Development of a Systems Model for Assessing Pathways to Resilient, Sustainable, and Profitable Agriculture in New Zealand
Abstract
:1. Introduction
2. The New Zealand Agricultural System
2.1. Agricultural Land in New Zealand
2.2. An Agricultural System Geared towards Global Exports
2.3. Agricultural Technology
2.4. Environmental Consequences and Government Response
- The Zero Carbon Amendment Act (2019);
- The National Policy Statement for Freshwater management (2020).
- Carbon dioxide and nitrous oxide have to be reduced to net zero by 2050.
- Methane has to be reduced by 10% below 2017 levels by 2030 and 24–47% by 2050.
- set minimum requirements for feedlots and other stockholding areas;
- improve poor practice intensive winter grazing of forage crops;
- restrict further agricultural intensification until the end of 2024;
- limit the discharge of synthetic nitrogen fertiliser to land, and require reporting of fertiliser use.
3. Materials and Methods
3.1. Model Design
3.1.1. Aim and Originality of the Model
3.1.2. Model General Organisation
3.1.3. Key Model Assumptions
3.2. Model Data and Parameters
3.2.1. Model INPUTS
Land Use Areas
Production
Value
3.2.2. Technology and Emission Mitigation Options
Irrigation
Fertiliser
Energy
Livestock and Emissions
3.2.3. Computation of Model Outputs
Irrigation Water Use
Water Quality Improvement Score
Food Calories
GHG Emissions
Offset
Export Value of Agricultural Products
3.3. Model Interface
3.4. Development and Validation Process
3.5. Scenario Building
- Business As Usual (BAU),
- Agricultural practices optimisation by extensive use of technology,
- Carbon farming and building a strong forestry sector,
- Reduction in dairy demand.
4. Results
4.1. Model Validation
4.2. Scenario Narratives
4.2.1. Business as Usual (BAU)
4.2.2. Optimisation and Technology
4.2.3. Carbon Farming and a Strong Forestry Sector
4.2.4. Reduction of Dairy Demand
4.3. Quantitative Outputs
- Irrigation water used is lower than the current 2019 value (2.6 km3 vs. 2.8 km3),
- water quality improvement score is maximised to 4 out of 6 (with a large reduction of fertiliser used, manure and irrigation reduction, and allowing a large native regrowth),
- food and fibre calorie production is sustainable to feed the New Zealanders and continue large exportation of agricultural products, by meeting the international objectives to defeat hunger and feed more population by 2050,
- the GHG emissions are reduced to 17 k t CO2equivalent offset by large native vegetation regrowth (997 k ha) and carbon farming (300 k ha),
- the total export value is 85.6 k million NZD by 2050, representing a +2% each year of export value.
5. Discussion
5.1. Model Mechanisms behind the Scenario Results
5.2. Model Limitations
5.3. Role of Technology, and New Zealand Development Potentials
5.3.1. Irrigation
5.3.2. Nitrogen Emissions
5.3.3. Methane Emissions
5.3.4. Renewable Energy
5.4. Statistical Modelling of Agricultural System under Climate Change Disruption: Where Are the Limits?
- Climate change and yields are linked and future projections do not allow a great improvement in yields because of more extreme events such as droughts and less water availability for irrigation;
- Climate change can have a positive impact on growing crops or horticulture, and yields have been adapted consequently;
- Climate change and water availability are difficult to predict because of the varying spatial allocation of predictions. The model objectives are to reduce the total quantity of water used by irrigation.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Agricultural Sector Exports
- The dairy sector produces and exports whole milk powder, butter, anhydrous milk fat (AMF) and cream, skim milk, casein and protein products, cheese, and infant formula. Dairy is the top sector for export revenue, reaching more than NZ$20 billion in 2021, and exporting mainly to China (39%), Australia (9%), the USA, Japan, and Indonesia (~4% each).
- The meat and wool sector produces and exports beef, veal, lamb, mutton, wool, and venison. The sector achieved more than 10 billion NZ$ in export revenues in 2021 and exports mainly to China (38%), the USA (20%), and UE (9%).
- The forestry sector produces logs, sawn timber, sleepers, pulp, paper, and panels, for a total of more than 6 billion NZ$ in 2021, and exports mainly to China (55%), Australia (9%), South Korea and Japan (6% each).
- The horticulture sector produces and exports mainly kiwifruit, wine, apples, and pears. This sector achieved more than 6.5 billion NZ$ in export revenues in 2021 and exports mainly to the EU (17%), Australia (14%), Japan and USA (13% each), and China (12%).
- The seafood sector represents wild captures and aquaculture, for 1.8 billion NZD$ exported to China (37%), Australia and USA (13% each), EU (11%).
- The arable sector produces vegetable and ryegrass seeds, other seeds, and grains. It exported 270 million NZ$ in 2021 mainly to the EU (47%) and Australia (13%).
- Processed food such as honey, sugar, or cereal products, as well as innovative processed foods, had an export revenue of more than 3 billion NZ$ in 2021 from exports to Australia (38%) and China (20%).
Appendix B. A Sector under Climate Change Pressure
Appendix C
Indicator | 2019 (Current) | BAU 2050 | Optimisation and Technology | Carbon Farming & Forestry | Reduction of Dairy Demand |
---|---|---|---|---|---|
Inputs | |||||
Land area (ha)
| 2,221,459 2,718,917 4,101,801 132,717 124,292 1,597,957 10,897,143 | 2,295,373 2,439,631 1,142,863 145,520 85,600 1,418,698 7,527,685 | 1,500,000 2,500,000 3,000,000 500,000 500,000 1,900,000 9,900,000 | 2,221,459 2,318,917 3,801,801 132,717 124,292 2,297,957 10,897,143 | 130,0000 270,0000 410,0000 500,000 500,000 1,900,000 11,000,000 |
Yields
| 380 155 20.2 19.6 8.2 | 631 140 25.7 28.3 11 | 530 170 22 25 10 | 380 155 20.2 19.6 8.2 | 380 170 22 25 10 |
Animal/ha
| 2.81 1.43 6.65 | 3.26 1.50 8.01 | 3 1.08 5 | 2.81 1.67 7.18 | 2.81 1.43 6.65 |
Value
| 9.63 4.871 6.331 2342.45 231.86 4307.3 | 21.8 10.1 12 4565 483 11079 | 12 8 8 3000 300 4500 | 12 8 8 3000 300 8000 | 6 8 8 3000 300 4307.3 |
Technology | |||||
Irrigation %
| 19.14 2 62 86.8 - - - - | 20.8 6.5 100 62.4 0 0 0 0 | 35 2.3 50 50 50 50 30 30 | 19.14 2 62 86.8 0 0 0 0 | 10 2 80 60 30 30 30 30 |
Nitrogen fertiliser applied
| 100.62 12.27 46.81 154.14 - | 100.62 12.27 154.14 46.81 0 | 100.62 12.27 154.14 46.81 50 | 100.62 12.27 154.14 46.81 0 | 100.62 12.27 100 45 40 |
Energy used
| 0.00125 0.001435 0.000372 - | 0.00125 0.001435 0.000372 0 | 0.00125 0.001435 0.000372 50 | 0.00125 0.001435 0.000372 0 | 0.00125 0.001435 0.000372 50 |
Enteric fermentation (kg CH4/head)
| 90/60/8 23.35/1/0.19 - | 90/60/8 23.35/1/0.19 0 | 90/60/8 23.35/1/0.19 40 | 90/60/8 23.35/1/0.19 30 | 90/60/8 23.35/1/0.19 10 |
Outputs | |||||
Irrigation water used (km3/year) | 2.8 | 3.4 | 2.6 | 2.7 | 2.8 |
Water quality improvement score | 0 | 2 | 4 | 0 | 2 |
Food energy production (million kcal/year) | 2678 | 3914 | 11,460 | 2678 | 11,574 |
Emissions (t CO2eq)
| 1824.8 14,700 23,150 | 1570 15,500 24,100 | 1320 5590 10,100 | 1700 14,600 17,200 | 1380 6750 16,500 |
Offset
| 0 0 0 | 0 3,370,000 28,100 | 302,000 997,000 15,400 | 700,000 0 16,300 | 302,000 0 7050 |
Balance (emissions–offsets, t/ CO2eq)
| 1824.8 14,700 23,150 | 0 0 13,100 | 0 0 1600 | 0 0 17,100 | 0 1080 16,500 |
Total export value (NZD million) | 46,329 | 133,249 | 85,590 | 69,014 | 74,770 |
References
- IPCC. Chapter 5: Food, Fibre, and Other Ecosystem Products. In IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC: Paris, France, 2022; p. 286. [Google Scholar]
- Mason-D’Croz, D.; Bogard, J.R.; Herrero, M.; Robinson, S.; Sulser, T.B.; Wiebe, K.; Willenbockel, D.; Godfray, H.C.J. Modelling the Global Economic Consequences of a Major African Swine Fever Outbreak in China. Nat. Food 2020, 1, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; von Cramon-Taubadel, S. Economic Consequences of African Swine Fever. Nat. Food 2020, 1, 196–197. [Google Scholar] [CrossRef]
- Friel, S.; Schram, A.; Townsend, B. The Nexus between International Trade, Food Systems, Malnutrition and Climate Change. Nat. Food 2020, 1, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Burton, R.J.F. The Potential Impact of Synthetic Animal Protein on Livestock Production: The New “War against Agriculture”? J. Rural. Stud. 2019, 68, 33–45. [Google Scholar] [CrossRef]
- Collins, C.M.; Vaskou, P.; Kountouris, Y. Insect Food Products in the Western World: Assessing the Potential of a New ‘Green’ Market. Ann. Entomol. Soc. Am. 2019, 112, 518–528. [Google Scholar] [CrossRef]
- Mouat, M.J.; Prince, R. Cultured Meat and Cowless Milk: On Making Markets for Animal-Free Food. J. Cult. Econ. 2018, 11, 315–329. [Google Scholar] [CrossRef]
- Lilliestam, J.; Patt, A.; Bersalli, G. The Effect of Carbon Pricing on Technological Change for Full Energy Decarbonization: A Review of Empirical Ex-Post Evidence. WIREs Clim. Chang. 2021, 12, e681. [Google Scholar] [CrossRef]
- Ministry for the Environment Climate Change Response (Zero Carbon) Amendment Act. 2019. Available online: https://environment.govt.nz/acts-and-regulations/acts/climate-change-response-amendment-act-2019/ (accessed on 14 September 2021).
- Ministry for Primary Industries. Situation and Outlook for Primary Industries|MPI—Ministry for Primary Industries. A New Zealand Government Department; Ministry for Primary Industries: Wellington, New Zealand, 2021.
- Knickel, K.; Redman, M.; Darnhofer, I.; Ashkenazy, A.; Calvão Chebach, T.; Šūmane, S.; Tisenkopfs, T.; Zemeckis, R.; Atkociuniene, V.; Rivera, M.; et al. Between Aspirations and Reality: Making Farming, Food Systems and Rural Areas More Resilient, Sustainable and Equitable. J. Rural. Stud. 2018, 59, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Stephens, E.C.; Martin, G.; van Wijk, M.; Timsina, J.; Snow, V. Editorial: Impacts of COVID-19 on Agricultural and Food Systems Worldwide and on Progress to the Sustainable Development Goals. Agric. Syst. 2020, 183, 102873. [Google Scholar] [CrossRef]
- United Nations. UNFCCC The Paris Agreement; United Nations: Paris, France, 2015; p. 27. [Google Scholar]
- Gil, J.D.B.; Reidsma, P.; Giller, K.; Todman, L.; Whitmore, A.; van Ittersum, M. Sustainable Development Goal 2: Improved Targets and Indicators for Agriculture and Food Security. Ambio 2019, 48, 685–698. [Google Scholar] [CrossRef]
- Lee, K.-H.; Noh, J.; Khim, J.S. The Blue Economy and the United Nations’ Sustainable Development Goals: Challenges and Opportunities. Environ. Int. 2020, 137, 105528. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. MEA Ecosystems and Human Well-Being: Biodiversity Synthesis; Millennium Ecosystem Assessment: Washington, DC, USA, 2005. [Google Scholar]
- CBD (Convention on Biological Diversity). Aichi Biodiversity Targets of the Strategic Plan 2011–2020. Available online: https://www.cbd.int/sp/targets/ (accessed on 20 August 2020).
- Keith, H.; Vardon, M.; Stein, J.A.; Stein, J.L.; Lindenmayer, D. Ecosystem Accounts Define Explicit and Spatial Trade-Offs for Managing Natural Resources. Nat. Ecol. Evol. 2017, 1, 1683–1692. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling Climate Change with Machine Learning. arXiv 2019, arXiv:1906.05433. [Google Scholar] [CrossRef]
- Wang, X.; Daigger, G.; Lee, D.-J.; Liu, J.; Ren, N.-Q.; Qu, J.; Liu, G.; Butler, D. Evolving Wastewater Infrastructure Paradigm to Enhance Harmony with Nature. Sci. Adv. 2018, 4, eaaq0210. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Dou, Z.; Shi, X.; Zou, C.; Liu, D.; Wang, Z.; Guan, X.; Sun, Y.; Wu, G.; Zhang, B.; et al. Innovative Management Programme Reduces Environmental Impacts in Chinese Vegetable Production. Nat. Food 2021, 2, 47–53. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Ullah, S.; Melagraki, G.; Afantitis, A.; Lynch, I. Nanotechnology and Artificial Intelligence to Enable Sustainable and Precision Agriculture. Nat. Plants 2021, 7, 864–876. [Google Scholar] [CrossRef]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red Seaweed (Asparagopsis taxiformis) Supplementation Reduces Enteric Methane by over 80 Percent in Beef Steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef]
- White, L.N.; White, W.L. Seaweed Utilisation in New Zealand. Bot. Mar. 2020, 63, 303–313. [Google Scholar] [CrossRef]
- Greenland, S.J.; Dalrymple, J.; Levin, E.; O’Mahony, B. Improving Agricultural Water Sustainability: Strategies for Effective Farm Water Management and Encouraging the Uptake of Drip Irrigation. In The Goals of Sustainable Development: Responsibility and Governance; Crowther, D., Seifi, S., Moyeen, A., Eds.; Approaches to Global Sustainability, Markets, and Governance; Springer: Singapore, 2018; pp. 111–123. ISBN 978-981-10-5047-3. [Google Scholar]
- Bullock, J.M.; Dhanjal-Adams, K.L.; Milne, A.; Oliver, T.H.; Todman, L.C.; Whitmore, A.P.; Pywell, R.F. Resilience and Food Security: Rethinking an Ecological Concept. J. Ecol. 2017, 105, 880–884. [Google Scholar] [CrossRef] [Green Version]
- Meuwissen, M.P.M.; Feindt, P.H.; Spiegel, A.; Termeer, C.J.A.M.; Mathijs, E.; de Mey, Y.; Finger, R.; Balmann, A.; Wauters, E.; Urquhart, J.; et al. A Framework to Assess the Resilience of Farming Systems. Agric. Syst. 2019, 176, 102656. [Google Scholar] [CrossRef]
- Tendall, D.M.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.B.; Kruetli, P.; Grant, M.; Six, J. Food System Resilience: Defining the Concept. Glob. Food Secur. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Ben-Eli, M.U. Sustainability: Definition and Five Core Principles, a Systems Perspective. Sustain. Sci. 2018, 13, 1337–1343. [Google Scholar] [CrossRef]
- Siebrecht, N. Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation. Sustainability 2020, 12, 3853. [Google Scholar] [CrossRef]
- Ministry for Primary Industries. Fit for a Better World Accelerating Our Economic Potential; Ministry for Primary Industries: Wellington, New Zealand, 2021; p. 24.
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Brief History of Agricultural Systems Modeling. Agric. Syst. 2017, 155, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Mittenzwei, K.; Fjellstad, W.; Dramstad, W.; Flaten, O.; Gjertsen, A.K.; Loureiro, M.; Prestegard, S.S. Opportunities and Limitations in Assessing the Multifunctionality of Agriculture within the CAPRI Model. Ecol. Indic. 2007, 7, 827–838. [Google Scholar] [CrossRef]
- Vannier, C.; Cochrane, T.A.; Zawar Reza, P.; Bellamy, L. An Analysis of Agricultural Systems Modelling Approaches and Examples to Support Future Policy Development under Disruptive Changes in New Zealand. Appl. Sci. 2022, 12, 2746. [Google Scholar] [CrossRef]
- Antle, J.M.; Ray, S. Sustainable Agricultural Development: An Economic Perspective; Palgrave Studies in Agricultural Economics and Food Policy; Palgrave Macmillan: New York, NY, USA, 2020; ISBN 978-3-030-34598-3. [Google Scholar]
- Millennium Institute. ISDG Model Documentation; Millennium Institute: Arlington, VA, USA, 2017. [Google Scholar]
- Qu, W.; Shi, W.; Zhang, J.; Liu, T. T21 China 2050: A Tool for National Sustainable Development Planning. Geogr. Sustain. 2020, 1, 33–46. [Google Scholar] [CrossRef]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. VEST User’s Guide; The Natural Capital Project; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy, and World Wildlife Fund: Washington, DC, USA, 2018. [Google Scholar]
- Lesslie, R.G.; Hill, M.J.; Hill, P.; Cresswell, H.P.; Dawson, S. The Application of a Simple Spatial Multi-Criteria Analysis Shell to Natural Resource Management Decision Making. In Landscape Analysis and Visualisation: Spatial Models for Natural Resource Management and Planning; Pettit, C., Cartwright, W., Bishop, I., Lowell, K., Pullar, D., Duncan, D., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2008; pp. 73–95. ISBN 978-3-540-69168-6. [Google Scholar]
- Tomer, M.D.; James, D.E.; Sandoval-Green, C.M.J. Agricultural Conservation Planning Framework: 3. Land Use and Field Boundary Database Development and Structure. J. Environ. Qual. 2017, 46, 676–686. [Google Scholar] [CrossRef] [Green Version]
- Tomer, M.D.; Boomer, K.M.B.; Porter, S.A.; Gelder, B.K.; James, D.E.; McLellan, E. Agricultural Conservation Planning Framework: 2. Classification of Riparian Buffer Design Types with Application to Assess and Map Stream Corridors. J. Environ. Qual. 2015, 44, 768–779. [Google Scholar] [CrossRef] [Green Version]
- Tomer, M.D.; Porter, S.A.; Boomer, K.M.B.; James, D.E.; Kostel, J.A.; Helmers, M.J.; Isenhart, T.M.; McLellan, E. Agricultural Conservation Planning Framework: 1. Developing Multipractice Watershed Planning Scenarios and Assessing Nutrient Reduction Potential. J. Environ. Qual. 2015, 44, 754–767. [Google Scholar] [CrossRef]
- Bos, A.P. Reflexive Interactive Design (RIO) = Reflexive Interactive Design (RIO); Wageningen UR Livestock Research: Lelystad, The Netherlands, 2010. [Google Scholar]
- Bos, A.P.; Grin, J. Reflexive Interactive Design as an Instrument for Dual Track Governance. In System Innovations, Knowledge Regimes, and Design Practices towards Transitions for Sustainable Agriculture; INRA: Paris, France, 2012; pp. 132–153. [Google Scholar]
- Natural Products Canada; Humane Society International/Canada; Protein Highway; Protein Industries Canada Game Changers. Canadian Opportunities in Alternative Protein; Canada, 2022; p. 49. Available online: https://img1.wsimg.com/blobby/go/6c998e47-d5ff-45b9-b6fc-8a6be541750c/Game%20Changers%20-%20Canada’s%20Alternative%20Protein%20I.pdf (accessed on 6 November 2022).
- Ministry for Primary Industries. Situation and Outlook for Primary Industries|MPI—Ministry for Primary Industries. A New Zealand Government Department; Ministry for Primary Industries: Wellington, New Zealand, 2022.
- Ministry for the Environment Agriculture Emissions and Climate Change. Available online: https://environment.govt.nz/guides/agriculture-emissions-climate-change/ (accessed on 14 September 2021).
- Ministry for the Environment National Policy Statement for Freshwater Management. Available online: https://environment.govt.nz/acts-and-regulations/national-policy-statements/national-policy-statement-freshwater-management/ (accessed on 14 September 2021).
- Irrigation in New Zealand: IrrigationNZ. Available online: https://www.irrigationnz.co.nz/KnowledgeResources/IrrigationInNZ (accessed on 17 October 2022).
- Indicators|Stats NZ. Available online: https://www.stats.govt.nz/indicators/?sort=2 (accessed on 17 October 2022).
- Ministry for Primary Industries. SOPI Reports | MPI—Ministry for Primary Industries. A New Zealand Government Department. Available online: https://www.mpi.govt.nz/resources-and-forms/economic-intelligence/situation-and-outlook-for-primary-industries/sopi-reports/ (accessed on 17 October 2022).
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 17 October 2022).
- Data & Tools | Beef + Lamb New Zealand. Available online: https://beeflambnz.com/data-tools (accessed on 17 October 2022).
- DairyNZ. Available online: https://www.dairynz.co.nz/ (accessed on 17 October 2022).
- Lavorel, S.; Bayer, A.; Bondeau, A.; Lautenbach, S.; Ruiz-Frau, A.; Schulp, N.; Seppelt, R.; Verburg, P.; van Teeffelen, A.; Vannier, C.; et al. Pathways to Bridge the Biophysical Realism Gap in Ecosystem Services Mapping Approaches. Ecol. Indic. 2017, 74, 241–260. [Google Scholar] [CrossRef] [Green Version]
- Rissmann, C.W.F.; Pearson, L.K.; Martin, A.P.; Leybourne, M.I.; Baisden, W.T.; Clough, T.J.; McDowell, R.; Webster Brown, J.G. A Hydrochemically Guided Landscape-Based Classification for Water Quality: A Case Study Application of Process-Attribute Mapping (PoAM) at a National Scale; American Geophysical Union: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Vogeler, I.; Thomas, S.; van der Weerden, T. Effect of Irrigation Management on Pasture Yield and Nitrogen Losses. Agric. Water Manag. 2019, 216, 60–69. [Google Scholar] [CrossRef]
- Monaghan, R.; Manderson, A.; Basher, L.; Smith, C.; Burger, D.; Meenken, E.; McDowell, R. Quantifying Contaminant Losses to Water from Pastoral Landuses in New Zealand I. Development of a Spatial Framework for Assessing Losses at a Farm Scale. N. Z. J. Agric. Res. 2021, 64, 344–364. [Google Scholar] [CrossRef]
- Lambie, S.; Awatere, S.; Daigneault, A.; Kirschbaum, M.; Marden, M.; Soliman, T.; Spiekermann, R.; Walsh, P. Trade-Offs between Environmental and Economic Factors in Conversion from Exotic Pine Production to Natural Regeneration on Erosion Prone Land. N. Z. J. For. Sci. 2021, 51, nzjfs512021x163x. [Google Scholar] [CrossRef]
- Suryaningrum, F.; Jarvis, R.M.; Buckley, H.L.; Hall, D.; Case, B.S. Large-Scale Tree Planting Initiatives as an Opportunity to Derive Carbon and Biodiversity Co-Benefits: A Case Study from Aotearoa New Zealand. New For. 2021, 53, 589–602. [Google Scholar] [CrossRef]
- Vannier, C.; Cochrane, T.A.; Bellamy, L.; Zawar Reza, P. A Decision Support Tool: Modelling Pathways to Sustainability, Resilience and Profitability for the Agricultural Sector of New Zealand 2050. Available online: https://exchange.iseesystems.com/public/vannier/new-zealand-future-of-agriculture/index.html#page1 (accessed on 28 November 2022).
- Tsai, W.-H. Carbon Emission Reduction—Carbon Tax, Carbon Trading, and Carbon Offset. Energies 2020, 13, 6128. [Google Scholar] [CrossRef]
- Kardish, C. International Carbon Action Partnership (ICAP). Available online: https://icapcarbonaction.com (accessed on 8 November 2021).
- Diaz-Rainey, I.; Tulloch, D.J. Carbon Pricing and System Linking: Lessons from the New Zealand Emissions Trading Scheme. Energy Econ. 2018, 73, 66–79. [Google Scholar] [CrossRef]
- Funk, J.M.; Field, C.B.; Kerr, S.; Daigneault, A. Modeling the Impact of Carbon Farming on Land Use in a New Zealand Landscape. Environ. Sci. Policy 2014, 37, 1–10. [Google Scholar] [CrossRef]
- CarbonCrop | Carbon Forestry | New Zealand. Available online: https://www.carboncrop.nz (accessed on 8 November 2021).
- Ministry for Primary Industries. About the Emissions Trading Scheme | MPI—Ministry for Primary Industries. A New Zealand Government Department. Available online: https://www.mpi.govt.nz/funding-rural-support/environment-and-natural-resources/emissions-trading-scheme/about-the-emissions-trading-scheme/ (accessed on 8 November 2021).
- Norton, D.A.; Suryaningrum, F.; Buckley, H.L.; Case, B.S.; Cochrane, C.H.; Forbes, A.S.; Harcombe, M. Achieving Win-Win Outcomes for Pastoral Farming and Biodiversity Conservation in New Zealand. N. Z. J. Ecol. 2020, 44, 1–9. [Google Scholar] [CrossRef]
- Bartkowski, B.; Droste, N.; Ließ, M.; Sidemo-Holm, W.; Weller, U.; Brady, M.V. Payments by Modelled Results: A Novel Design for Agri-Environmental Schemes. Land Use Policy 2021, 102, 105230. [Google Scholar] [CrossRef]
- Engel, S. The Devil in the Detail: A Practical Guide on Designing Payments for Environmental Services. Int. Rev. Environ. Resour. Econ. 2016, 9, 131–177. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Kaushal, R.; Kaushik, P.; Ramakrishna, S. Carbon Farming: Prospects and Challenges. Sustainability 2021, 13, 11122. [Google Scholar] [CrossRef]
- Wyse, S. One Billion Trees: An Opportunity for (Re)Building Resilient and Multi-Functional Agricultural Landscapes. Available online: https://newzealandecology.org/one-billion-trees-opportunity-rebuilding-resilient-and-multi-functional-agricultural-landscapes (accessed on 8 November 2021).
- TEAP Operations Group. Trust Tairāwhiti: Tairāwhiti Economic Action Plan Impacts of Permanent Carbon Farming in te Tairāwhiti Region; TEAP Operations Group: Wellington, New Zealand, 2021; p. 47. [Google Scholar]
- West, T.A.P.; Monge, J.J.; Dowling, L.J.; Wakelin, S.J.; Yao, R.T.; Dunningham, A.G.; Payn, T. Comparison of Spatial Modelling Frameworks for the Identification of Future Afforestation in New Zealand. Landsc. Urban Plan. 2020, 198, 103780. [Google Scholar] [CrossRef]
- Snelder, T.H.; Whitehead, A.L.; Fraser, C.; Larned, S.T.; Schallenberg, M. Nitrogen Loads to New Zealand Aquatic Receiving Environments: Comparison with Regulatory Criteria. N. Z. J. Mar. Freshw. Res. 2020, 54, 527–550. [Google Scholar] [CrossRef]
- Buitenwerf, R.; Sandel, B.; Normand, S.; Mimet, A.; Svenning, J.-C. Land Surface Greening Suggests Vigorous Woody Regrowth throughout European Semi-Natural Vegetation. Glob. Chang. Biol. 2018, 24, 5789–5801. [Google Scholar] [CrossRef] [Green Version]
- Chazdon, R.L.; Lindenmayer, D.; Guariguata, M.R.; Crouzeilles, R.; Benayas, J.M.R.; Chavero, E.L. Fostering Natural Forest Regeneration on Former Agricultural Land through Economic and Policy Interventions. Environ. Res. Lett. 2020, 15, 043002. [Google Scholar] [CrossRef]
- Pannell, J.; Buckley, H.; Case, B.; Norton, D. The Significance of Sheep and Beef Farms to Conservation of Native Vegetation in New Zealand. N. Z. J. Ecol. 2021, 45, 1–11. [Google Scholar] [CrossRef]
- Drip-Micro for Vegetable Cropping: Irrigation NZ. Available online: https://www.irrigationnz.co.nz/PracticalResources/SpecialistSystems/VegetableCropping (accessed on 20 October 2021).
- Sokol, J.; Amrose, S.; Nangia, V.; Talozi, S.; Brownell, E.; Montanaro, G.; Abu Naser, K.; Bany Mustafa, K.; Bahri, A.; Bouazzama, B.; et al. Energy Reduction and Uniformity of Low-Pressure Online Drip Irrigation Emitters in Field Tests. Water 2019, 11, 1195. [Google Scholar] [CrossRef] [Green Version]
- McDowell, R.W.; Monaghan, R.M.; Smith, C.; Manderson, A.; Basher, L.; Burger, D.F.; Laurenson, S.; Pletnyakov, P.; Spiekermann, R.; Depree, C. Quantifying Contaminant Losses to Water from Pastoral Land Uses in New Zealand III. What Could Be Achieved by 2035? N. Z. J. Agric. Res. 2021, 64, 390–410. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; der Wal, T.V.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Grelet, G.; Lang, S.; Charles, M.; Calhoun, N.; Robson-Williams, M.; Horrocks, A.; Dewes, A.; Clifford, A.; Stevenson, B.; Caroline, M.S.; et al. Regenerative Agriculture in Aotearoa New Zealand—Research Pathways to Build Science-Based Evidence and National Narratives; White Paper; Research@Lincoln: Lincoln, New Zealand, 2021. [Google Scholar]
- Rivera, J.E.; Chará, J. CH4 and N2O Emissions from Cattle Excreta: A Review of Main Drivers and Mitigation Strategies in Grazing Systems. Front. Sustain. Food Syst. 2021, 5, 370. [Google Scholar] [CrossRef]
- Pickering, N.K.; Oddy, V.H.; Basarab, J.; Cammack, K.; Hayes, B.; Hegarty, R.S.; Lassen, J.; McEwan, J.C.; Miller, S.; Pinares-Patiño, C.S.; et al. Animal Board Invited Review: Genetic Possibilities to Reduce Enteric Methane Emissions from Ruminants. Animal 2015, 9, 1431–1440. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, K.A.; Herd, R.M.; Bird, S.H.; Arthur, P.F.; Hegarty, R.F. Preliminary Genetic Parameters for Methane Production in Australian Beef Cattle. In Proceedings of the Association for the Advancement of Animal Breeding and Genetics, Napier, New Zealand, 20–23 October 2013; p. 4. [Google Scholar]
- Sun, X.; Pacheco, D.; Luo, D.; Sun, X.; Pacheco, D.; Luo, D. Forage Brassica: A Feed to Mitigate Enteric Methane Emissions? Anim. Prod. Sci. 2016, 56, 451–456. [Google Scholar] [CrossRef]
- Jonker, A.; Scobie, D.; Dynes, R.; Edwards, G.; Klein, C.D.; Hague, H.; McAuliffe, R.; Taylor, A.; Knight, T.; Waghorn, G.; et al. Feeding Diets with Fodder Beet Decreased Methane Emissions from Dry and Lactating Dairy Cows in Grazing Systems. Anim. Prod. Sci. 2017, 57, 1445–1450. [Google Scholar] [CrossRef]
- Beck, M.R.; Garrett, K.; Thompson, B.R.; Stevens, D.R.; Barrell, G.K.; Gregorini, P. Plantain (Plantago Lanceolata) Reduces the Environmental Impact of Farmed Red Deer (Cervus Elaphus). Transl. Anim. Sci. 2020, 4, txaa160. [Google Scholar] [CrossRef]
- Earl-Goulet, S.M.; Talbot, W.D.; Cameron, K.C.; Di, H.J. Effects of Plantain in Pasture on Nitrous Oxide Emissions from Cattle Urine Patches, as Affected by Urine Deposition Timing and Soil Type. N. Z. J. Agric. Res. 2021, 2021, 1987279. [Google Scholar] [CrossRef]
- Weimar, M.R.; Cheung, J.; Dey, D.; McSweeney, C.; Morrison, M.; Kobayashi, Y.; Whitman, W.B.; Carbone, V.; Schofield, L.R.; Ronimus, R.S.; et al. Development of Multiwell-Plate Methods Using Pure Cultures of Methanogens To Identify New Inhibitors for Suppressing Ruminant Methane Emissions. Appl. Environ. Microbiol. 2017, 83, e00396-17. [Google Scholar] [CrossRef] [Green Version]
- Subharat, S.; Shu, D.; Zheng, T.; Buddle, B.M.; Kaneko, K.; Hook, S.; Janssen, P.H.; Wedlock, D.N. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens. PLoS ONE 2016, 11, e0159861. [Google Scholar] [CrossRef]
- Subharat, S.; Shu, D.; Zheng, T.; Buddle, B.M.; Janssen, P.H.; Luo, D.; Wedlock, D.N. Vaccination of Cattle with a Methanogen Protein Produces Specific Antibodies in the Saliva Which Are Stable in the Rumen. Vet. Immunol. Immunopathol. 2015, 164, 201–207. [Google Scholar] [CrossRef]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the Carbon Footprint and Improving Productivity of Ruminant Livestock Agriculture Using a Red Seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis Armata in Lactating Dairy Cows’ Diet Reduces Enteric Methane Emission by over 50 Percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Dhunny, A.Z.; Doorga, J.R.S.; Allam, Z.; Lollchund, M.R.; Boojhawon, R. Identification of Optimal Wind, Solar and Hybrid Wind-Solar Farming Sites Using Fuzzy Logic Modelling. Energy 2019, 188, 116056. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining Food and Energy Production: Design of an Agrivoltaic System Applied in Arable and Vegetable Farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Rikkonen, P.; Tapio, P.; Rintamäki, H. Visions for Small-Scale Renewable Energy Production on Finnish Farms—A Delphi Study on the Opportunities for New Business. Energy Policy 2019, 129, 939–948. [Google Scholar] [CrossRef]
- Steins, N.; Veraart, J.; Klostermann, J.; Poelman, M. Balancing Offshore Wind Energy, Nature Conservation and Food Production: A Community of Practice for Multi-Use in the Dutch North Sea. In Proceedings of the MARE People and the Sea Conference, Amsterdam, The Netherlands, 24–28 June 2019; p. 12. [Google Scholar]
- Wolfe, M.L.; Richard, T.L. 21st Century Engineering for On-Farm Food–Energy–Water Systems. Curr. Opin. Chem. Eng. 2017, 18, 69–76. [Google Scholar] [CrossRef]
- Walmsley, T.G.; Walmsley, M.R.W.; Atkins, M.J. Energy Return on Energy and Carbon Investment of Wind Energy Farms: A Case Study of New Zealand. J. Clean. Prod. 2017, 167, 885–895. [Google Scholar] [CrossRef]
- Work Starts on NZ’s Biggest Solar Farm at Pukenui—NZ Herald. Available online: https://www.nzherald.co.nz/northern-advocate/news/work-starts-on-nzs-biggest-solar-farm-at-pukenui/5QUQASWLUBMVLZ4GKUUCA4UMJM/ (accessed on 11 November 2021).
- Cradock-Henry, N.; Flood, S.; Buelow, F.; Blackett, P.; Wreford, A. Mind the Gaps: Synthesis and Systematic Review of Climate Change Adaptation in New Zealand’s Primary Industries; Ministry for Primary Industries: Wellington, New Zealand, 2018; p. 156. [Google Scholar]
- Trolove, S.; Kerckhoffs, H.; Zyskowski, R.; Brown, H.; Searle, B.; Tait, A.; Pearson, A. Reid Forage Crop Opportunities as a Result of Climate Change; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2008. [Google Scholar]
- Ministry for the Environment. National Climate Change Risk Assessment for New Zealand. Arotakenga Turaru Mo Te Huringa Ahuarangi o Aotearoa. Purongo Whakatopu; Ministry for the Environment: Wellington, New Zealand, 2020; ISBN 978-1-988579-93-1.
- Kean, J.M.; Brockerhoff, E.G.; Fowler, S.V.; Gerard, P.J.; Mullan, A.B.; Sood, A.; Tompkins, D.M.; Ward, D.F. Effects of Climate Change on Current and Potential Biosecurity Pests and Diseases in New Zealand; Ministry for Primary Industries: Wellington, New Zealand, 2015; p. 100. [Google Scholar]
- Morales-Castilla, I.; de Cortázar-Atauri, I.G.; Cook, B.I.; Lacombe, T.; Parker, A.; van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity Buffers Winegrowing Regions from Climate Change Losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef]
- Sturman, A.; Zawar-Reza, P.; Soltanzadeh, I.; Katurji, M.; Bonnardot, V.; Parker, A.K.; Trought, M.C.T.; Quénol, H.; Roux, R.L.; Gendig, E.; et al. The Application of High-Resolution Atmospheric Modelling to Weather and Climate Variability in Vineyard Regions. OENO One 2017, 51, 99–105. [Google Scholar] [CrossRef]
Main Disruption Examples | Element Adjusted in Model Input/Tech | Process | Output Consequence | |
---|---|---|---|---|
Environment |
|
|
|
|
|
|
| ||
|
|
|
| |
Technology |
|
|
|
|
|
|
|
| |
|
|
|
| |
Socio-economic |
|
|
|
|
|
|
|
|
Parameters | Method | Data Sources | Value 2010 | Value 2019 | |
---|---|---|---|---|---|
Inputs | Land area (ha)
| Data provided | Stats New Zealand | 2,200,000 2,800,000 5,200,000 129,000 135,547 1650,000 12,114,547 | 2,221,459 2,718,917 4,101,801 132,717 124,292 1,597,957 10,897,143 |
Yields
| proxy | Stats New Zealand FAOSTAT Beef + Lamb NZ Dairy NZ | 307 167 18.6 17.1 7.4 | 380 155 20.2 19.6 8.2 | |
Animal stocking rate (animal/ha)
| proxy | Stats New Zealand FAOSTAT | 2.68 1.41 6.26 | 2.81 1.43 6.65 | |
Value
| proxy | Ministry for Primary Industries Beef + Lamb NZ Dairy NZ | 6.1 3.3 4.7 1697 159 2341.2 | 9.6 4.9 6.3 2342.4 231.8 4307.3 | |
Technology | Irrigation (%)
| Phenomenological | Irrigation NZ Stats New Zealand FAOSTAT | 18.6 1.6 62 73.8 | 19.14 2 62 86.8 |
Total nitrogen fertiliser applied (nitrogen tonnes)
| Phenomenological | Stats New Zealand FAOSTAT | 249,366.5 96.5 8.6 52.1 98.6 | 332,593.4 100.6 12.3 46.8 154.1 | |
Energy used (tj/year)
| Phenomenological | FAOSTAT | 7675.2 14835 3598 | 8338.3 13923.4 2471 | |
Enteric fermentation (kg CH4/head)
| Phenomenological | FAOSTAT | 90/60/8 23.35/1/0.19 | 90/60/8 23.35/1/0.19 | |
Outputs | Irrigation water used (km3/year) | proxy | FAOSTAT | 2.72 | 2.8 |
Food energy production (million kcal/ton/year)
| Phenomenological | FAOSTAT | 0.03 0.3 0.65 0.05 | 0.037 0.25 0.85 0.113 | |
Emissions (Gg CO2 eq)
| Phenomenological | FAOSTAT (IPCC Guidelines for National GHG Inventories) | 13,900 1854.3 23,381.5 | 14,700 1824.8 23,150 | |
Total export value (NZD million) | proxy | Ministry of Primary Industries | 28,398 | 46,329 |
Model Input Parameter | Min Value | Max Value | Note |
---|---|---|---|
Agricultural land (ha) | -- | 17,000,000 | Based on the highest observed area used for agriculture in the 80′s |
Production yields: Milk solid (kg/cow/year) Meat from beef (kg/head) Meat from sheep (kg/head) Cereals (tonne/ha) Horticulture (tonne/ha) | - | 650 200 30 15 30 | maximum observed yields in other agricultural systems in the world (EU, Switzerland, Canada, USA) |
Animals per hectare: Dairy (cow/ha) Meat from beef (animal/ha) Meat from sheep (animal/ha) | - | 15 15 20 | Agricultural system change to a less grass-fed animal could be implemented. |
Export value: Dairy (milk solid NZD/kg) Beef (NZD/kg) Sheep (NZD/kg) Cereals (NZD/tonne) Horticulture (NZD/tonne) Forest (NZD/ha) | 2 2 2 100 1000 2000 | 30 12 18 600 6000 12,000 | Thresholds allow tripling the current values |
Objectives | Expected Results by 2050 |
---|---|
Carbon 0 by 2050 (from nitrogen and energy) | =0 |
CH4 −24% to −50% by 2050 | <18.62 k |
Amount of water used is not unlimited | <2.8 km3/year |
Freshwater quality improvement | water score > 0 |
Food calories may rise by 20–34% | 3200–4000 MCal |
Agricultural export value continues to rise +2 to +5%/year | 85,600–210,234 NZ$ million |
Irrigation Water Use (km3/year) | Food Energy Production (million kcal/ton/year) | Emissions from Nitrogen (Gg CO2 eq) | Emissions from Carbon Dioxide (Gg CO2 eq) | Emissions from Methane (Gg CO2 eq) | Total Export Value (NZD million) | |
---|---|---|---|---|---|---|
Data source | FAOSTAT | FAOSTAT | FAOSTAT | FAOSTAT | FAOSTAT | Ministry for Primary Industries |
Dataset 2010 | 2.72 | 235 | 13,900 | 1854 | 23,382 | 28.4 |
Output model results from 2010 | 2.67 | 235 | 13,600 | 1900 | 24,700 | 29.3 |
Difference (in %) between the 2010 dataset and the 2010 model result | −1.80 | 0 | −2.16 | 2.46 | 5.64 | 3.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannier, C.; Cochrane, T.A.; Zawar-Reza, P.; Bellamy, L. Development of a Systems Model for Assessing Pathways to Resilient, Sustainable, and Profitable Agriculture in New Zealand. Land 2022, 11, 2334. https://doi.org/10.3390/land11122334
Vannier C, Cochrane TA, Zawar-Reza P, Bellamy L. Development of a Systems Model for Assessing Pathways to Resilient, Sustainable, and Profitable Agriculture in New Zealand. Land. 2022; 11(12):2334. https://doi.org/10.3390/land11122334
Chicago/Turabian StyleVannier, Clémence, Thomas A. Cochrane, Peyman Zawar-Reza, and Larry Bellamy. 2022. "Development of a Systems Model for Assessing Pathways to Resilient, Sustainable, and Profitable Agriculture in New Zealand" Land 11, no. 12: 2334. https://doi.org/10.3390/land11122334
APA StyleVannier, C., Cochrane, T. A., Zawar-Reza, P., & Bellamy, L. (2022). Development of a Systems Model for Assessing Pathways to Resilient, Sustainable, and Profitable Agriculture in New Zealand. Land, 11(12), 2334. https://doi.org/10.3390/land11122334