Spatial–Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Research Methods
2.3.1. Land Use Change Study
2.3.2. Ecosystem Service Value Assessment
2.3.3. Spatial Statistical Analysis
2.3.4. Ecological Contribution Rate
3. Results
3.1. Land Use Changes in Yunnan Province from 2000 to 2020
3.1.1. The Overall Characteristics of Land Use Change
3.1.2. Land Use Dynamic Change
3.1.3. Land Use Transfer
3.1.4. Land Use Degree Analysis
3.2. Spatiotemporal Variation of Ecosystem Service Value
3.2.1. Changes in the Total Ecosystem Service Value
3.2.2. Changes in the Value of Individual Ecosystem Services
3.2.3. Spatial Distribution of Ecosystem Service Value
3.2.4. Spatial Autocorrelation Analysis of ESV in Yunnan
3.3. Contribution of Different Land Use Types to Changes in the Value of Ecological Services
4. Discussion
5. Conclusions
- (1)
- Yunnan is mainly based on cultivated land, grassland and forest land, accounting for about 97% of the total area, of which the forest land area accounted for the largest proportion (more than 57%). From 2000 to 2020, cultivated land, grassland and unused land show a decreasing trend. Forest land, water body and built-up land show an increasing trend. During the study period, the dynamics change of comprehensive land use is small, of which the change in built-up land is the most obvious, and the positive change in water body and forest land was positive. The dynamics of cultivated land, grassland and built-up land were all negative. The transfer of forest land is the most obvious, and the main sources of transfer in and transfer out are cultivated land, grassland and water body. The rate of change of the land use degree composite index shows a fluctuating upward trend, of which the land use degree reaches a maximum of 219.63 in 2020.
- (2)
- The ecosystem service value in Yunnan shows an increasing trend from 2000 to 2020, with the total value increasing by 0.77%. The ESV of cultivated land and grassland decreases, and the ESV of forest land, water body and unused land increases. ESV for water supply, gas regulation, climate regulation, environmental purification, and hydrological regulation account for 67% of total ESV. The value of food production, raw material production, soil conservation, and maintenance of nutrient cycles show a gradual decreasing trend, and the value of water resources supply and hydrological regulation increases. The values of other service functions show a trend of first increasing and then decreasing. The ESV of Kunming, Qujing, Yuxi and Baoshan decline, while the remaining states and cities show an upward trend, of which Pu’er is the largest.
- (3)
- From 2000 to 2020, the Moran’s I index of Yunnan ESV is above 0.400 and the p-value is less than 0.001, which has significant spatial positive correlation and aggregation, but the spatial positive correlation of ESV weakens. On the whole, the spatial autocorrelation of ESV in Yunnan shows a distribution pattern of “west high-east low”, and high–high type and low–low type have significant aggregation effects in the study area.
- (4)
- From 2000 to 2010, the ecological contribution rate of forest land is the largest, and the ecological contribution rate of cultivated land, water body, grassland and unused land decreases sequentially. From 2010 to 2015, the ecological contribution rate of water body to the change in the value of ecosystem services is the largest, accounting for 68.01%, while the ecological contribution rate of forest land is only 15.01%. From 2015 to 2020, grassland contributed the most to changes in the value of ecosystem services, followed by forest land and water body, with 31.82% and 28.72%, respectively. In summary, forest land, grassland and water body are the main contributors and sensitive factors causing ESV change.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Sannigrahi, S.; Chakraborti, S.; Joshi, P.K.; Keesstra, S.; Sen, S.; Paul, S.K.; Dang, K.B. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhang, Q.; Wang, P.; Zhang, L.; Tian, Y.; Li, X. Spatio-Temporal Changes in Ecosystem Service Value and Its Coordinated Development with Economy: A Case Study in Hainan Province, China. Remote Sens. 2022, 14, 970. [Google Scholar] [CrossRef]
- Rawlins, J.M.; De Lange, W.J.; Fraser, G.C.G. An ecosystem service value chain analysis framework: A conceptual paper. Ecol. Econ. 2018, 147, 84–95. [Google Scholar] [CrossRef]
- Mooney, H.A.; Duraiappah, A.; Larigauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. USA 2013, 110 (Suppl. 1), 3665–3672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morshed, S.R.; Fattah, M.A.; Haque, M.N.; Morshed, S.Y. Future ecosystem service value modeling with land cover dynamics by using machine learning based Artificial Neural Network model for Jashore city, Bangladesh. Phys. Chem. Earth Parts A/B/C 2022, 126, 103021. [Google Scholar] [CrossRef]
- Jiang, B.; Bai, Y.; Chen, J.; Alatalo, J.M.; Xu, X.; Liu, G.; Wang, Q. Land management to reconcile ecosystem services supply and demand mismatches—A case study in Shanghai municipality, China. Land Degrad. Dev. 2020, 31, 2684–2699. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Daily, G.C. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef]
- Costanza, R.; Darge, R.; Deroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; ONeill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Cheng, L.S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Res. 2003, 18, 189–196. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service valuebased onper unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Wu, C.; Ma, G.; Yang, W.; Zhou, Y.; Peng, F.; Wang, J.; Yu, F. Assessment of Ecosystem Service Value and Its Differences in the Yellow River Basin and Yangtze River Basin. Sustainability 2021, 13, 3822. [Google Scholar] [CrossRef]
- Jiang, W.; Lü, Y.; Liu, Y.; Gao, W. Ecosystem service value of the Qinghai-Tibet Plateau significantly increased during 25 years. Ecosyst. Serv. 2020, 44, 101146. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Ling, Z.; Hou, P.; Deng, Y. Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: A case study of the Wuhan urban agglomeration. J. Clean. Prod. 2021, 307, 127321. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabó, G. Impact of Land Use and Land Cover Changes on Urban Ecosystem Service Value in Dhaka, Bangladesh. Land 2021, 10, 793. [Google Scholar] [CrossRef]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial differentiation and driving mechanisms in ecosystem service value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Xie, Z.; Li, X.; Chi, Y.; Jiang, D.; Zhang, Y.; Ma, Y.; Chen, S. Ecosystem service value decreases more rapidly under the dual pressures of land use change and ecological vulnerability: A case study in Zhujiajian Island. Ocean. Coast. Manag. 2021, 201, 105493. [Google Scholar] [CrossRef]
- Gu, X.; Long, A.; Liu, G.; Yu, J.; Wang, H.; Yang, Y.; Zhang, P. Changes in Ecosystem Service Valuein the 1 km Lakeshore Zone of Poyang Lake from 1980 to 2020. Land 2021, 10, 951. [Google Scholar] [CrossRef]
- Makwinja, R.; Kaunda, E.; Mengistou, S.; Alamirew, T. Impact of land use/land cover dynamics on ecosystem service value—A case from Lake Malombe, Southern Malawi. Environ. Monit. Assess. 2021, 193, 492. [Google Scholar] [CrossRef]
- Guo, C.; Gao, J.; Zhou, B.; Yang, J. Factors of the ecosystem service value in water conservation areas considering the natural environment and human activities: A case study of Funiu mountain, China. Int. J. Environ. Res. Public Health 2021, 18, 11074. [Google Scholar] [CrossRef] [PubMed]
- Woldeyohannes, A.; Cotter, M.; Biru, W.D.; Kelboro, G. Assessing changes in ecosystem service values over 1985–2050 in response to land use and land cover dynamics in Abaya-Chamo Basin, Southern Ethiopia. Land 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wang, W.; Chen, Y.; Yan, H. Assessing spatio-temporal patterns and driving force of ecosystem service value in the main urban area of Guangzhou. Sci. Rep. 2021, 11, 3027. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Wu, F.; Xie, X. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China. Ecol. Indic. 2020, 108, 105720. [Google Scholar] [CrossRef]
- Yuan, K.; Li, F.; Yang, H.; Wang, Y. The influence of land use change on ecosystem service value in Shangzhou District. Int. J. Environ. Res. Public Health 2019, 16, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Xie, H.; Shi, J.; Lv, T.; Zhou, C.; Liu, W. Assessing changes in ecosystem service values in response to land cover dynamics in Jiangxi Province, China. Int. J. Environ. Res. Public Health 2020, 17, 3018. [Google Scholar] [CrossRef]
- Mamat, A.; Wang, J.; Ma, Y. Impacts of Land-Use Change on Ecosystem Service Value of Mountain–Oasis–Desert Ecosystem: A Case Study of Kaidu–Kongque River Basin, Northwest China. Sustainability 2021, 13, 140. [Google Scholar] [CrossRef]
- Magalhães Filho, L.; Roebeling, P.; Bastos, M.I.; Rodrigues, W.; Ometto, G. A Global Meta-Analysis for Estimating Local Ecosystem Service Value Functions. Environments 2021, 8, 76. [Google Scholar] [CrossRef]
- Kang, B.; Shao, Q.; Xu, H.; Jiang, F.; Wei, X.; Shao, X. Research on grassland ecosystem service value in China under climate change based on meta-analysis: A case study of Qinghai province. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 617–637. [Google Scholar] [CrossRef]
- Ye, S.; Laws, E.A.; Costanza, R.; Brix, H. Ecosystem service value for the common reed wetlands in the Liaohe Delta, Northeast China. Open J. Ecol. 2016, 6, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Yang, Y.; Liu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Guo, L.; Li, X. Temporal and Spatial Variations of Land Uses and Their Influences on Ecosystem Service Function Values in Hanzhong City. Res. Soil Water Conserv. 2020, 27, 275–282. (In Chinese) [Google Scholar]
- Hu, S.; Chen, L.; Li, L.; Wang, B.; Yuan, L.; Cheng, L.; Yu, Z.; Zhang, T. Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China. Int. J. Environ. Res. Public Health 2019, 16, 5104. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.; Ye, C.; Li, X.; Hu, H. Land-Use Optimization Based on Ecosystem Service Value: A Case Study of Urban Agglomeration around Poyang Lake, China. Sustainability 2022, 14, 7131. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, Z.; Xu, Y. Impact of Land Use/Cover Change on Ecosystem Service Value in Guangxi. Sustainability 2022, 14, 10867. [Google Scholar] [CrossRef]
- Lou, Y.; Yang, D.; Zhang, P.; Zhang, Y.; Song, M.; Huang, Y.; Jing, W. Multi-Scenario Simulation of Land Use Changes with Ecosystem Service Value in the Yellow River Basin. Land 2022, 11, 992. [Google Scholar] [CrossRef]
- Yang, L.; Liu, F. Spatio-Temporal Evolution and Driving Factors of Ecosystem Service Value of Urban Agglomeration in Central Yunnan. Sustainability 2022, 14, 10823. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, X.; Zhai, T. Evaluation of ecosystem service based on scenario simulation of land use in Yunnan Province. Phys. Chem. Earth Parts A/B/C 2018, 104, 58–65. [Google Scholar] [CrossRef]
- De Jong, L.; De Bruin, S.; Knoop, J.; van Vliet, J. Understanding land-use change conflict: A systematic review of case studies. J. Land Use Sci. 2021, 16, 223–239. [Google Scholar] [CrossRef]
- Alam, A.; Bhat, M.S.; Maheen, M. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal 2020, 85, 1529–1543. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Sun, Y.; Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS ONE 2018, 13, e0200493. [Google Scholar]
- Estoque, R.C.; Murayama, Y. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landsc. Ecol. 2016, 31, 1481–1507. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Chen, X.; Zhang, X.; Wu, H.; Li, Z. Impacts of Historical Land Use Changes on Ecosystem Services in Guangdong Province, China. Land 2022, 11, 809. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Huang, X.; Wei, Y.D. Effect of land-use change and optimization on the ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [Google Scholar]
- Aziz, T. Changes in land use and ecosystem services values in Pakistan, 1950–2050. Environ. Dev. 2021, 37, 100576. [Google Scholar] [CrossRef]
- Díaz-Caravantes, R.E.; Sánchez-Flores, E. Water transfer effects on peri-urban land use/land cover: A case study in a semi-arid region of Mexico. Appl. Geogr. 2011, 31, 413–425. [Google Scholar] [CrossRef]
Service Type | Service Type Subcategories | Cultivated Land | Forest Land | Grassland | Water Body | Unused Land |
---|---|---|---|---|---|---|
Provisioning service | Food production | 1455.17 | 332.52 | 307.28 | 526.76 | 6.58 |
Raw material production | 322.64 | 763.80 | 559.68 | 151.44 | 19.75 | |
Regulating service | Water supply | −1718.55 | 395.07 | 309.73 | 6880.80 | 13.17 |
Gas regulation | 1172.04 | 2511.99 | 1967.05 | 625.53 | 85.60 | |
Climate regulation | 612.36 | 7516.21 | 5200.17 | 1863.41 | 65.85 | |
Purifying the environment | 177.78 | 2202.52 | 1717.09 | 3759.75 | 269.96 | |
Hydrological regulation | 1968.77 | 4918.62 | 3809.11 | 72,014.69 | 158.03 | |
Supporting service | Soil conservation | 684.79 | 3058.50 | 2396.32 | 612.36 | 98.77 |
Maintaining nutrient circulation | 204.12 | 233.75 | 184.75 | 46.09 | 6.58 | |
Biodiversity | 223.87 | 2785.24 | 2178.97 | 1685.63 | 92.18 | |
Cultural service | Aesthetic landscape | 98.77 | 1221.42 | 961.79 | 1303.73 | 39.51 |
Total | 5201.76 | 25,939.64 | 19,591.94 | 89,470.20 | 855.99 |
Period | Single Land Use Dynamics (%) | Comprehensive Land Use Dynamics (%) | |||||
---|---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grassland | Water Body | Built-Up Land | Unused Land | ||
2000–2005 | −0.08 | 0.01 | 0.00 | −0.05 | 1.54 | 0.00 | 0.01 |
2005–2010 | −0.11 | 0.02 | −0.01 | 0.12 | 1.30 | 0.00 | 0.02 |
2010–2015 | −0.13 | −0.03 | −0.07 | 3.35 | 5.24 | 0.10 | 0.06 |
2015–2020 | −0.22 | 0.14 | −0.50 | 2.36 | 12.59 | −5.37 | 0.19 |
2000–2020 | −0.53 | 0.14 | −0.57 | 6.20 | 27.20 | −5.29 | 0.26 |
2000 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grassland | Water Body | Built-Up Land | Unused Land | Total Transfer Out | Transfer Out Ratio (%) | |
Cultivated land | 32,237 | 21,821 | 11,783 | 674 | 2406 | 46 | 36,730 | 27.44 |
Forest land | 20,530 | 168,251 | 27,540 | 916 | 730 | 302 | 50,018 | 37.37 |
Grassland | 12,741 | 28,421 | 45,132 | 812 | 811 | 297 | 43,082 | 32.19 |
Water body | 563 | 430 | 389 | 1340 | 95 | 11 | 1488 | 1.11 |
Built-up land | 903 | 200 | 155 | 39 | 728 | 5 | 1302 | 0.97 |
Unused land | 65 | 305 | 831 | 24 | 2 | 870 | 1227 | 0.92 |
Total transfer in | 34,802 | 51,177 | 40,698 | 2465 | 4044 | 661 | ||
Transfer-in ratio (%) | 26.00 | 38.24 | 30.41 | 1.84 | 3.02 | 0.49 | ||
Net transfer in | −1928 | 1159 | −2384 | 977 | 2742 | −566 |
Types | Ecosystem Service Value (108 Yuan) | Change Rate (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2020 | |
Cultivated land | 319.93 | 318.65 | 316.92 | 314.90 | 311.50 | −0.40 | −0.54 | −0.64 | −1.08 | −2.63 |
Forest land | 5049.87 | 5052.86 | 5058.53 | 5050.12 | 5084.85 | 0.06 | 0.11 | −0.17 | 0.69 | 0.69 |
Grassland | 1545.79 | 1545.73 | 1545.20 | 1539.95 | 1501.69 | 0.00 | −0.03 | −0.34 | −2.48 | −2.85 |
Water body | 226.39 | 225.78 | 227.17 | 265.24 | 296.59 | −0.27 | 0.61 | 16.76 | 11.82 | 31.01 |
Built-up land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Unused land | 1.55 | 1.67 | 1.77 | 2.24 | 3.65 | 7.71 | 6.51 | 26.22 | 62.97 | 135.99 |
Total | 7143.52 | 7144.69 | 7149.59 | 7172.46 | 7198.28 | 0.02 | 0.07 | 0.32 | 0.36 | 0.77 |
Category | 2000 | 2005 | 2010 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
ESV | Percent Age (%) | ESV | Percent Age (%) | ESV | Percent Age (%) | ESV | Percent Age (%) | ESV | Percent Age (%) | |
Food production | 179.82 | 2.52 | 179.50 | 2.51 | 179.09 | 2.50 | 178.56 | 2.49 | 177.65 | 2.47 |
Raw material | 213.12 | 2.98 | 213.13 | 2.98 | 213.17 | 2.98 | 212.73 | 2.97 | 212.53 | 2.95 |
Water supply | 13.09 | 0.18 | 13.51 | 0.19 | 14.27 | 0.20 | 17.66 | 0.25 | 21.14 | 0.29 |
Gas regulation | 718.05 | 10.05 | 718.05 | 10.05 | 718.18 | 10.05 | 716.70 | 9.99 | 715.81 | 9.94 |
Climate regulation | 1916.02 | 26.82 | 1916.72 | 26.83 | 1918.06 | 26.83 | 1914.82 | 26.70 | 1915.09 | 26.60 |
Purifying the environment | 585.19 | 8.19 | 585.41 | 8.19 | 585.88 | 8.19 | 586.38 | 8.18 | 587.62 | 8.16 |
Hydrological regulation | 1561.67 | 21.86 | 1561.28 | 21.85 | 1562.73 | 21.86 | 1590.09 | 22.17 | 1613.44 | 22.41 |
Soil conservation | 828.33 | 11.60 | 828.52 | 11.60 | 828.92 | 11.59 | 827.34 | 11.53 | 826.68 | 11.48 |
Maintaining nutrient circulation | 72.77 | 1.02 | 72.74 | 1.02 | 72.72 | 1.02 | 72.54 | 1.01 | 72.39 | 1.01 |
Biodiversity | 732.34 | 10.25 | 732.61 | 10.25 | 733.12 | 10.25 | 732.31 | 10.21 | 732.38 | 10.17 |
Aesthetic Landscape | 323.11 | 4.52 | 323.22 | 4.52 | 323.46 | 4.52 | 323.34 | 4.51 | 323.56 | 4.49 |
Total | 7143.52 | 100.00 | 7144.69 | 100.00 | 7149.59 | 100.00 | 7172.46 | 100.00 | 7198.28 | 100.00 |
Area | ESV (108 Yuan) | Change Rate (%) | ||||
---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | ||
Kunming | 388.11 | 387.75 | 388.32 | 386.09 | 379.73 | −2.16 |
Qujing | 481.14 | 481.02 | 480.71 | 480.67 | 480.35 | −0.17 |
Yuxi | 291.02 | 290.95 | 291.04 | 290.85 | 290.36 | −0.22 |
Baoshan | 354.64 | 354.91 | 354.84 | 357.31 | 348.57 | −1.71 |
Zhaotong | 370.31 | 370.56 | 371.04 | 371.77 | 376.83 | 1.76 |
Lijiang | 431.65 | 431.60 | 431.74 | 435.38 | 432.42 | 0.18 |
Pu’er | 848.33 | 848.74 | 849.36 | 860.09 | 867.11 | 2.21 |
Lincang | 403.31 | 404.11 | 404.48 | 410.49 | 410.11 | 1.69 |
Chuxiong | 528.25 | 528.29 | 528.76 | 528.87 | 533.28 | 0.95 |
Honghe | 596.67 | 596.62 | 597.02 | 595.17 | 597.75 | 0.18 |
Wenshan | 560.82 | 560.76 | 561.40 | 560.70 | 565.59 | 0.85 |
Xishuangbanna | 369.56 | 369.48 | 370.06 | 369.59 | 377.32 | 2.10 |
Dali | 541.27 | 541.31 | 541.80 | 543.64 | 544.37 | 0.57 |
Dehong | 202.96 | 202.97 | 203.10 | 204.83 | 203.17 | 0.11 |
Nujiang | 305.56 | 305.56 | 305.72 | 305.62 | 309.78 | 1.38 |
Diqing | 469.98 | 469.98 | 470.04 | 470.77 | 479.06 | 1.93 |
Year | Moran’s I | Z-Score | p-Value |
---|---|---|---|
2000 | 0.4113 | 36.8344 | 0.001 |
2005 | 0.4110 | 36.8122 | 0.001 |
2010 | 0.4102 | 36.7354 | 0.001 |
2015 | 0.4091 | 36.6358 | 0.001 |
2020 | 0.3993 | 35.7759 | 0.001 |
Period | Cultivated Land | Forest Land | Grassland | Water Body | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|
2000–2005 | 25.25 | 59.23 | 1.13 | 12.02 | 0.00 | 2.37 |
2005–2010 | 18.41 | 60.13 | 5.63 | 14.68 | 0.00 | 1.15 |
2010–2015 | 3.59 | 15.01 | 9.38 | 68.01 | 0.00 | 4.00 |
2015–2020 | 3.12 | 31.82 | 35.05 | 28.72 | 0.00 | 1.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Fu, W.; Chen, J. Spatial–Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use. Land 2022, 11, 2217. https://doi.org/10.3390/land11122217
Wang F, Fu W, Chen J. Spatial–Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use. Land. 2022; 11(12):2217. https://doi.org/10.3390/land11122217
Chicago/Turabian StyleWang, Fuli, Wei Fu, and Jiancheng Chen. 2022. "Spatial–Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use" Land 11, no. 12: 2217. https://doi.org/10.3390/land11122217
APA StyleWang, F., Fu, W., & Chen, J. (2022). Spatial–Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use. Land, 11(12), 2217. https://doi.org/10.3390/land11122217