Pesticide Residues and Heavy Metals in Vineyard Soils of the Karst and Istria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Pesticide Residue Analyses
2.3. The Pseudo Total HM Content Analyses
3. Results and Discussion
3.1. The Concentrations of Pesticide Residues in Topsoil
- Powdery mildew (Uncinula necator): boscalid, quinoxyfen, tetraconazole;
- Grey mould (Botrytis cinerea): boscalid;
- Downy mildew (Plasmopara viticola): dimethomorph, chlorothalonil;
- Moths (Eupoecilia ambiguella, Lobesia botrana): chlorphyriphos; and
- Leafhopper (Scaphoideus titanus), which is controlled by chlorphyriphos.
3.2. Concentrations of Pesticide Residues in Grapes and Wine
3.3. Heavy Metals in Vineyard Soil in Karst and Istria
3.3.1. The Recent National Legislation
3.3.2. Heavy Metal Concentrations in Vineyard Soils in Karst and Istria
3.3.3. Concentrations of Individual Heavy Metals in Vineyard Soil
Arsenic
Cadmium
Cobalt
Chromium
Copper
Molybdenum
Nickel
Lead
Zinc
3.4. Discussion
3.4.1. Pesticide Residues in the Vineyard Soils of the Karst and Istria
3.4.2. Heavy Metals in the Vineyard Soils of the Karst and Istria Winegrowing Regions
3.4.3. Heavy Metal Concentrations in Grapes and Wine Produced in Istria and Karst
3.4.4. General Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Li, J.; Zhang, H.-F.; Shi, Y.-P. Monitoring Multi-Class Pesticide Residues in Fresh Grape by Hollow Fibre Sorptive Extraction Combined with Gas Chromatography–Mass Spectrometry. Food Chem. 2011, 127, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Čuš, F.; Česnik, H.B.; Bolta, Š.V.; Gregorčič, A. Pesticide Residues in Grapes and during Vinification Process. Food Control 2010, 21, 1512–1518. [Google Scholar] [CrossRef]
- Navarro, S.; Oliva, J.; Navarro, G.; Barba, A. Dissipation of Chlorpyrifos, Fenarimol, Mancozeb, Metalaxyl, Penconazole, and Vinclozolin in Grapes. Am. J. Enol. Vitic. 2001, 52, 35–40. [Google Scholar] [CrossRef]
- FITO-INFO: Slovenski Informacijski Sistem Za Varstvo Rastlin [FITO-INFO: Slovenian Information System for Plant Protection]. Available online: http://www.fito-info.si/ (accessed on 2 February 2018).
- Shegunova, P.; Klánová, J.; Holoubek, I. Residues of Organochlorinated Pesticides in Soils from the Czech Republic. Environ. Pollut. 2007, 146, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Girvan, M.S.; Bullimore, J.; Ball, A.S.; Pretty, J.N.; Osborn, A.M. Responses of Active Bacterial and Fungal Communities in Soils under Winter Wheat to Different Fertilizer and Pesticide Regimens. Appl. Environ. Microbiol. 2004, 70, 2692–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Heavy Metals in Iberian Soils: Removal by Current Adsorbents/Amendments and Prospective for Aerogels. Adv. Colloid Interface Sci. 2016, 237, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An Inventory of Heavy Metals Inputs to Agricultural Soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Vinogradništvo in Vinarstvo [Vinegrowing and Wine Production] | GOV.SI. Available online: https://www.gov.si/teme/vinogradnistvo-in-vinarstvo/ (accessed on 15 November 2022).
- MKGP [MAFF] Tehnološka Navodila Za Printegrirano Pridelavo Grozdja 2015 [Technological Manual for Integrated Grape Production]. Available online: http://www.mkgp.gov.si/delovna_podrocja/kmetijstvo/integrirana_pridelava/tehnoloska_navodila/ (accessed on 3 February 2018).
- Republika Slovenija. Nacionalni Izvedbeni Načrt Za Ravnanje z Obstojnimi Organskimi Onesnaževali [National Action Plan for the Management with Persistent Organic Pollutants]. 2007. Available online: http://www.pisrs.si/Pis.web/pregledPredpisa?id=NACP60 (accessed on 1 August 2022).
- Aislabie, J.M.; Richards, N.K.; Boul, H.L. Microbial Degradation of DDT and Its Residues—A Review. N. Z. J. Agric. Res. 1997, 40, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Republika Slovenija. Republika Slovenija Uredba o Mejnih, Opozorilnih in Kritičnih Imisijskih Vrednostih Nevarnih Snovi v Tleh= Decree on Limit, Warning and Crytical Immision Values of Contaminants in Soil (UL RS Št. 68/1996; 41/2004); Uradni List 1996. p. 10. Available online: http://www.pisrs.si/Pis.web/pregledPredpisa?id=URED114 (accessed on 1 August 2022).
- Bermúdez-Couso, A.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C.; López-Periago, E.; Soto-González, B.; Simal-Gándara, J. Seasonal Distributions of Fungicides in Soils and Sediments of a Small River Basin Partially Devoted to Vineyards. Water Res. 2007, 41, 4515–4525. [Google Scholar] [CrossRef] [PubMed]
- Baša Česnik, H.; Velikonja Bolta, Š.; Lisjak, K. Plant Protection Product Residues in Red Grapes and Teran PTP Wine. Food Addit. Contam. Part B 2015, 8, 113–122. [Google Scholar] [CrossRef]
- Česnik, H.B.; Bolta, Š.V.; Bavčar, D.; Radeka, S.; Lisjak, K. Plant Protection Product Residues in White Grapes and Wines of “Malvasia Istriana” Produced in Istria. Food Addit. Contam. Part B 2016, 9, 256–260. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Szatmári, G.; Pásztor, L. Maps of Heavy Metals in the Soils of the European Union and Proposed Priority Areas for Detailed Assessment. Sci. Total Environ. 2016, 565, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Rusjan, D.; Strlič, M.; Pucko, D.; Šelih, V.S.; Korošec-Koruza, Z. Vineyard Soil Characteristics Related to Content of Transition Metals in a Sub-Mediterranean Winegrowing Region of Slovenia. Geoderma 2006, 136, 930–936. [Google Scholar] [CrossRef]
- Rambeau, C.M.C.; Baize, D.; Saby, N.; Matera, V.; Adatte, T.; Föllmi, K.B. High Cadmium Concentrations in Jurassic Limestone as the Cause for Elevated Cadmium Levels in Deriving Soils: A Case Study in Lower Burgundy, France. Environ. Earth Sci. 2010, 61, 1573–1585. [Google Scholar] [CrossRef] [Green Version]
- Vázquez Vázquez, F.A.; Pérez Cid, B.; Río Segade, S. Assessment of Metal Bioavailability in the Vineyard Soil-Grapevine System Using Different Extraction Methods. Food Chem. 2016, 208, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Cavani, L.; Manici, L.M.; Caputo, F.; Peruzzi, E.; Ciavatta, C. Ecological Restoration of a Copper Polluted Vineyard: Long-Term Impact of Farmland Abandonment on Soil Bio-Chemical Properties and Microbial Communities. J. Environ. Manag. 2016, 182, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calviño, D.; Nóvoa-Muñoz, J.C.; Díaz-Raviña, M.; Arias-Estévez, M. Copper Accumulation and Fractionation in Vineyard Soils from Temperate Humid Zone (NW Iberian Peninsula). Geoderma 2009, 153, 119–129. [Google Scholar] [CrossRef]
- Zupan, M.; Grčman, H.; Lobnik, F. Raziskave Onesnaženosti Tal Slovenije [Soil Contamination Research in Slovenia]; Agencija RS za okolje; Center za pedologijo in varstvo okolja [Slovenian Environment Agency and Center for Soil Science and Environment]: Ljubljana, Slovenia, 2008; ISBN 978-961-6324-42-7. [Google Scholar]
- Baša Česnik, H.; Žnidaršič, P.; Velikonja Bolta, Š.; Lisjak, K. Ostanki Fitofarmacevtskih Sredstev in Kovine v Vinu Teran. [Pesticide Residuals and Heavy Metals in Wine Teran]. In Proceedings of the AGROTUR Conference Proceedings, ljubljana, Slovenia, 1 August 2017; pp. 94–102. [Google Scholar]
- Baša Česnik, H.; Žnidaršič Pongrac, V.; Velikonja Bolta, Š.; Čuš, F.; Butinar, L.; Rakar, A.; Žabar, R.; Trebše, P.; Franko, M.; Lisjak, K. Spojine, ki jih v vinu ne želimo [Unwanted compounds in wines]. Bioaktivne Spoj. Terana [Bioact. Compd. Wine Teran] 2012, 1, 63–81. [Google Scholar]
- Baša Česnik, H. Unpublished Results 2015. Available online: https://cris.cobiss.net/ecris/si/en/researcher/9427 (accessed on 3 February 2018).
- OIV Compendium of International Methods of Analysis of Wines and Musts (2 vol.) Annex C: Maximum Acceptable Limits of Various Substances. Available online: http://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol (accessed on 3 February 2018).
- Schreck, E.; Geret, F.; Gontier, L.; Treilhou, M. Development and Validation of a Rapid Multiresidue Method for Pesticide Determination Using Gas Chromatography–Mass Spectrometry: A Realistic Case in Vineyard Soils. Talanta 2008, 77, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Pose-Juan, E.; Sánchez-Martín, M.J.; Andrades, M.S.; Rodríguez-Cruz, M.S.; Herrero-Hernández, E. Pesticide Residues in Vineyard Soils from Spain: Spatial and Temporal Distributions. Sci. Total Environ. 2015, 514, 351–358. [Google Scholar] [CrossRef] [PubMed]
Active Substance | LOQ * (mg kg−1) | Region | Depth (cm) | Concentration (mg kg−1) | No. of Samples ** | CTV *** (mg kg−1) | |
---|---|---|---|---|---|---|---|
Boscalid | fungicide | 0.004 | Karst | 0–20 | 0.008 | 1 | / |
Boscalid | fungicide | 0.004 | Karst | 20–40 | <0.004 | / | / |
Chlorothalonil | fungicide | 0.001 | Karst | 0–20 | 0.001–0.004 | 3 | / |
Chlorothalonil | fungicide | 0.001 | Karst | 20–40 | <0.001 | / | / |
Chlorpyriphos | insecticide | 0.002 | Karst | 0–20 | 0.002–0.018 | 12 | / |
Chlorpyriphos | insecticide | 0.002 | Karst | 20–40 | 0.002–0.006 | 5 | / |
Chlorpyriphos | insecticide | 0.002 | Istria | 0–20 | 0.004–0.006 | 2 | / |
DDT | insecticide | 0.01 | Karst | 0–20 | <0.01 | / | 4 |
DDT | insecticide | 0.01 | Karst | 20–40 | 0.03 | 1 | 4 |
Dimethomorph | fungicide | 0.001 | Karst | 0–20 | 0.001–0.005 | 5 | / |
Dimethomorph | fungicide | 0.001 | Karst | 20–40 | 0.002 | 3 | / |
Quinoxyfen | fungicide | 0.002 | Karst | 0–20 | 0.002–0.004 | 3 | / |
Quinoxyfen | fungicide | 0.002 | Karst | 20–40 | 0.002 | 1 | / |
Tetraconazole | fungicide | 0.002 | Karst | 0–20 | 0.002 | 1 | / |
Tetraconazole | fungicide | 0.002 | Karst | 20–40 | <0.002 | / | / |
As | Cd | Co | Cr | Cu | Mo | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
Limit threshold value (LTV) | 20 | 1 | 20 | 100 | 60 | 10 | 50 | 85 | 200 |
Warning threshold value (WTV) | 30 | 2 | 50 | 150 | 100 | 40 | 70 | 100 | 300 |
Critical threshold value (CTV) | 55 | 12 | 240 | 380 | 300 | 200 | 210 | 530 | 720 |
As | Cd | Co | Cr | Cu | Mo | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
Minimum concentration (mg kg−1) | 13.9 | 0.10 | 12.3 | 70.6 | 35.0 | 2.0 | 39.7 | 29.1 | 73.8 |
Maximum concentration (mg kg−1) | 33.2 | 4.1 | 41.0 | 145 | 304 | 10.8 | 102 | 162 | 197 |
Average concentration (mg kg−1) | 19.7 | 0.9 | 24.1 | 94.4 | 95.3 | 5.2 | 66.9 | 43.0 | 103 |
Median concentration (mg kg−1) | 19.1 | 0.6 | 23.8 | 87.9 | 60.6 | 4.8 | 68.6 | 37.5 | 98 |
STDEV (mg kg−1) | 4.6 | 0.8 | 5.4 | 18.5 | 69.2 | 2.2 | 14.4 | 24.1 | 24.1 |
Portion of samples < LTV (%) | 62.9 | 68.6 | 20.0 | 65.7 | 48.6 | 94.3 | 8.6 | 94.3 | 100.0 |
Share of samples ≥ LTV and <WTV (%) | 31.4 | 22.9 | 80.0 | 34.3 | 17.1 | 5.7 | 54.3 | 0.0 | 0.0 |
Share of samples ≥ WTV and <CTV (%) | 5.7 | 8.6 | 0.0 | 0.0 | 31.4 | 0.0 | 37.1 | 5.7 | 0.0 |
Share of samples ≥ CTV (%) | 0.0 | 0.0 | 0.0 | 0.0 | 2.9 | 0.0 | 0.0 | 0.0 | 0.0 |
As | Cd | Co | Cr | Cu | Mo | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
Minimum concentration (mg kg−1) | 13.9 | 0.2 | 14.9 | 49.9 | 33.0 | 1.8 | 40.8 | 28.9 | 67.3 |
Maximum concentration (mg kg−1) | 35.3 | 3.0 | 40.7 | 133 | 270 | 14.4 | 102 | 133 | 175 |
Average concentration (mg kg−1) | 20.0 | 0.8 | 23.8 | 93.0 | 87.3 | 5.2 | 66.7 | 40.3 | 98.9 |
Median concentration (mg kg−1) | 18.7 | 0.6 | 22.0 | 87.1 | 58.6 | 4.7 | 67.6 | 37.4 | 94.6 |
STDEV (mg kg−1) | 5.0 | 0.6 | 5.6 | 31.7 | 66.4 | 2.6 | 14.7 | 17.3 | 21.0 |
Share of samples < LTV (%) | 61.8 | 73.5 | 23.5 | 64.7 | 52.9 | 94.1 | 11.8 | 97.1 | 100.0 |
Share of samples ≥ LTV and <WTV (%) | 32.4 | 23.5 | 76.5 | 35.3 | 20.6 | 5.9 | 47.1 | 0.0 | 0.0 |
Share of samples ≥ WTV and <CTV (%) | 5.9 | 2.9 | 0.0 | 0.0 | 26.5 | 0.0 | 41.2 | 2.9 | 0.0 |
Share of samples ≥ CTV (%) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
As | Cd | Co | Cr | Cu | Mo | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
Minimum concentration (mg kg−1) | 4.3 | 0.16 | 14.6 | 37.5 | 28.2 | 0.1 | 48.2 | 12.2 | 57.8 |
Maximum concentration (mg kg−1) | 27.2 | 0.58 | 42.8 | 178 | 96.7 | 13.4 | 102 | 40.5 | 88.3 |
Average concentration (mg kg−1) | 13.4 | 0.3 | 22.6 | 86.5 | 55.6 | 2.9 | 73.1 | 26.8 | 70.3 |
Median concentration (mg kg−1) | 8.8 | 0.2 | 22.8 | 83.3 | 54.4 | 0.3 | 66.9 | 28.3 | 66.2 |
STDEV (mg kg−1) | 8.6 | 0.1 | 7.8 | 38.4 | 19.5 | 4.8 | 18.5 | 11.8 | 9.8 |
Share of samples < LTV (%) | 63.6 | 100.0 | 36.4 | 63.6 | 72.7 | 81.8 | 9.1 | 100.0 | 100.0 |
Share of samples ≥ LTV and <WTV (%) | 36.4 | 0.0 | 63.6 | 27.3 | 27.3 | 18.2 | 45.5 | 0.0 | 0.0 |
Share of samples ≥ WTV and <CTV (%) | 0.0 | 0.0 | 0.0 | 9.1 | 0.0 | 0.0 | 45.5 | 0.0 | 0.0 |
Share of samples ≥ CTV (%) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrščaj, B.; Česnik, H.B.; Velikonja Bolta, Š.; Radeka, S.; Lisjak, K. Pesticide Residues and Heavy Metals in Vineyard Soils of the Karst and Istria. Land 2022, 11, 2332. https://doi.org/10.3390/land11122332
Vrščaj B, Česnik HB, Velikonja Bolta Š, Radeka S, Lisjak K. Pesticide Residues and Heavy Metals in Vineyard Soils of the Karst and Istria. Land. 2022; 11(12):2332. https://doi.org/10.3390/land11122332
Chicago/Turabian StyleVrščaj, Borut, Helena Baša Česnik, Špela Velikonja Bolta, Sanja Radeka, and Klemen Lisjak. 2022. "Pesticide Residues and Heavy Metals in Vineyard Soils of the Karst and Istria" Land 11, no. 12: 2332. https://doi.org/10.3390/land11122332
APA StyleVrščaj, B., Česnik, H. B., Velikonja Bolta, Š., Radeka, S., & Lisjak, K. (2022). Pesticide Residues and Heavy Metals in Vineyard Soils of the Karst and Istria. Land, 11(12), 2332. https://doi.org/10.3390/land11122332