Assessment of Key Feeding Technologies and Land Use in Dairy Sheep Farms in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Selection of Feeding Technologies through Delphi-Methodology
2.1.2. Sample of Farms
2.2. Statistical Analysis
3. Results
3.1. Identification and Selection of Feeding and Land Use Technologies
3.2. Grouping of Technologies
3.3. Technologies Effect
4. Discussion
4.1. Selection of Feeding and Land Use Technologies
4.2. Effect of Technologies Selected in Dairy Sheep Farms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toro-Mujica, P.; García, A.; Aguilar, C.; Vera, R.; Perea, J.; Angón, E. Economic sustainability of organic dairy sheep systems in Central Spain. Ital. J. Anim. Sci. 2015, 14, 3625. [Google Scholar] [CrossRef] [Green Version]
- Toro-Mujica, P.; García, A.; Gómez-Castro, A.; Perea, J.; Rodríguez-Estévez, V.; Angón, E.; Barba, C. Organic dairy sheep farms in south-central Spain: Typologies according to livestock management and economic variables. Small Rumin. Res. 2012, 104, 28–36. [Google Scholar] [CrossRef]
- Rivas, J.; Perea, J.; Angón, E.; Barba, C.; Morantes, M.; Dios-Palomares, R.; García, A. Diversity in the Dry Land Mixed System and Viability of Dairy Sheep Farming. Ital. J. Anim. Sci. 2015, 14. [Google Scholar] [CrossRef]
- Noltze, M.; Schwarze, S.; Qaim, M. Understanding the adoption of system technologies in smallholder agriculture: The system of rice intensification (SRI) in Timor Leste. Agric. Syst. 2012, 108, 64–73. [Google Scholar] [CrossRef]
- De-Pablos-Heredero, C.; Montes-Botella, J.L.; García, A. Impact of technological innovation on performance in dairy sheep farms in Spain. J. Agric. Sci. Technol. 2020, 22, 597–610. [Google Scholar]
- Morantes, M.; Dios-Palomares, R.; Peña, M.E.; Rivas, J.; Perea, J.; García-Martínez, A. Management and productivity of dairy sheep production systems in Castilla-La Mancha, Spain. Small Rumin. Res. 2017, 149, 62–72. [Google Scholar] [CrossRef]
- Almadani, M.I.; Weeks, P.; Deblitz, C. COVID-19 Influence on Developments in the Global Beef and Sheep Sectors. Ruminants 2022, 2, 27–53. [Google Scholar] [CrossRef]
- De-Pablos-Heredero, C.; Montes-Botella, J.L.; García-Martínez, A. Sustainability in Smart Farms: Its Impact on Performance. Sustainability 2018, 10, 1713. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, A.; Rivas-Rangel, J.; Rangel-Quintos, J.; Espinosa, J.A.; Barba, C.; De-Pablos-Heredero, C. A Methodological Approach to Evaluate Livestock Innovations on Small-Scale Farms in Developing Countries. Future Internet 2016, 8, 25. [Google Scholar] [CrossRef]
- Berbel, J.; Posadillo, A. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- Dame-Korevaar, A.; Boumans, I.J.; Antonis, A.F.; van Klink, E.; de Olde, E.M. Microbial health hazards of recycling food waste as animal feed. Future Foods 2021, 4, 100062. [Google Scholar] [CrossRef]
- Pardo, G.; Martin-Garcia, I.; Arco, A.; Yañez-Ruiz, D.R.; Moral, R.; Del Prado, A.; Martin-Garcia, A.I. Greenhouse-gas mitigation potential of agro-industrial by-products in the diet of dairy goats in Spain: A life-cycle perspective. Anim. Prod. Sci. 2016, 56, 646. [Google Scholar] [CrossRef]
- Leu, J.-D.; Lee, L.J.-H.; Huang, Y.-W.; Huang, C.-C. Sustainable supply chains: Evidence from small and medium-sized manufacturers. Sustainability 2021, 13, 9059. [Google Scholar] [CrossRef]
- Mohammed, M.; Shafiq, N.; Elmansoury, A.; Al-Mekhlafi, A.-B.A.; Rached, E.F.; Zawawi, N.A.; Haruna, A.; Rafindadi, A.D.; Ibrahim, M.B. Modeling of 3R (reduce, reuse and recycle) for sustainable construction waste reduction: A partial least squares structural equation modeling (PLS-SEM). Sustainability 2021, 13, 10660. [Google Scholar] [CrossRef]
- Zhang, B.; Comite, U.; Yucel, A.G.; Liu, X.; Khan, M.A.; Husain, S.; Sial, M.S.; Popp, J.; Oláh, J. Unleashing the importance of TQM and knowledge management for organizational sustainability in the age of circular economy. Sustainability 2021, 13, 11514. [Google Scholar] [CrossRef]
- Paul, M.; Negahban-Azar, M.; Shirmohammadi, A.; Montas, H. Developing a multicriteria decision analysis framework to evaluate reclaimed wastewater use for agricultural irrigation: The case study of Maryland. Hydrology 2021, 8, 4. [Google Scholar] [CrossRef]
- Consejo de la Unión Europea. Propuesta de Reglamento del Parlamento Europeo y del Consejo. 2018. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/HTML/?uri=CELEX:52018PC0392&from=BG (accessed on 30 December 2021).
- Rivas, J.; Perea, J.M.; De-Pablos-Heredero, C.; Morantes, M.; Angón, E.; Barba, C.; García, A. Role of technological innovation in livestock breeding programmes: A case of cereal-sheep systems. Ital. J. Anim. Sci. 2019, 18, 1049–1057. [Google Scholar] [CrossRef]
- Angón, E.; Perea, J.; Toro-Mújica, P.; Rivas, J.; De-Pablos, C.; García, A. Pathways towards to improve the feasibility of dairy pastoral system in La Pampa (Argentine). Ital. J. Anim. Sci. 2015, 14, 193–201. [Google Scholar] [CrossRef]
- Villarroel-Molina, O.; De-Pablos-Heredero, C.; Rangel, J.; Vitale, M.P.; García, A. Usefulness of network analysis to characterize technology leaders in small dual-purpose cattle farms in Mexico. Sustainability 2021, 13, 2291. [Google Scholar] [CrossRef]
- Rivas, J. Nivel de Competitividad del Sistema Productivo Ovino Lechero de la DOP “Queso Manchego”. Propuestas de Mejoras de Viabilidad de las Explotaciones. Ph.D. Thesis, Universidad de Córdoba, Córdoba, Spain, 2014. Available online: https://helvia.uco.es/bitstream/handle/10396/12486/2014000001060.pdf?sequence=1 (accessed on 8 November 2021).
- Salas-González, J.M.; Leos-Rodríguez, J.A.; Sagarnaga-Villegas, L.M.; Zavala-Pineda, M.J. Adopción de tecnologías por productores beneficiarios del programa de estímulos a la productividad ganadera (PROGAN) en México. Rev. Mex. Cienc. Pecu. 2013, 4, 243–254. [Google Scholar]
- Rivas, J.; Perea, J.M.; De-Pablos-Heredero, J.; Angón, E.; Barba, C.; García, A. Canonical correlation of technological innovation and performance in sheep’s dairy farms: Selection of a set of indicators. Agric. Syst. 2019, 176, 102665. [Google Scholar] [CrossRef]
- Rangel, J.; Perea, J.; De-Pablos-Heredero, C.; Espinosa-García, J.A.; Mujica, P.T.; Feijoo, M.; Barba, C.; García, A. Structural and technological characterization of tropical smallholder farms of dual-purpose cattle in Mexico. Animals 2020, 10, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryschawy, J.; Choisis, N.; Choisis, J.P.; Joannon, A.; Gibon, A. Paths to last in mixed crop-livestock farming: Lessons from an assessment of farm trajectories of change. Animal 2013, 7, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Ryschawy, J.; Joannon, A.; Choisis, J.P.; Gibon, A.; Le Gal, P.Y. Participative assessment of innovative technical scenarios for enhancing sustainability of French mixed crop-livestock farms. Agric. Syst. 2014, 129, 1–8. [Google Scholar] [CrossRef]
- Dubeuf, J.P. The social and environmental challenges faced by goat and small livestock local activities: Present contribution of research-development and stakes for the future. Small Rumin. Res. 2014, 98, 3–11. [Google Scholar] [CrossRef]
- Torres, Y.; García, A.; Rivas, J.; Perea, J.; Angón, E.; De-Pablos-Heredero, C. Socioeconomic and productive characterization of dual-purpose farms oriented to milk production in a tropical region of Ecuador. The case of the province of Manabí. Rev. Cient. Vet. 2015, 25, 330–337. [Google Scholar]
- Cuevas-Reyes, V.; Baca del Moral, J.; Cervantes-Escoto, F.; Espinosa-García, J.A.; Aguilar-Ávila, J.; Loaiza-Meza, A. Factors which determine use of innovation technology in dual purpose cattle production units in Sinaloa, México. Rev. Mex. Cienc. Pecu. 2013, 4, 31–46. [Google Scholar]
- Vilaboa-Arroniz, J.; Díaz-Rivera, P. Caracterización socioeconómica y tecnológica de los sistemas ganaderos en siete municipios del Estado de Veracruz, México. Zootec. Trop. 2009, 27, 427–436. [Google Scholar]
- Joia, L.A.; Cordeiro, J.P.V. Unlocking the potential of fintechs for financial inclusion: A Delphi-based approach. Sustainability 2021, 13, 11675. [Google Scholar] [CrossRef]
- Rioja-Lang, F.C.; Connor, M.; Bacon, H.; Dwyer, C.M. Determining a welfare prioritization for horses using a Delphi method. Animals 2020, 10, 647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caballero, R.; Fernández-Santos, X. Grazing institutions in Castilla-La Mancha, dynamic or downward trend in the Spanish cereal-sheep system. Agric. Syst. 2009, 101, 69–79. [Google Scholar] [CrossRef]
- Rangel, J.; Espinosa, J.; de Pablos, C.; Barba, C.; Vélez, A.; Rivas, J.; García, A. Adoption of innovations and organizational practices in management, animal feeding and reproduction in dual-purpose bovine of small farms in Mexico. Rev. Cient. Fac. Cien. Vet. 2017, 27, 44–55. [Google Scholar]
- Bastanchury-López, M.T.; De-Pablos-Heredero, C.; García-Martínez, A.; Martín-Romo-Romero, S. Review of the measurement of dynamic capabilities: A proposal of indicators for the sheep industry. Cienc. Tecnol. Agropecu. 2019, 20, 371–386. [Google Scholar] [CrossRef]
- Landeta, J. Current validity of the Delphi method in social sciences. Technol. Forecast. Soc. Change 2006, 73, 467–482. [Google Scholar] [CrossRef]
- Martínez Piñeiro, E. La técnica Delphi como estrategia de consulta a los implicados en la evaluación de programas. Rev. Investig. Educ. 2003, 21, 449–463. [Google Scholar]
- Dios-Palomares, R.; Martínez-Paz, M.J. Technical, quality and environmental efficiency of the olive oil industry. Food Policy 2011, 36, 526–534. [Google Scholar] [CrossRef]
- Checa, C.; De-Pablos-Heredero, C.; Torres, Y.G.; Montes-Botella, J.L.; Barba, C.; García, A. Focused coordination models towards sustainability in higher education. Case of Quevedo State Technical University (Ecuador). Sustainability 2020, 12, 5760. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Análise Multivariada de Dados, 6th ed.; Bookman: Porto Alegre, Portugal, 2009. [Google Scholar]
- Olaizola, A.M.; Chertouth, T.; Manrique, E. Adoption of a new feeding technology in Mediterranean sheep farming systems: Implications and economic evaluation. Small Rumin. Res. 2008, 79, 137–145. [Google Scholar] [CrossRef]
- Uriel, E.; Aldás, J. Análisis Multivariante Aplicado; Paraninfo, S.A.: Madrid, Spain, 2005. [Google Scholar]
- Mendez, D.; Macía, F. Análisis factorial confirmatorio de la escala de actitudes hacia la estadística. Cuad. Neuropsicol. 2007, 1, 174–371. [Google Scholar]
- Köbrich, C.; Rehman, T.; Khan, M. Typification of farming systems for constructing representative farm models: Two illustrations of the application of multi-variate analyses in Chile and Pakistan. Agric. Syst. 2003, 76, 141–157. [Google Scholar] [CrossRef]
- Akers, R.L.; Jennings, W.G. Social learning theory. Handb. Criminol. Theory 2015, 4, 230–240. [Google Scholar]
- George, D.; Mallery, M. Using SPSS for Windows Step by Step: A Simple Guide and Reference; Allyn and Bacon: Boston, MA, USA, 2010. [Google Scholar]
- García, A.; Barba, C.; Aragón, M.; León, J.M.; De-Pablos-Heredero, C.; González, A. Integrated rearing system proposal for Cantareus aspersus in experimental orchards: Growth models. Lab. Anim. 2021, 1–11. [Google Scholar] [CrossRef]
- Hung, Y.; Hieke, S.; Grunert, K.G.; Verbeke, W. Setting policy priorities for front-of-pack health claims and symbols in the European Union: Expert consensus built by using a Delphi method. Nutrients 2019, 11, 403. [Google Scholar] [CrossRef] [Green Version]
- Van Gelderen, M.; Wiklund, J.; McMullen, J.S. Entrepreneurship in the future: A Delphi study of ETP and JBV editorial board members. Entrep. Theory Pract. 2021, 45, 1239–1275. [Google Scholar] [CrossRef]
- Garcia-Vidal, G.; Sanchez-Rodriguez, A.; Perez-Campdesuner, R.; Martinez-Vivar, R. Exploring the relationship between organizational values and small team performance: A Delphi method application. Serb. J. Manag. 2021, 16, 61–83. [Google Scholar] [CrossRef]
- Garcia-Cruz, J.; Valle-Cabrera, R. The employer’s commitment: Conceptualization, development, and validation of a scale. Bus. Res. Q. 2021, 1–15. [Google Scholar] [CrossRef]
- Tseng, M.-L.; Lin, C.-W.R.; Sujanto, R.Y.; Lim, M.K.; Bui, T.-D. Assessing sustainable consumption in packaged food in Indonesia: Corporate communication drives consumer perception and behavior. Sustainability 2021, 13, 8021. [Google Scholar] [CrossRef]
- Chen, C.-C.; Sujanto, R.Y.; Tseng, M.-L.; Chiu, A.S.F.; Lim, M.K. How is the sustainable consumption intention model in food industry under preference uncertainties? The consumer willingness to pay on recycled packaging material. Sustainability 2021, 13, 11578. [Google Scholar] [CrossRef]
- Benos, T.; Kalogeras, N.; Wetzels, M.; De Ruyter, K.; Pennings, J.M.E. Harnessing a ‘currency matrix’ for performance measurement in cooperatives: A multi-phased study. Sustainability 2018, 10, 4536. [Google Scholar] [CrossRef] [Green Version]
- Olaizola, A.; Bernués, A.; Blasco, I.; Sanz, A. Perspectivas de una carne de calidad diferenciada: Análisis exploratorio para la carne de vacuno “Serrana de Teruel”. ITEA Inf. Tecnol. Econ. Agrar. 2012, 108, 546–562. [Google Scholar]
- Marí-Vidal, S.; Marín-Sánchez, M.; Seguí-Mas, E.; Michael-Zamorano, M. Análisis cualitativo de los determinantes en la predicción del fracaso empresarial en cooperativas agroalimentarias. ITEA Inf. Tecnol. Econ. Agrar. 2014, 110, 300–320. [Google Scholar] [CrossRef]
- Moraine, M.; Melac, P.; Ryschawy, J.; Duru, M.; Therond, O. A participatory method for the design and integrated assessment of crop-livestock systems in farmer groups. Ecol. Indic. 2017, 72, 340–351. [Google Scholar] [CrossRef]
- Su, J.Y.; Canavari, M. Delphi study on country-of-origin labelling for processed foods. Agric. Food Econ. 2018, 6, 8. [Google Scholar] [CrossRef]
- Torres, Y.; Rivas, J.; de Pablos, C.; Perea, J.; Toro-Mujica, P.; Angón, E.; García, A. Identification and implementation of technological packages for dual purpose cattle. A case study of Manabí-Ecuador. Rev. Mex. Cienc. Pecu. 2014, 5, 393–407. [Google Scholar] [CrossRef]
- Peña, M.E.; Dios-Palomares, R.; Urdaneta, F.; Cañas, J.A. Management functions and productivity in dual-purpose cattle systems in Venezuela. An index-based study. In Business Performance Measurement and Management; Charles, V., Kumar, M., Eds.; Cambridge Scholars Publishing: Newcastle-upon-Tyne, UK, 2014; pp. 267–291. [Google Scholar]
- Salmon, G.; Teufel, N.; Baltenweck, I.; Van-Wijk, M.; Claessens, L.; Marshall, K. Trade-offs in livestock development at farm level: Different actors with different objectives. Glob. Food Secur. 2018, 17, 103–112. [Google Scholar] [CrossRef]
- Le Gal, P.Y.; Dugué, P.; Faure, G.; Novak, S. How does research address the design of innovative agricultural production systems at the farm level? A review. Agric. Syst. 2011, 104, 714–728. [Google Scholar] [CrossRef]
- Espinosa García, J.A.; Quiroz, J.; Moctezuma, G.; Oliva, J.; Granados, L.; Berumen, A.C. Technological prospection and strategies for innovation in production of sheep in Tabasco, México. Rev. Cient. Fac. Cienc. Vet. 2015, 25, 107–115. [Google Scholar]
- Aldana, U.; Foltz, J.D.; Barham, B.L.; Useche, P. Sequential adoption of package technologies the dynamics of stacked trait corn adoption. Am. J. Agric. Econ. 2010, 93, 130–143. [Google Scholar] [CrossRef]
- Toro-Mújica, P.; Arraño, C.; Vera, R.; Robles, L.; del Río, C.; Corvalán, E.; Riveros, J.L. Perspectives of abandonment/continuity of typological groups of sheep farms in the semi-arid region of Central Chile. Econ. Agric. Recur. Nat. 2019, 19, 113–132. [Google Scholar] [CrossRef]
- Velasco, J.; Ortega-Soto, L.; Urdaneta, F.; Sánchez, E. Relación entre el nivel de tecnología y los índices de productividad en fincas ganaderas de doble propósito localizadas en la Cuenca del Lago de Maracaibo. Rev. Cient. 2009, 19, 84–92. [Google Scholar]
- De Janvry, A.; Dunstan, A.; Sadoulet, E. Recent Advances in Impact Analysis Methods for Ex-Post Impact Assessments of Agricultural Technology: Options for the CGIAR. Consultative Group on International Agricultural Research. 2011. Available online: http://gspp.berkeley.edu/assets/uploads/research/pdf/deJanvryetal2011.pdf (accessed on 11 November 2021).
- Lebacq, T.; Baret, P.V.; Stilmant, D. Sustainability indicators for livestock farming. A review. Agron. Sustain. Dev. 2013, 33, 311–327. [Google Scholar] [CrossRef]
- Rangel, J.; Espinosa, J.; de Pablos, C.; Rivas, J.; Perea, J.; Angón, E.; García, A. Is the increase of scale in the tropics a pathway to smallholders? Dimension and ecological zone effect on the mixed crop-livestock farms. Span. J. Agric. Res. 2017, 2, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zhang, C.; Wang, J.; Bu, D.; Zhou, L.; Zhao, S.H.; Li, S. Canonical correlation of milk immunoglobulins, lactoferrin concentration and dairy herd improvement data of Chinese Holstein cows. Livest. Sci. 2010, 128, 197–200. [Google Scholar] [CrossRef]
- De Pablos, C.; Haider, S.; García, A. Relational coordination as an indicator of teamwork quality: Potential application to the success of e-learning at universities. IJET 2015, 10, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Mu, W.; van Middelaara, C.E.; van Bloemhof, J.M.; Engel, B.; de Boer, J.J.M. Benchmarking the environmental performance of specialized milk production systems: Selection of a set of indicators. Ecol. Indic. 2017, 72, 91–98. [Google Scholar] [CrossRef]
- Milán, M.J.; Caja, G.; González-González, R.; Fernández-Pérez, A.M.; Such, X. Structure and performance of Awassi and Assaf dairy sheep farms in northwestern Spain. J. Dairy Sci. 2011, 94, 771–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Technology (ni) [Technology Package] | Selection (% Consensus) | Scores (Mean) | SD 1 (CV 2 %) | Q1 3 | Q3 4 |
---|---|---|---|---|---|
Unifeed (1) [feeding] | 44.86 | 3.43 | 0.96 (0.28) | 3.0 | 4.0 |
By-products and crop residues (2) [feeding] | 32.08 | 3.09 | 0.93 (0.32) | 2.0 | 4.0 |
Diets and balanced rations (3) [feeding] | 96.27 | 4.68 | 0.65 (0.14) | 4.5 | 5.0 |
Mineral blocks (4) [feeding] | 64.49 | 3.77 | 0.87 (0.23) | 3.0 | 4.0 |
Supplemental feeding (5) [feeding] | 58.87 | 3.62 | 0.85 (0.24) | 3.0 | 4.0 |
Grazing (6) [land use] | 32.71 | 3.16 | 0.97 (0.31) | 2.0 | 4.0 |
Raw materials production (7) [land use] | 44.86 | 3.40 | 0.32 (0.27) | 3.0 | 4.0 |
Conservation of forages (8) [land use] | 55.14 | 3.48 | 1.08 (0.32) | 3.0 | 4.0 |
Productive management (9) [land use] | 82.24 | 4.17 | 0.83 (0.20) | 4.0 | 5.0 |
Sustainable use of water and soil (10) [land use] | 74.76 | 4.07 | 0.90 (0.22) | 4.0 | 5.0 |
Technology (ni) | Loading 1 | Eigenvalue | Explained Variance (%) | PCA 2 |
---|---|---|---|---|
Unifeed (1) | 0.59085 | 2.76 | 26.67 | 1 |
Diets and balanced rations (3) | 0.45701 | |||
Mineral blocks (4) | 0.81578 | |||
Supplemental feeding (5) | 0.85443 | |||
Grazing (6) | 0.71075 | 1.78 | 17.84 | 2 |
Raw materials production (7) | 0.81068 | |||
Conservation of forages (8) | 0.78413 | |||
Productive management (9) | 0.88827 | 1.15 | 11.51 | 3 |
Sustainable use of water and soil (10) | 0.7514 | |||
By-products and crop residues (2) | 0.90389 | 1.00 | 10.09 | 4 |
Technology (ni) | PCA 1 | Cluster 1 | Cluster 2 | Cluster 3 |
---|---|---|---|---|
Unifeed (1) | 1 | 3.310 | 4.261 | 2.846 |
Diets and balanced rations (3) | 1 | 4.741 | 5.000 | 4.385 |
Mineral blocks (4) | 1 | 4.017 | 4.043 | 2.962 |
Supplemental feeding (5) | 1 | 3.690 | 4.087 | 3.038 |
Grazing (6) | 2 | 2.793 | 3.217 | 3.692 |
Raw materials production (7) | 2 | 2.879 | 4.304 | 3.692 |
Conservation of forages (8) | 2 | 2.793 | 4.435 | 3.923 |
Productive management (9) | 3 | 4.052 | 4.696 | 4.000 |
Sustainable use of water and soil (10) | 3 | 3.759 | 4.826 | 4.115 |
By-products and crop residues (2) | 4 | 2.983 | 3.522 | 2.846 |
Parameter | Coefficient | SD | T-Value | p-Value |
---|---|---|---|---|
Constant | 1.32326 | 0.27636 | 4.78808 | *** |
Unifeed (1) | 0.32926 | 0.04185 | 7.86736 | *** |
Supplemental feeding (5) | 0.34824 | 0.04678 | 7.44418 | *** |
Grazing (6) | 0.26331 | 0.04121 | 6.38876 | *** |
Raw materials production (7) | 0.40488 | 0.04332 | 9.34696 | *** |
Sustainable use of water and soil (10) | 0.34605 | 0.04588 | 7.54246 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastanchury-López, M.T.; De-Pablos-Heredero, C.; Martín-Romo-Romero, S.; García, A. Assessment of Key Feeding Technologies and Land Use in Dairy Sheep Farms in Spain. Land 2022, 11, 177. https://doi.org/10.3390/land11020177
Bastanchury-López MT, De-Pablos-Heredero C, Martín-Romo-Romero S, García A. Assessment of Key Feeding Technologies and Land Use in Dairy Sheep Farms in Spain. Land. 2022; 11(2):177. https://doi.org/10.3390/land11020177
Chicago/Turabian StyleBastanchury-López, María Teresa, Carmen De-Pablos-Heredero, Santiago Martín-Romo-Romero, and Antón García. 2022. "Assessment of Key Feeding Technologies and Land Use in Dairy Sheep Farms in Spain" Land 11, no. 2: 177. https://doi.org/10.3390/land11020177
APA StyleBastanchury-López, M. T., De-Pablos-Heredero, C., Martín-Romo-Romero, S., & García, A. (2022). Assessment of Key Feeding Technologies and Land Use in Dairy Sheep Farms in Spain. Land, 11(2), 177. https://doi.org/10.3390/land11020177