Spatio-Temporal Analysis of Population-Land-Economic Urbanization and Its Impact on Urban Carbon Emissions in Shandong Province, China
Abstract
:1. Introduction
2. Literature Review
3. Analytical Framework
3.1. A Framework for Analyzing the Relationship between PLEU Coupling Coordination Degree and Urban Carbon Emissions
3.2. PLEU Evaluation Indicators System
4. Materials and Methods
4.1. Study Area
4.2. Methodology
4.2.1. The Wavelet Neural Network Model for Evaluating the Level of PLEU
4.2.2. The Coupling Coordination Degree Model of PLEU
4.2.3. The Econometric Model for Analyzing the Impact of PLEU on Carbon Emissions
4.3. Data Resource and Handling
5. Results
5.1. Spatio-Temporal Characteristics of PLEU
5.2. Spatio-Temporal Characteristics of PLEU Coupling Coordination Degree
5.3. Econometric Analysis of PIEU’s Impact on Carbon Emissions
6. Discussions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
City | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|
Jinan | 0.3422 | 0.3987 | 0.3827 | 0.4239 | 0.4935 | 0.4839 | 0.5261 | 0.6684 | 0.7175 | 0.7765 |
Qingdao | 0.4471 | 0.4489 | 0.4990 | 0.5274 | 0.5659 | 0.6288 | 0.6699 | 0.7212 | 0.7729 | 0.8528 |
Zibo | 0.3145 | 0.3849 | 0.4105 | 0.5006 | 0.5308 | 0.5478 | 0.5279 | 0.5892 | 0.6050 | 0.6592 |
Zaozhuang | 0.2066 | 0.2388 | 0.2752 | 0.3218 | 0.3475 | 0.3772 | 0.3887 | 0.4092 | 0.4396 | 0.4112 |
Dongying | 0.3076 | 0.3073 | 0.3224 | 0.3165 | 0.3649 | 0.3602 | 0.4525 | 0.4932 | 0.5076 | 0.5113 |
Yantai | 0.2936 | 0.3205 | 0.3321 | 0.3698 | 0.4068 | 0.4681 | 0.5370 | 0.5501 | 0.5584 | 0.5702 |
Weifang | 0.2303 | 0.2679 | 0.3027 | 0.3670 | 0.3900 | 0.4011 | 0.4164 | 0.4433 | 0.4616 | 0.4706 |
Jining | 0.1026 | 0.1255 | 0.1769 | 0.2004 | 0.2106 | 0.2500 | 0.2988 | 0.3543 | 0.3693 | 0.3951 |
Taian | 0.1420 | 0.1838 | 0.2678 | 0.3693 | 0.3503 | 0.3474 | 0.4238 | 0.4508 | 0.4466 | 0.4483 |
Weihai | 0.3581 | 0.4768 | 0.5088 | 0.5627 | 0.5970 | 0.6346 | 0.6534 | 0.6872 | 0.6815 | 0.7052 |
Rizhao | 0.1763 | 0.1903 | 0.2034 | 0.2123 | 0.2580 | 0.2896 | 0.2904 | 0.3216 | 0.3430 | 0.4039 |
Laiwu | 0.1845 | 0.2350 | 0.2711 | 0.3044 | 0.3167 | 0.3615 | 0.4267 | 0.4452 | 0.4687 | 0.4758 |
Linyi | 0.0677 | 0.1191 | 0.1497 | 0.1723 | 0.1644 | 0.2080 | 0.2540 | 0.2855 | 0.3158 | 0.3683 |
Dezhou | 0.1054 | 0.1794 | 0.2075 | 0.2554 | 0.2815 | 0.3249 | 0.3324 | 0.3756 | 0.3768 | 0.3905 |
Liaocheng | 0.1129 | 0.1527 | 0.1867 | 0.2003 | 0.2560 | 0.2748 | 0.2820 | 0.2886 | 0.3048 | 0.3176 |
Binzhou | 0.1946 | 0.2278 | 0.2618 | 0.2965 | 0.3129 | 0.3727 | 0.3783 | 0.4159 | 0.4315 | 0.4844 |
Heze | 0.0445 | 0.0624 | 0.0943 | 0.1348 | 0.1738 | 0.1898 | 0.1970 | 0.2053 | 0.2369 | 0.2367 |
Mean | 0.2136 | 0.2541 | 0.2854 | 0.3256 | 0.3542 | 0.3836 | 0.4150 | 0.4532 | 0.4728 | 0.4987 |
City | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|
Jinan | 0.3988 | 0.4011 | 0.4278 | 0.4737 | 0.5262 | 0.5865 | 0.6430 | 0.7037 | 0.7629 | 0.7923 |
Qingdao | 0.4526 | 0.4494 | 0.4818 | 0.5407 | 0.6086 | 0.6495 | 0.7105 | 0.7605 | 0.8096 | 0.8823 |
Zibo | 0.2980 | 0.3191 | 0.3380 | 0.3780 | 0.4789 | 0.5189 | 0.5653 | 0.6060 | 0.6328 | 0.7358 |
Zaozhuang | 0.2432 | 0.2449 | 0.2526 | 0.2946 | 0.3547 | 0.3771 | 0.4514 | 0.5342 | 0.5902 | 0.6782 |
Dongying | 0.4025 | 0.4231 | 0.4427 | 0.4860 | 0.4889 | 0.4767 | 0.5299 | 0.5647 | 0.5936 | 0.6385 |
Yantai | 0.2685 | 0.3006 | 0.3366 | 0.3851 | 0.4315 | 0.5846 | 0.6588 | 0.6649 | 0.6525 | 0.7032 |
Weifang | 0.2240 | 0.2420 | 0.3252 | 0.3884 | 0.4317 | 0.4618 | 0.4914 | 0.5245 | 0.5923 | 0.6732 |
Jining | 0.3550 | 0.3722 | 0.3980 | 0.4364 | 0.4723 | 0.5096 | 0.5280 | 0.5612 | 0.5765 | 0.6694 |
Taian | 0.1855 | 0.2355 | 0.2184 | 0.2844 | 0.3113 | 0.3750 | 0.4578 | 0.5836 | 0.6096 | 0.6546 |
Weihai | 0.4447 | 0.4456 | 0.4699 | 0.4920 | 0.4846 | 0.5061 | 0.5179 | 0.5483 | 0.6042 | 0.7740 |
Rizhao | 0.2627 | 0.2712 | 0.2715 | 0.2729 | 0.2975 | 0.3264 | 0.3574 | 0.4049 | 0.4356 | 0.4661 |
Laiwu | 0.4315 | 0.4452 | 0.4679 | 0.4586 | 0.4853 | 0.5016 | 0.5128 | 0.5740 | 0.6388 | 0.6643 |
Linyi | 0.1522 | 0.1571 | 0.1984 | 0.2399 | 0.2563 | 0.2925 | 0.3598 | 0.4268 | 0.4597 | 0.4425 |
Dezhou | 0.1663 | 0.1331 | 0.1527 | 0.1868 | 0.2510 | 0.3708 | 0.4001 | 0.4940 | 0.5126 | 0.6256 |
Liaocheng | 0.2085 | 0.2374 | 0.2489 | 0.2726 | 0.2813 | 0.3495 | 0.3929 | 0.4721 | 0.4482 | 0.4675 |
Binzhou | 0.1172 | 0.1290 | 0.1774 | 0.1637 | 0.1769 | 0.2118 | 0.2631 | 0.3303 | 0.3442 | 0.3808 |
Heze | 0.0243 | 0.0572 | 0.0715 | 0.0960 | 0.1066 | 0.1111 | 0.1384 | 0.1774 | 0.1873 | 0.2302 |
Mean | 0.2727 | 0.2861 | 0.3105 | 0.3441 | 0.3790 | 0.4241 | 0.4693 | 0.5254 | 0.5559 | 0.6164 |
City | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|
Jinan | 0.4847 | 0.4927 | 0.5003 | 0.5060 | 0.5416 | 0.5861 | 0.6174 | 0.6966 | 0.7639 | 0.8391 |
Qingdao | 0.5702 | 0.5521 | 0.5506 | 0.5610 | 0.5810 | 0.6214 | 0.7164 | 0.7713 | 0.8467 | 0.9067 |
Zibo | 0.4520 | 0.4590 | 0.4674 | 0.4725 | 0.4747 | 0.5103 | 0.5859 | 0.6901 | 0.6957 | 0.7574 |
Zaozhuang | 0.3912 | 0.3968 | 0.4058 | 0.4124 | 0.4323 | 0.4408 | 0.4274 | 0.4784 | 0.5446 | 0.6480 |
Dongying | 0.5340 | 0.5565 | 0.5749 | 0.6017 | 0.6280 | 0.6319 | 0.6753 | 0.6678 | 0.6962 | 0.7760 |
Yantai | 0.5096 | 0.4931 | 0.4998 | 0.5041 | 0.5114 | 0.5137 | 0.5546 | 0.6225 | 0.7523 | 0.8369 |
Weifang | 0.4139 | 0.4175 | 0.4274 | 0.4366 | 0.4443 | 0.4727 | 0.5845 | 0.6651 | 0.7442 | 0.7514 |
Jining | 0.3878 | 0.3929 | 0.3985 | 0.3932 | 0.4296 | 0.4391 | 0.4158 | 0.4870 | 0.5337 | 0.6609 |
Taian | 0.4063 | 0.4135 | 0.4263 | 0.4351 | 0.4475 | 0.4527 | 0.4665 | 0.5871 | 0.6662 | 0.7195 |
Weihai | 0.4952 | 0.4883 | 0.4871 | 0.4842 | 0.4833 | 0.5403 | 0.5933 | 0.6830 | 0.7490 | 0.8134 |
Rizhao | 0.3745 | 0.4168 | 0.3878 | 0.4491 | 0.4904 | 0.5619 | 0.5808 | 0.5960 | 0.6162 | 0.6970 |
Laiwu | 0.2467 | 0.2675 | 0.2829 | 0.3282 | 0.3748 | 0.4420 | 0.4802 | 0.5436 | 0.6305 | 0.6517 |
Linyi | 0.4071 | 0.4114 | 0.4150 | 0.4271 | 0.4386 | 0.4651 | 0.5477 | 0.6550 | 0.7578 | 0.7422 |
Dezhou | 0.3754 | 0.3945 | 0.3885 | 0.3940 | 0.4182 | 0.4723 | 0.4922 | 0.5512 | 0.6342 | 0.6703 |
Liaocheng | 0.3411 | 0.3482 | 0.3618 | 0.3734 | 0.4012 | 0.4715 | 0.5957 | 0.5945 | 0.6008 | 0.6439 |
Binzhou | 0.4269 | 0.4342 | 0.4365 | 0.4252 | 0.4527 | 0.4416 | 0.4357 | 0.4239 | 0.4801 | 0.5843 |
Heze | 0.2547 | 0.2882 | 0.3167 | 0.3328 | 0.3818 | 0.3990 | 0.4033 | 0.4130 | 0.4214 | 0.4279 |
Mean | 0.4160 | 0.4249 | 0.4310 | 0.4433 | 0.4666 | 0.4978 | 0.5396 | 0.5957 | 0.6549 | 0.7133 |
City | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|
Jinan | 0.3524 | 0.4018 | 0.4868 | 0.5197 | 0.5654 | 0.6243 | 0.6902 | 0.7458 | 0.8732 | 0.9221 |
Qingdao | 0.7225 | 0.7531 | 0.7929 | 0.8102 | 0.8487 | 0.8965 | 0.9135 | 0.9206 | 0.9385 | 0.9553 |
Zibo | 0.3276 | 0.4436 | 0.4935 | 0.5956 | 0.6461 | 0.6872 | 0.7242 | 0.7541 | 0.7893 | 0.8030 |
Zaozhuang | 0.1556 | 0.1767 | 0.2031 | 0.2217 | 0.2935 | 0.3417 | 0.4567 | 0.5286 | 0.5916 | 0.6588 |
Dongying | 0.3380 | 0.3868 | 0.4508 | 0.5972 | 0.6252 | 0.6480 | 0.6843 | 0.7262 | 0.7563 | 0.7846 |
Yantai | 0.2898 | 0.3744 | 0.4549 | 0.5275 | 0.5999 | 0.6726 | 0.7544 | 0.8290 | 0.8853 | 0.9130 |
Weifang | 0.2060 | 0.2815 | 0.3618 | 0.4542 | 0.5047 | 0.5693 | 0.6843 | 0.7244 | 0.8027 | 0.8778 |
Jining | 0.1699 | 0.1976 | 0.2465 | 0.3033 | 0.3579 | 0.4075 | 0.4508 | 0.4903 | 0.5398 | 0.5733 |
Taian | 0.1835 | 0.2140 | 0.2857 | 0.3112 | 0.4038 | 0.4637 | 0.5189 | 0.5974 | 0.6235 | 0.6627 |
Weihai | 0.5001 | 0.5781 | 0.6159 | 0.6753 | 0.7498 | 0.7638 | 0.7948 | 0.8415 | 0.8749 | 0.8999 |
Rizhao | 0.1276 | 0.1560 | 0.1703 | 0.1905 | 0.2267 | 0.2945 | 0.2670 | 0.3107 | 0.3585 | 0.4074 |
Laiwu | 0.2438 | 0.2915 | 0.3594 | 0.4257 | 0.4510 | 0.5045 | 0.5492 | 0.5479 | 0.5938 | 0.6189 |
Linyi | 0.1849 | 0.2413 | 0.2895 | 0.3583 | 0.3948 | 0.4188 | 0.4377 | 0.4670 | 0.4618 | 0.4892 |
Dezhou | 0.0730 | 0.0954 | 0.1091 | 0.1350 | 0.1841 | 0.3518 | 0.4694 | 0.4318 | 0.4821 | 0.5155 |
Liaocheng | 0.0781 | 0.1132 | 0.1703 | 0.2436 | 0.2698 | 0.3578 | 0.4079 | 0.4238 | 0.4815 | 0.5010 |
Binzhou | 0.0775 | 0.0853 | 0.0904 | 0.1102 | 0.1708 | 0.1987 | 0.2232 | 0.2363 | 0.2435 | 0.3326 |
Heze | 0.0067 | 0.0109 | 0.0244 | 0.0486 | 0.1095 | 0.1240 | 0.1308 | 0.1611 | 0.2413 | 0.2822 |
Mean | 0.1523 | 0.2071 | 0.2820 | 0.3684 | 0.4626 | 0.5092 | 0.5377 | 0.5887 | 0.6414 | 0.7032 |
References
- Liu, T.Y.; Su, C.W.; Jiang, X.Z. Is economic growth improving urbanisation? A cross-regional study of China. Urb. Stud. 2015, 52, 1883–1898. [Google Scholar] [CrossRef]
- Han, H.; Li, H. Coupling coordination evaluation between population and land urbanization in Ha-Chang urban agglomeration. Sustainability 2020, 12, 357. [Google Scholar] [CrossRef] [Green Version]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects (The 2014 Revision); UN: New York, NY, USA, 2014; pp. 7–36. [Google Scholar]
- Pu, Y.R.; Wang, Y.Y.; Wang, P. Driving effects of urbanization on city-level carbon dioxide emissions: From multiple perspectives of urbanization. Int. J. Urb. Sci. 2022, 26, 108–128. [Google Scholar] [CrossRef]
- Luo, Y.; Shen, J.; Chen, A.; Tao, Q.; Li, Q.; White, P.J.; Li, T.; Li, B.; Chen, L.; Li, H.; et al. Loss of organic carbon in suburban soil upon urbanization of Chengdu megacity, China. Sci. Total Environ. 2021, 785, 1–10. [Google Scholar] [CrossRef]
- Chen, M.X.; Liu, W.D.; Tao, X.L. Evolution and assessment on China’s urbanization 1960–2010: Under-urbanization or over-urbanization? Habitat Int. 2013, 38, 25–33. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2017. (In Chinese)
- Lin, Y.; Alfred, M.W. Urbanization, land development, and land financing: Evidence from Chinese cities. J. Urb. Aff. 2014, 36, 354–368. [Google Scholar]
- Wang, X.R.; Eddie Hui, C.M.; Sun, J.X. Population migration, urbanization and housing prices: Evidence from the cities in China. Habitat Int. 2017, 66, 49–56. [Google Scholar] [CrossRef]
- Liang, W.; Yang, M. Urbanization, economic growth and environmental pollution: Evidence from China. Sustain. Comput. Inform. Syst. 2019, 21, 1–9. [Google Scholar] [CrossRef]
- Li, B.; Chen, C.; Hu, B. Governing urbanization and the New Urbanization Plan in China. Environ. Urb. 2016, 28, 515–534. [Google Scholar] [CrossRef]
- Wang, X.-R.; Hui, E.C.-M.; Choguill, C.; Jia, S.-H. The new urbanization policy in China: Which way forward? Habitat Int. 2015, 47, 279–284. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, G.; Liu, D.; Yu, H.; Zhu, L.; Zhang, J. The interaction of population, industry and land in process of urbanization in China: A case study in Jilin province. Chin. Geogr. Sci. 2018, 28, 529–542. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Yang, P.; Zhang, B.; Hu, W. Spatio-temporal coupling characteristics and the driving mechanism of population-land-industry urbanization in the Yangtze River Economic Belt. Land 2021, 10, 400. [Google Scholar] [CrossRef]
- Chen, M.X.; Liu, W.D.; Lu, D.D. Challenges and the way forward in China’s new-type urbanization. Land Use Policy 2016, 55, 334–339. [Google Scholar] [CrossRef]
- Geng, B.; Zhang, X.; Liang, Y.; Bao, H.; Skitmore, M. Sustainable land financing in a new urbanization context: Theoretical connotations, empirical tests and policy recommendations. Resour. Conserv. Recycl. 2018, 128, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Xia, X.; Zhao, M.; Xu, K.; Li, X. Synergistic effects between financial development and improvements in new-type urbanization: Evidence from China. Emerg. Mark. Financ. Trade 2020, 56, 2055–2072. [Google Scholar] [CrossRef]
- Shi, L.; Cai, Z.; Ding, X.; Di, R.; Xiao, Q. What factors affect the level of green urbanization in the Yellow River Basin in the context of new-type urbanization? Sustainability 2020, 12, 2488. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.Z. New urbanization and coordinated regional development. Chinese J. Urb. Environ. Stud. 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Hu, B.L.; Chen, C.L. New urbanisation under globalisation and the social implications in China. Asia Pacific Policy Stud. 2015, 2, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Crankshaw, O.; Borel-Saladin, J. Causes of urbanisation and counter-urbanisation in Zambia: Natural population increase or migration? Urb. Stud. 2019, 56, 2005–2020. [Google Scholar] [CrossRef]
- Jiang, T.-B.; Deng, Z.-W.; Zhi, Y.-P.; Cheng, H.; Gao, Q. The effect of urbanization on population health: Evidence from China. Front. Pub. Health 2021, 9, 1–11. [Google Scholar] [CrossRef]
- Wang, X. Relationship between population urbanization and urban sprawl across different city sizes in China. Environ. Urb. ASIA 2021, 12, 202–219. [Google Scholar] [CrossRef]
- Shang, J.; Li, P.; Li, L.; Chen, Y. The relationship between population growth and capital allocation in urbanization. Technol. Forecast. Soc. Chang. 2018, 135, 249–256. [Google Scholar] [CrossRef]
- Fischer, G.; Winiwarter, W.; Cao, G.Y.; Ermolieva, T.; Hizsnyik, E.; Klimont, Z.; Wiberg, D.; Zheng, X.Y. Implications of population growth and urbanization on agricultural risks in China. Popul. Environ. 2012, 33, 243–258. [Google Scholar] [CrossRef]
- Ashraf, M.; Dewan, Y.Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar]
- Wu, J.; Cheng, D.; Xu, Y.; Huang, Q.; Feng, Z. Spatial-temporal change of ecosystem health across China: Urbanization impact perspective. J. Cleaner Prod. 2021, 326, 1–14. [Google Scholar] [CrossRef]
- Zhang, G.L.; Zhang, N.; Liao, W.M. How do population and land urbanization affect CO2 emissions under gravity center change? A spatial econometric analysis. J. Clean. Prod. 2018, 202, 510–523. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, Z.; Li, G.; Zhuo, Y.; Xu, Z. Spatial-temporal evolution of sustainable urbanization development: A perspective of the coupling coordination development based on population, industry, and built-up land spatial agglomeration. Sustainability 2018, 10, 1766. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Y. China’s new urbanization theory and strategic innovation. Sociol. Stud. 2013, 28, 1–14. (In Chinese) [Google Scholar]
- Shen, M.Y.; Zhang, J.X. China’s rural transformation and revival in the context of new urbanization. City Plan. Rev. 2015, 39, 30–34. (In Chinese) [Google Scholar]
- Xu, L.; Cao, H.H. From measure to guidance: Galactic model of new-type urbanization and its evaluation system. J. Pub. Manag. 2014, 11, 65–74. (In Chinese) [Google Scholar]
- Wang, F.; Zhang, F.; Lin, X.Y.; Shi, T.W.; Chen, H.T. Study on coupling coordination degree among “population, land, economic and society” urbanization in the Yangtze River Delta region. J. Ind. Technol. Econ. 2018, 37, 45–52. (In Chinese) [Google Scholar]
- Li, X.; Li, X.X.; Ou, M.H. Evaluation of urbanization development coordination and analysis of regional disparities in Jiangsu province. Hum. Geogr. 2012, 27, 50–54. (In Chinese) [Google Scholar]
- Li, X.G.; Sun, Y. The dynamic effect of population, land, economic urbanization. Econ. Prob. 2018, 3, 106–111. (In Chinese) [Google Scholar]
- Zhang, X.J.; Xu, W.X.; Liu, C.J. Spatiotemporal disparity of coupling coordination of economic-land-population-society urbanization in Guangdong-Hong Kong-Macao region and its influencing factors. Inq. Econ. Issues 2019, 10, 54–64. (In Chinese) [Google Scholar]
- Chen, Y.; Tian, W.T.; Ma, W.B.; Gu, J.L.; Ma, Z.H. Analysis on spatiotemporal differentiation and influence factors of coordination degree between population urbanization and land urbanization based on ESDA-GWR: A case study of the central plain urban agglomeration. Chinese J. Agric. Resour. Reg. Plan. 2020, 41, 88–99. (In Chinese) [Google Scholar]
- Cui, X.F.; Zhang, G.H.; Li, F. A study on spatial differentiation of land intensive use potential: Based on the perspective of “population-economic” dual driving model of land urbanization. East China Econ. Manag. 2016, 30, 62–67. (In Chinese) [Google Scholar]
- Wu, Y.F.; Liu, Y.S.; Li, Y.R. Spatio-temporal coupling of demographic-landscape urbanization and its driving forces in China. Acta Geogr. Sin. 2018, 73, 1865–1879. (In Chinese) [Google Scholar]
- Zhu, G.L.; Zou, W.; Wang, X.Q. Comparison of economic structure on the coordinated development between population and land urbanization. China Popul. Resour. Environ. 2018, 28, 93–104. (In Chinese) [Google Scholar]
- Wu, Y.; Cui, Z.X.; Hu, C. Does the new urbanization influence air quality in China? Front. Environ. Sci. 2021, 9, 1–14. [Google Scholar] [CrossRef]
- Jin, D.; Dai, L.L. Temporal and spatial characteristics and driving factors of coordination development between population urbanization and land urbanization. China Land Sci. 2021, 35, 74–84. (In Chinese) [Google Scholar]
- Daniel, R.; Alois, H. EU cohesion policy and spatial economic growth: Trajectories in economic thought. Eur. Plan. Stud. 2020, 28, 2116–2133. [Google Scholar]
- Alacevich, M. Early development economics debates revisited. J. Hist. Econ. Thought 2011, 33, 145–171. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zhang, Z. Coupling and coordination level of the population, land, economy, ecology and society in the process of urbanization: Measurement and spatial differentiation. Sustainability 2021, 13, 3171. [Google Scholar] [CrossRef]
- Raffaele, L.; Giovanni, S. Nature-based solutions: Settling the issue of sustainable urbanization. Environ. Res. 2019, 172, 394–398. [Google Scholar]
- Lv, T.; Wang, L.; Zhang, X.; Xie, H.; Lu, H.; Li, H.; Liu, W.; Zhang, Y. Coupling coordinated development and exploring its influencing factors in Nanchang, China: From the perspectives of land urbanization and population urbanization. Land 2019, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Li, Y.; Ma, Z. Exploring the interactive development between population urbanization and land urbanization: Evidence from Chongqing, China (1998–2016). Sustainability 2018, 10, 1741. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Geng, Q.; Si, X.; Kan, L. Coupling and coordination analysis of urbanization, economy and environment of Shandong Province, China. Environ. Dev. Sustain. 2021, 23, 10397–10415. [Google Scholar] [CrossRef]
- Xu, X.; Peng, H.; Xu, Q.; Xiao, H.; Benoit, G. Land changes and conflicts coordination in coastal urbanization: A case study of the Shandong Peninsula in China. Coastal Manag. 2009, 37, 54–69. [Google Scholar] [CrossRef]
- Roshni, T.; Kumari, N.; Renji, R.; Drisya, J. Modelling land surface temperature using gamma test coupled wavelet neural network. Adv. Environm. Res. 2017, 6, 265–279. [Google Scholar]
- Feng, Q.; Wu, S.; Du, Y.; Xue, H.; Xiao, F.; Ban, X.; Li, X. Improving neural network prediction accuracy for PM10 individual air quality index pollution levels. Environ. Eng. Sci. 2013, 30, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Dunea, D.; Pohoata, A.; Iordache, S. Using wavelet–feedforward neural networks to improve air pollution forecasting in urban environments. Environ. Monit. Assess 2015, 187, 477–493. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zhang, L.; Yan, J.; Wang, X.; Wang, T. Spatial–temporal characteristics and influencing factors of coupled coordination between urbanization and eco-environment: A case study of 13 urban agglomerations in China. Sustainability 2020, 12, 8821. [Google Scholar] [CrossRef]
- Qi, X.; Han, Y.; Kou, P. Population urbanization, trade openness and carbon emissions: An empirical analysis based on China. Air Qual. Atmos. Health 2020, 13, 519–528. [Google Scholar] [CrossRef]
- Anser, M.K.; Alharthi, M.; Aziz, B.; Wasim, S. Impact of urbanization, economic growth, and population size on residential carbon emissions in the SAARC countries. Clean Techn. Environ. Policy 2020, 22, 923–936. [Google Scholar] [CrossRef]
- The Land Survey Results Sharing Application Service Platform of the Ministry of Natural Resources of PRC. Available online: https://tddc.mnr.gov.cn/ (accessed on 10 January 2022).
- Li, Z.G.; Wang, J.; Che, S. Effects of land urbanization on spatial emission reduction: Internal mechanism and China experience. Stat. Res. 2021, 38, 89–104. (In Chinese) [Google Scholar]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.G. Impact of urban and rural household consumption on carbon emissions in China. Econ. Syst. Res. 2013, 25, 287–299. [Google Scholar] [CrossRef]
- Wang, R.; Li, F.; Hu, D.; Li, B. Understanding eco-complexity: Social-economic-natural complex ecosystem approach. Ecol. Complex. 2011, 8, 15–29. [Google Scholar] [CrossRef]
- He, B.-J.; Zhao, D.-X.; Zhu, J.; Darko, A.; Gou, Z.-H. Promoting and implementing urban sustainability in China: An integration of sustainable initiatives at different urban scales. Habitat Int. 2018, 82, 83–93. [Google Scholar] [CrossRef]
- He, B.-J.; Zhu, J.; Zhao, D.-X.; Gou, Z.-H.; Qi, J.-D.; Wang, J. Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy 2019, 86, 147–157. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, X.; Khongnawang, T.; Arshad, M.; Triantafilis, J. A Vis-NIR spectral library to predict clay in Australian cotton growing soil. Soil Sci. Soc. Am. J. 2019, 82, 1347–1357. [Google Scholar] [CrossRef]
- Gao, C.; Tao, S.; He, Y.; Su, B.; Sun, M.; Mensah, I.A. Effect of population migration on spatial carbon emission transfers in China. Energy Policy 2021, 156, 1–13. [Google Scholar] [CrossRef]
- Liu, W. EKC test study on the relationship between carbon dioxide emission and regional economic growth. Carb. Manag. 2020, 11, 415–425. [Google Scholar] [CrossRef]
- Lv, L.G.; Wu, Z.P.; Wang, J.X.; Wu, S.H.; Zhou, S.L. Soil carbon dioxide efflux responds to land-use changes in the sub-urban regions of Nanjing, China. Appl. Ecol. Environ. Res. 2016, 14, 21–32. [Google Scholar] [CrossRef]
- Hepburn, C.; Qi, Y.; Stern, N.; Ward, B.; Xie, C.; Zenghelis, D. Towards carbon neutrality and China’s 14th Five-Year Plan: Clean energy transition, sustainable urban development, and investment priorities. Environ. Sci. Ecotechnol. 2021, 8, 100130. [Google Scholar] [CrossRef]
New-Type Urbanization Subsystems | Indexes | Units | Index Significance |
---|---|---|---|
Population urbanization | The proportion of the non-farm population in cities | % | Key demographic indicators for measuring urbanization |
The average wage of employees | yuan | Imply the quality of the urban population | |
Urban registered unemployment rate | % | The implied scale of the city’s employed population | |
Per capita disposable income | yuan | Reflects household income and living costs | |
Land urbanization | The proportion of urban construction land | % | Key statistical indicators of urban land use |
Government revenue averaged overland | yuan/hm2 | Reflects government’s land financing ability | |
Investment in fixed assets averaged overland | yuan/hm2 | Reflects degree of land conservation and intensification | |
Per capita road | m2/person | The element that implies land circulation ability | |
Economic urbanization | Ten thousand GDP energy consumption | ton SCE/10, 000 yuan | Reflects the level of green economic growth |
GDP growth rate | % | Reflects the level of economic growth | |
The ratio of secondary and tertiary industries | % | Reflects the structure of economic growth | |
Actual foreign investment | yuan | Reflects economic growth of foreign trade dependence |
Variable | Units | Mean | Standard Error | Minimum | Maximum | FE | RE |
---|---|---|---|---|---|---|---|
ln Total CO2 Emissions | Millions of tons | 3.613 | 0.574 | 1.692 | 4.370 | ||
PLEU Coupling Coordination Degree | 0.455 | 0.246 | 0.007 | 0.955 | 0.385 * (2.71) | 0.361 * (2.51) | |
Squared of PLEU Coupling Coordination Degree | 0.267 | 0.244 | 0.00004 | 0.913 | –0.302 ** (−3.59) | −0.287 *** (−3.38) | |
ln Per Capita GDP | yuan | 10.996 | 0.578 | 9.124 | 12.379 | 0.008 (0.22) | 0.007 (0.21) |
ln Urban Population Density | Person/km2 | 9.312 | 0.391 | 8.411 | 10.151 | 0.0006 (0.03) | −0.001 (−0.07) |
ln Per Capital Expenditure of Urban Households | yuan | 9.609 | 0.291 | 8.826 | 10.259 | 0.152 * (2.91) | 0.147 ** (2.83) |
ln Total Import and Export Volume | yuan | 15.259 | 1.120 | 12.915 | 17.709 | 0.044 ** (3.36) | 0.049 *** (3.43) |
Energy Consumption Added of Industrial | % | 1.707 | 0.912 | 0.575 | 6.110 | 0.038 (1.24) | 0.031 (1.00) |
Constant | 1.278 * (2.54) | 1.287 * (2.32) | |||||
Observations | 170 | 170 | 170 | 170 | 170 | 170 | |
Adjusted R2 | 0.7399 | 0.7396 | |||||
Hausman test | Accept | Reject |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Wang, J.; Kang, X.; Liu, J.; Xia, Z.; Du, K.; Zhu, X. Spatio-Temporal Analysis of Population-Land-Economic Urbanization and Its Impact on Urban Carbon Emissions in Shandong Province, China. Land 2022, 11, 266. https://doi.org/10.3390/land11020266
Liu K, Wang J, Kang X, Liu J, Xia Z, Du K, Zhu X. Spatio-Temporal Analysis of Population-Land-Economic Urbanization and Its Impact on Urban Carbon Emissions in Shandong Province, China. Land. 2022; 11(2):266. https://doi.org/10.3390/land11020266
Chicago/Turabian StyleLiu, Kui, Jian Wang, Xiang Kang, Jingming Liu, Zheyi Xia, Kai Du, and Xuexin Zhu. 2022. "Spatio-Temporal Analysis of Population-Land-Economic Urbanization and Its Impact on Urban Carbon Emissions in Shandong Province, China" Land 11, no. 2: 266. https://doi.org/10.3390/land11020266