km2 | PD | |
Grazing intensity | – | GI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Xu, X.; Zhao, J.; Han, F. Spatiotemporal Evolution of Mountainous Ecosystem Services in an Arid Region and Its Influencing Factors: A Case Study of the Tianshan Mountains in Xinjiang. Land 2022, 11, 2164. https://doi.org/10.3390/land11122164
Lu Y, Xu X, Zhao J, Han F. Spatiotemporal Evolution of Mountainous Ecosystem Services in an Arid Region and Its Influencing Factors: A Case Study of the Tianshan Mountains in Xinjiang. Land. 2022; 11(12):2164. https://doi.org/10.3390/land11122164
Chicago/Turabian StyleLu, Yayan, Xiaoliang Xu, Junhong Zhao, and Fang Han. 2022. "Spatiotemporal Evolution of Mountainous Ecosystem Services in an Arid Region and Its Influencing Factors: A Case Study of the Tianshan Mountains in Xinjiang" Land 11, no. 12: 2164. https://doi.org/10.3390/land11122164
APA StyleLu, Y., Xu, X., Zhao, J., & Han, F. (2022). Spatiotemporal Evolution of Mountainous Ecosystem Services in an Arid Region and Its Influencing Factors: A Case Study of the Tianshan Mountains in Xinjiang. Land, 11(12), 2164. https://doi.org/10.3390/land11122164