The Structure and Evolution of the Tourism Economic Network of the Tibetan Plateau and Its Driving Factors
Abstract
:1. Introduction
1.1. Network Analysis in Tourism
1.2. Network Analysis in the Tourism Economic Network
1.3. Tourism Development in the Tibetan Plateau
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Research Methods
2.3.1. Tourism Economic Gravity Model
2.3.2. Social Network Analysis
2.3.3. Quadratic Assignment Procedure
3. Results
3.1. Strength of the Tourism Economic Connection
3.2. Tourism Economic Network Structural Characteristics
3.2.1. Structural Characteristics and Evolutionary Trend of the Overall Network
3.2.2. Evolutionary Trend of the Centrality
3.2.3. Structural Holes
3.2.4. Core–Periphery Model
3.3. Factors Influencing the Tourism Economic Network
3.3.1. The QAP Correlation Analysis
3.3.2. The QAP Regression Analysis
4. Discussion
4.1. Theoretical Implications
4.2. Practical Implications
5. Conclusions
- The strength of tourism economic connections between cities on the Tibetan Plateau witnessed an improvement from 2015 to 2019, but it was unbalanced in spatial distribution. Tourism economic strength was generally higher in Qinghai Province and lower in Tibet.
- The overall network structure from 2015 to 2019 showed an overall upwards trend in the density and association relations. The tourism and economic connections between cities on the Tibetan Plateau increased significantly, and the tourism and economic ties grew closer. However, network connectivity was significantly higher on the eastern Tibetan Plateau.
- The spatial association network presented a significant core–edge distribution pattern. Xining, Haixi, and Lhasa were all higher than other cities in the network, which was the bridge with the advantage of structural holes. Meanwhile, the centrality of Rikaze significantly improved during the study period. However, Naqu, Ali, and Guoluo were always at the edge of the network.
- The QAP regression analysis showed that A-level attractions and star-rated hotels could significantly promote the formation of spatial association.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cawley, M.; Marsat, J.; Gillmor, D. Promoting integrated rural tourism: Comparative perspectives on institutional networking in France and Ireland. Tour. Geogr. 2007, 9, 405–420. [Google Scholar] [CrossRef]
- van der Zee, E.; Vanneste, D. Tourism networks unravelled; a review of the literature on networks in tourism management studies. Tour. Manag. Perspect. 2015, 15, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Zach, F.; Racherla, P. Assessing the value of collaborations in tourism networks: A case study of Elkhart County, Indiana. J. Travel Tour. Mark. 2011, 28, 97–110. [Google Scholar] [CrossRef]
- Gan, C.; Voda, M.; Wang, K.; Chen, L.; Ye, J. Spatial network structure of the tourism economy in urban agglomeration: A social network analysis. J. Hosp. Tour. Manag. 2021, 47, 124–133. [Google Scholar] [CrossRef]
- Buhalis, D.; Molinaroli, E. Entrepreneurial networks and supply communities in the Italian eTourism. Inf. Technol. Tour. 2002, 5, 175–184. [Google Scholar] [CrossRef]
- Cehan, A.; Eva, M.; Iațu, C. A multilayer network approach to tourism collaboration. J. Hosp. Tour. Manag. 2021, 46, 316–326. [Google Scholar] [CrossRef]
- Kelliher, F.; Reinl, L.; Johnson, T.G.; Joppe, M. The role of trust in building rural tourism micro firm network engagement: A multi-case study. Tour. Manag. 2018, 68, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.; Zhao, W.; Wang, S.; Fu, B. Comparison between tourists’ and inhabitants’ willingness to pay for nature in the Tibetan Plateau. J. Clean. Prod. 2020, 255, 120219. [Google Scholar] [CrossRef]
- Tran, M.T.; Jeeva, A.S.; Pourabedin, Z. Social network analysis in tourism services distribution channels. Tour. Manag. Perspect. 2016, 18, 59–67. [Google Scholar] [CrossRef]
- Kim, Y.-R.; Scott, N. Network dynamics of tourism development in South Korea. Curr. Issues Tour. 2018, 21, 1239–1259. [Google Scholar] [CrossRef] [Green Version]
- Scott, N.; Baggio, R.; Cooper, C. Network Analysis Methods for Modeling Tourism Inter-Organizational Systems; Emerald Group Publishing Limited: Bingley, UK, 2011. [Google Scholar]
- Kang, S.; Lee, G.; Kim, J.; Park, D. Identifying the spatial structure of the tourist attraction system in South Korea using GIS and network analysis: An application of anchor-point theory. J. Destin. Mark. Manag. 2018, 9, 358–370. [Google Scholar] [CrossRef]
- Wang, K.; Wang, M.; Gan, C.; Chen, Q.; Voda, M. Tourism Economic Network Structural Characteristics of National Parks in the Central Region of China. Sustainability 2021, 13, 4805. [Google Scholar] [CrossRef]
- Liu, B.; Huang, S.S.; Fu, H. An application of network analysis on tourist attractions: The case of Xinjiang, China. Tour. Manag. 2017, 58, 132–141. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Lai, K. A meeting of the minds: Exploring the core–periphery structure and retrieval paths of destination image using social network analysis. J. Travel Res. 2018, 57, 612–626. [Google Scholar] [CrossRef]
- Pavlovich, K. A rhizomic approach to tourism destination evolution and transformation. Tour. Manag. 2014, 41, 1–8. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X.; Ma, J.; Wang, Y. Spatial and temporal evolution of the tourism economy network in Xinjiang: Based on modified gravity model and social network analysis. Arid. Land Geogr. 2020, 43, 458–465. (In Chinese) [Google Scholar]
- Wang, J.; Xia, J. Study on the Spatial Network Structure of the Tourism Economy in China and Its Influencing Factors: Investigation of QAP Method. Tour. Trib. 2018, 33, 13–25. [Google Scholar]
- Yang, L.; Liu, N.; Bai, C. The Spatial Structure of the Tourism Economy in Beijing-Tianjing-Hebei-Xiongan Region. Sci. Geogr. Sin. 2018, 38, 394–401. (In Chinese) [Google Scholar]
- Zhong, Y.; Feng, X.; Wen, Y. The Evolvement and Driving Mechanism of Economic Network Structure in the Changjiang River Economic Zone. Sci. Geogr. Sin. 2016, 36, 10–19. (In Chinese) [Google Scholar]
- Wang, D.; Niu, Y.; Qian, J. Evolution and optimization of China’s urban tourism spatial structure: A high speed rail perspective. Tour. Manag. 2018, 64, 218–232. [Google Scholar] [CrossRef]
- Yin, P.; Lin, Z.; Prideaux, B. The impact of high-speed railway on tourism spatial structures between two adjoining metropolitan cities in China: Beijing and Tianjin. J. Transp. Geogr. 2019, 80, 102495. [Google Scholar] [CrossRef] [PubMed]
- Makkonen, T. Cross-border shopping and tourism destination marketing: The case of Southern Jutland, Denmark. Scand. J. Hosp. Tour. 2016, 16, 36–50. [Google Scholar] [CrossRef]
- Dejean, S. The role of distance and social networks in the geography of crowdfunding: Evidence from France. Reg. Stud. 2019, 54, 329–339. [Google Scholar] [CrossRef]
- Mou, N.; Zheng, Y.; Makkonen, T.; Yang, T.; Tang, J.J.; Song, Y. Tourists’ digital footprint: The spatial patterns of tourist flows in Qingdao, China. Tour. Manag. 2020, 81, 104151. [Google Scholar] [CrossRef]
- Matsumoto, H.; Domae, K. Assessment of competitive hub status of cities in Europe and Asia from an international air traffic perspective. J. Air Transp. Manag. 2019, 78, 88–95. [Google Scholar] [CrossRef]
- Monzon, A.; Lopez, E.; Ortega, E. Has HSR improved territorial cohesion in Spain? An accessibility analysis of the first 25 years: 1990–2015. Eur. Plan. Stud. 2019, 27, 513–532. [Google Scholar] [CrossRef]
- Zheng, C.; Ma, Y. Spatial economic connection and network structure of cities in Central Jilin Urban System. J. Univ. Chin. Acad. Sci. 2021, 38, 323–332. [Google Scholar]
- Zhang, J.; Zhang, Y. Trade-offs between sustainable tourism development goals: An analysis of Tibet (China). Sustain. Dev. 2019, 27, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Christie, I.T.; Sharma, A. Research notes: Millennium Development Goals—What is tourism’s place? Tour. Econ. Bus. Financ. Tour. Recreat. 2008, 14, 427–430. [Google Scholar]
- Saarinen, J.; Rogerson, C.M. Tourism and the millennium development goals: Perspectives beyond 2015. Tour. Geogr. 2014, 16, 23–30. [Google Scholar] [CrossRef]
- Shen, H. Discuss on the poverty alleviation by rural tourism in Tibet. Tibet. Stud. 2018, 2, 117–124. [Google Scholar]
- Cheng, D.; Fountain, J. Mainland Chinese Generation Y tourists to Tibet: Travel constraints, revisit intention and their negotiation. J. Hosp. Tour. Manag. 2021, 48, 128–137. [Google Scholar] [CrossRef]
- Mou, N.; Liu, Z.; Zheng, Y.; Makkonen, T.; Yang, T.; Zhang, L. Cycling in Tibet: An analysis of tourists’ spatiotemporal behavior and infrastructure. Tour. Manag. 2022, 88, 104418. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, L.; Ju, H.; Wang, Y. Land border tourism resources in China: Spatial patterns and tourism management. Sustainability 2019, 11, 236. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-E.; Zeng, Y.; Zhong, L. Impact of climate change on tourism on the Qinghai-Tibetan Plateau: Research based on a literature review. Sustainability 2017, 9, 1539. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lu, L.; Zhang, H.; Xu, Y.; Li, D.; Zhang, X.; Yang, J. Evaluation of China’s Plateau Ecotourism Development Potential. Econ. Geogr. 2021, 41, 195–203. [Google Scholar]
- Xu, J.; Hu, L. Geospatial Semantics Analysis of the Qinghai–Tibetan Plateau Based on Microblog Short Texts. ISPRS Int. J. Geo-Inf. 2021, 10, 682. [Google Scholar] [CrossRef]
- Zipf, G.K. The P1 P2/D hypothesis: On the intercity movement of persons. Am. Sociol. Rev. 1946, 11, 677–686. [Google Scholar] [CrossRef]
- Taaffe, E.J. The urban hierarchy: An air passenger definition. Econ. Geogr. 1962, 38, 1–14. [Google Scholar] [CrossRef]
- Crampon, L.J. A New Technique to Analyze Tourist Markets. J. Mark. 1966, 30, 27–31. [Google Scholar] [CrossRef]
- Kortum, E.S. Technology, Geography, and Trade. Econometrica 2002, 70, 1741–1779. [Google Scholar]
- Kuik, O.; Branger, F.; Quirion, P. Competitive advantage in the renewable energy industry: Evidence from a gravity model. Renew. Energy 2019, 131, 472–481. [Google Scholar] [CrossRef]
- Lovrić, M.; Da Re, R.; Vidale, E.; Pettenella, D.; Mavsar, R. Social network analysis as a tool for the analysis of international trade of wood and non-wood forest products. For. Policy Econ. 2018, 86, 45–66. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002; Volume 6. [Google Scholar]
- Bai, C.; Zhou, L.; Xia, M.; Feng, C. Analysis of the spatial association network structure of China’s transportation carbon emissions and its driving factors. J. Environ. Manag. 2020, 253, 109765. [Google Scholar] [CrossRef]
- Kim, A.C.H.; Newman, J.I.; Kwon, W. Developing community structure on the sidelines: A social network analysis of youth sport league parents. Soc. Sci. J. 2020, 57, 178–194. [Google Scholar] [CrossRef]
- Wang, F.; Gao, M.; Liu, J.; Fan, W. The spatial network structure of China’s regional carbon emissions and its network effect. Energies 2018, 11, 2706. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Feng, Q.; Wang, X.; Fu, H.; Jiang, W.; Chen, B. Spatial association and effect evaluation of CO2 emission in the Chengdu-Chongqing urban agglomeration: Quantitative evidence from social network analysis. Sustainability 2019, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Wang, Z.; Chen, T. Analysis on the theory and practice of industrial symbiosis based on bibliometrics and social network analysis. J. Clean. Prod. 2019, 213, 956–967. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, Y.; Gong, Q.; Chen, Y.; Oksanen, A.; Ding, A.Y. Structural Hole Theory in Social Network Analysis: A Review. IEEE Trans. Comput. Soc. Syst. 2021, 1–16. [Google Scholar] [CrossRef]
- Lou, T.; Tang, J. Mining structural hole spanners through information diffusion in social networks. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 825–836. [Google Scholar]
- Burt, R.S. The social capital of structural holes. New Econ. Sociol. Dev. Emerg. Field 2002, 148, 122. [Google Scholar]
- Borgatti, S.P.; Everett, M.G. Models of core/periphery structures. Soc. Netw. 2000, 21, 375–395. [Google Scholar] [CrossRef]
- Csermely, P.; London, A.; Wu, L.; Uzzi, B. Structure and dynamics of core/periphery networks. J. Complex Netw. 2013, 1, 93–123. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, M.; Shen, K.N.; Ju, X.; Guo, X. Structural correlation between communities and core-periphery structures in social networks: Evidence from Twitter data. Expert Syst. Appl. 2018, 111, 91–99. [Google Scholar] [CrossRef]
- Krackhardt, D. Predicting with networks: Nonparametric multiple regression analysis of dyadic data. Soc. Netw. 1988, 10, 359–381. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, Y.; Hsu, M.K. Using data envelopment analysis to evaluate efficiency: An exploratory study of the Chinese hotel industry. J. Qual. Assur. Hosp. Tour. 2008, 9, 240–256. [Google Scholar] [CrossRef]
- Yu, H.; Li, Q.; Mei, L.; Liu, J. Research on the Spatial Structure and Spatial Development Patterns of Urban Tourism Economic Connections of Heilongjiang Province-Focus on the Perspective of Social Network. Sci. Geogr. Sin. 2015, 35, 1429–1436. [Google Scholar]
Index | Formula | Explanation of the Formula |
---|---|---|
Network density | D is the network density; L is the actual number of connections; N is the number of points in the network structure; and N(N − 1) means the maximum possible number of connections. | |
Degree centrality | is the degree centrality of node i, and d is the degree of point i. | |
Closeness centrality | is the closeness centrality of node i, and dij is the shortcut distance between nodes i and j. | |
Betweenness centrality | represents the ability of city i to control the communication between nodes i and j. |
City | 2015 | 2019 | ||||
---|---|---|---|---|---|---|
Rank | The Strength of Tourism | Proportion (%) | Rank | The Strength of Tourism | Proportion (%) | |
Economic Cooperation | Economic Cooperation | |||||
Xining | 1 | 7,692,832.98 | 49.1566 | 1 | 47,801,435.59 | 48.7333 |
Haidong | 2 | 2,921,168.03 | 18.6660 | 2 | 17,603,128.44 | 17.9463 |
Hainan | 3 | 1,954,045.33 | 12.4862 | 3 | 14,806,490.73 | 15.0951 |
Huangnan | 4 | 1,236,013.39 | 7.8980 | 4 | 7,790,432.07 | 7.9423 |
Gannan | 5 | 633,004.61 | 4.0449 | 6 | 3,276,612.56 | 3.3405 |
Haibei | 6 | 551,469.82 | 3.5239 | 5 | 3,865,810.98 | 3.9412 |
Aba | 7 | 346,424.19 | 2.2136 | 8 | 502,737.37 | 0.5125 |
Haixi | 8 | 137,987.40 | 0.8817 | 7 | 927,525.56 | 0.9456 |
Ganzi | 9 | 48,124.40 | 0.3075 | 10 | 430,646.22 | 0.4390 |
Lhasa | 10 | 48,030.97 | 0.3069 | 9 | 457,863.28 | 0.4668 |
Guoluo | 11 | 33,364.71 | 0.2132 | 13 | 110,796.27 | 0.1130 |
Linzhi | 12 | 22,364.73 | 0.1429 | 11 | 264,869.28 | 0.2700 |
Yushu | 13 | 11,882.41 | 0.0759 | 12 | 127,670.90 | 0.1302 |
Shannan | 14 | 5558.14 | 0.0355 | 15 | 41,765.95 | 0.0426 |
Rikaze | 15 | 5164.45 | 0.0330 | 14 | 69,331.31 | 0.0707 |
Changdu | 16 | 1649.06 | 0.0105 | 16 | 6701.15 | 0.0068 |
Naqu | 17 | 466.44 | 0.0030 | 17 | 3322.19 | 0.0034 |
Ali | 18 | 81.13 | 0.0005 | 18 | 724.89 | 0.0007 |
City | Effective Size | Efficiency | Constraint | Hierarchy | ||||
---|---|---|---|---|---|---|---|---|
2015 | 2019 | 2015 | 2019 | 2015 | 2019 | 2015 | 2019 | |
Lhasa | 8.600 | 7.118 | 0.573 | 0.419 | 0.262 | 0.225 | 0.122 | 0.046 |
Linzhi | 1.333 | 1.444 | 0.222 | 0.160 | 0.555 | 0.394 | 0.004 | 0.001 |
Changdu | 1.400 | 1.889 | 0.280 | 0.210 | 0.638 | 0.393 | 0.008 | 0.005 |
Naqu | 1.000 | 1.000 | 0.333 | 0.200 | 0.926 | 0.648 | 0.000 | 0.000 |
Rikaze | 1.800 | 5.143 | 0.360 | 0.367 | 0.627 | 0.267 | 0.024 | 0.039 |
Ali | 0.000 | 1.000 | 0.360 | 0.250 | 0.000 | 0.766 | 0.000 | 0.000 |
Shannan | 1.000 | 1.286 | 0.250 | 0.184 | 0.766 | 0.490 | 0.000 | 0.002 |
Aba | 5.000 | 4.857 | 0.385 | 0.347 | 0.288 | 0.266 | 0.046 | 0.030 |
Ganzi | 4.000 | 4.857 | 0.333 | 0.347 | 0.307 | 0.266 | 0.031 | 0.030 |
Xining | 8.500 | 7.118 | 0.531 | 0.419 | 0.243 | 0.225 | 0.090 | 0.046 |
Haidong | 6.385 | 5.875 | 0.491 | 0.367 | 0.293 | 0.236 | 0.091 | 0.033 |
Haibei | 1.286 | 2.455 | 0.184 | 0.223 | 0.490 | 0.329 | 0.002 | 0.008 |
Hainan | 1.889 | 2.833 | 0.210 | 0.236 | 0.393 | 0.304 | 0.005 | 0.010 |
Huangnan | 1.500 | 2.000 | 0.188 | 0.200 | 0.436 | 0.358 | 0.002 | 0.005 |
Guoluo | 1.286 | 1.286 | 0.184 | 0.184 | 0.490 | 0.490 | 0.002 | 0.002 |
Haixi | 8.500 | 7.118 | 0.531 | 0.419 | 0.243 | 0.225 | 0.090 | 0.046 |
Yushu | 1.333 | 2.000 | 0.222 | 0.200 | 0.555 | 0.358 | 0.004 | 0.005 |
Gannan | 1.286 | 1.444 | 0.184 | 0.160 | 0.490 | 0.394 | 0.002 | 0.001 |
Area | 2015 | 2019 | ||
---|---|---|---|---|
Core | Periphery | Core | Periphery | |
Core | 0.964 | 0.600 | 0.956 | 0.700 |
Periphery | 0.600 | 0.022 | 0.700 | 0.071 |
Coefficient | Significance | Average | Std. Dev. | Minimum | Maximum | Prop ≥ 0 | Prop ≤ 0 | |
---|---|---|---|---|---|---|---|---|
A-level attractions | 0.364 | 0.013 | −0.003 | 0.175 | −0.521 | 0.524 | 0.013 | 0.987 |
Difference in elevation | −0.038 | 0.378 | 0.003 | 0.127 | −0.369 | 0.388 | 0.622 | 0.378 |
Star-rated hotels | 0.563 | 0.000 | 0.000 | 0.176 | −0.577 | 0.554 | 0.000 | 1.000 |
Percentage of total tourism revenue in GDP | −0.091 | 0.317 | −0.002 | 0.176 | −0.543 | 0.565 | 0.683 | 0.317 |
Road density | 0.346 | 0.021 | 0.001 | 0.176 | −0.515 | 0.485 | 0.021 | 0.980 |
Geographical adjacency | 0.103 | 0.120 | −0.001 | 0.076 | −0.309 | 0.230 | 0.120 | 0.945 |
Administrative connection | −0.030 | 0.402 | 0.003 | 0.090 | −0.324 | 0.294 | 0.716 | 0.402 |
Independent | Unstandardized Coefficient | Standardized Coefficient | Significance | Proportion as Large | Proportion as Small |
---|---|---|---|---|---|
A-level attractions | 0.433 | 0.193 | 0.033 | 0.033 | 0.968 |
Star-rated hotels | 0.923 | 0.458 | 0.001 | 0.001 | 1.000 |
Road density | 0.259 | 0.111 | 0.113 | 0.113 | 0.887 |
Intercept | 0.059 | 0.000 | |||
R2 | 0.438 | Adj R2 | 0.431 | observations | 306 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, T.; Zheng, X.; Han, F.; Yang, Z. The Structure and Evolution of the Tourism Economic Network of the Tibetan Plateau and Its Driving Factors. Land 2022, 11, 241. https://doi.org/10.3390/land11020241
Chen X, Wang T, Zheng X, Han F, Yang Z. The Structure and Evolution of the Tourism Economic Network of the Tibetan Plateau and Its Driving Factors. Land. 2022; 11(2):241. https://doi.org/10.3390/land11020241
Chicago/Turabian StyleChen, Xiaodong, Tian Wang, Xin Zheng, Fang Han, and Zhaoping Yang. 2022. "The Structure and Evolution of the Tourism Economic Network of the Tibetan Plateau and Its Driving Factors" Land 11, no. 2: 241. https://doi.org/10.3390/land11020241
APA StyleChen, X., Wang, T., Zheng, X., Han, F., & Yang, Z. (2022). The Structure and Evolution of the Tourism Economic Network of the Tibetan Plateau and Its Driving Factors. Land, 11(2), 241. https://doi.org/10.3390/land11020241