Addressing Climate Change Vulnerability in the IUCN Red List of Ecosystems—Results Demonstrated for a Cross-Section of Major Vegetation-Based Ecosystem Types in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ecological Classification and Distribution
2.2. Analytical Framework for Vulnerability Assessment
- Very High climate change severity results from combining high exposure with low resilience (i.e., both trending toward “least favorable” scores). Ecosystem transformation is most likely to occur in these types. This HCCVI result equates to “80%” severity for RLE application.
- High climate change severity results from combining either high or moderate exposure with low or medium resilience. This HCCVI result equates to “50%” severity for RLE application.
- Moderate climate change severity results from a variety of combinations for exposure and resilience; initially with circumstances where both are scored as moderate. This HCCVI result equates to “30%” severity for RLE application.
- Low climate change severity results from combining low exposure with high resilience (i.e., both trending toward “most favorable” scores). This HCCVI result equates to “<30%” severity for RLE application, and therefore does not affect RLE scoring.
2.3. Measuring Climate Change Severity
2.4. Relative Climate Change Severity Applied to Red List Criterion C2b
3. Results
3.1. RLE Results Prior to Application of Criterion C2b
3.2. RLE Results with Application of Criterion C2b
IUCN Red List of Ecosystems (RLE) Results with and without HCCVI Application to Criterion C2b | Potential/ Historic Extent (km2) | RLE with HCCVI (C2b) | RLE C2b | RLE w/out HCCVI (C2b) | RLE A3 | RLE B1 | RLE B2 | RLE C3 | RLE D3 | Climate Change Severity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(RCP8.5) 2035–2065 | |||||||||||||
Very High | High | Mod | Low | ||||||||||
≥80% Severity | ≥50% Severity | ≥30% Severity | <30% Severity | ||||||||||
Terrestrial Ecological System Types | (% Area) | (% Area) | (% Area) | (% Area) | |||||||||
Western Cool Temperate Subalpine Woodlands | |||||||||||||
Rocky Mountain Subalpine Dry–Mesic Spruce–Fir Forest and Woodland | 94,256 | VU | VU | LC | LC | LC | LC | DD | LC | 0% | 49% | 49% | 2% |
Aspen Forests and Woodlands | |||||||||||||
Inter-Mountain Basins Aspen–Mixed Conifer Forest and Woodland | 27,929 | VU | VU | NT (LC-VU) | DD | LC | LC | VU | LC | 0% | 17% | 75% | 8% |
Montane Conifer Forests and Woodlands | |||||||||||||
Southern Rocky Mountain Dry–Mesic Montane Mixed Conifer Forest and Woodland | 15,430 | VU | VU | VU | LC | LC | LC | VU | LC | 0% | 26% | 56% | 18% |
Southern Rocky Mountain Mesic Montane Mixed Conifer Forest and Woodland | 8961 | VU | VU | NT (LC-VU) | LC | LC | LC | VU | LC | 0% | 24% | 61% | 14% |
Western Pine Woodlands | |||||||||||||
Southern Rocky Mountain Ponderosa Pine Woodland | 38,713 | VU | VU | VU | LC | LC | LC | VU | LC | 0% | 40% | 52% | 8% |
Great Basin Pinyon–Juniper Woodland | 22,304 | VU | VU | NT | LC | LC | LC | NT | NT | 0% | 54% | 42% | 4% |
Columbia Plateau Western Juniper Woodland and Savanna | 7784 | VU | VU | NT (LC-NT) | LC | LC | LC | NT | LC | 0% | 28% | 68% | 5% |
Eastern Cool Temperate Forest and Barrens | |||||||||||||
Laurentian Acadian Northern Hardwood Forest | 274,173 | EN | EN | LC | LC | LC | LC | DD | LC | 23% | 64% | 9% | 1% |
North Central Interior Dry–Mesic Oak Forest and Woodland | 141,658 | VU | VU | VU | VU | LC | LC | VU | VU | 0% | 76% | 23% | 1% |
North Central Interior Beech–Maple Forest | 88,162 | EN | VU | EN | EN | LC | LC | DD | CR | 0% | 79% | 18% | 3% |
Laurentian Acadian Pine–Hemlock–Hardwood Forest | 76,163 | EN | EN | VU (LC-VU) | VU | LC | LC | DD | LC | 36% | 50% | 10% | 1% |
Ozark Ouachita Dry–Mesic Oak Forest | 59,722 | EN | EN | EN (VU-EN) | LC | LC | LC | EN | NT | 3% | 91% | 5% | 0% |
Ozark Ouachita Dry Oak Woodland | 58,336 | EN | EN | EN | VU | LC | LC | EN | DD | 0% | 95% | 5% | 0% |
North Central Interior Maple–Basswood Forest | 49,899 | EN | VU | EN | EN | LC | LC | DD | EN | 0% | 49% | 50% | 1% |
Laurentian Acadian Northern Pine–Oak Forest | 44,841 | EN | EN | VU | VU | LC | LC | VU | NT | 16% | 72% | 10% | 0% |
Laurentian Pine Oak Barrens | 3731 | EN | EN | EN (VU-EN) | EN | LC | LC | EN | VU | 33% | 65% | 1% | 0% |
Eastern Warm Temperate Forest and Woodland | |||||||||||||
Atlantic Coastal Plain Upland Longleaf Pine Woodland | 62,261 | EN | VU | EN | EN | LC | LC | EN | EN | 0% | 74% | 25% | 2% |
Western Cool Semidesert and Temperate Shrubland | |||||||||||||
Inter-Mountain Basins Big Sagebrush Shrubland | 282,439 | VU | VU | NT | LC | LC | LC | NT | NT | 0% | 22% | 70% | 8% |
Inter-Mountain Basins Big Sagebrush Steppe | 182,114 | VU | VU | VU | LC | LC | LC | NT | VU | 0% | 16% | 74% | 10% |
Inter-Mountain Basins Montane Sagebrush Steppe | 83,707 | VU | VU | LC | LC | LC | LC | LC | LC | 0% | 44% | 46% | 9% |
Great Basin Xeric Mixed Sagebrush Shrubland | 62,126 | VU | VU | VU | VU | LC | LC | NT | NT | 0% | 0% | 70% | 30% |
Northern and Central Californian Dry–Mesic Chaparral | 20,966 | VU | VU | VU | LC | LC | LC | VU | VU | 0% | 41% | 51% | 7% |
Rocky Mountain Gambel Oak–Mixed Montane Shrubland | 19,637 | VU | VU | LC (LC-NT) | LC | LC | LC | NT | LC | 0% | 23% | 65% | 12% |
Mixed Salt Desert Scrub | |||||||||||||
Inter-Mountain Basins Mixed Salt Desert Scrub | 95,681 | VU | VU | NT | NT | LC | LC | NT | NT | 0% | 38% | 57% | 5% |
Inter-Mountain Basins Mat Saltbush Shrubland | 10,677 | VU | VU | LC | LC | LC | LC | DD | DD | 0% | 40% | 58% | 2% |
Cool Temperate Mixed Grasslands | |||||||||||||
Northwestern Great Plains Mixedgrass Prairie | 620,860 | VU | VU | VU | VU | LC | LC | DD | LC | 0% | 0% | 86% | 14% |
Western Great Plains Foothill and Piedmont Grassland | 12,692 | VU | VU | VU | VU | LC | LC | NT | LC | 0% | 67% | 29% | 4% |
Southern Rocky Mountain Montane Subalpine Grassland | 3087 | VU | VU | LC (LC-NT) | LC | LC | LC | NT | LC | 0% | 41% | 43% | 15% |
Cool Temperate Tall Grasslands | |||||||||||||
Central Mixedgrass Prairie | 258,932 | VU | VU | VU | VU | LC | LC | DD | VU | 0% | 44% | 55% | 1% |
Central Tallgrass Prairie | 241,651 | CR | VU | CR | CR | LC | LC | DD | CR | 0% | 40% | 60% | 0% |
Northern Tallgrass Prairie | 157,254 | CR | VU | CR | CR | LC | LC | DD | CR | 0% | 22% | 77% | 0% |
Warm Temperate Grasslands | |||||||||||||
Western Great Plains Shortgrass Prairie | 258,868 | VU | VU | NT | LC | LC | LC | NT | LC | 0% | 6% | 87% | 6% |
Southeastern Great Plains Tallgrass Prairie | 108,030 | VU | VU | VU | VU | LC | LC | DD | NT | 0% | 0% | 98% | 2% |
4. Discussion
4.1. Challenges Applying the IUCN RLE Framework
4.2. Advancing the HCCVI in Different Ecosystems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noss, R.F.; LaRoe, E.T., III; Scott, J.M. Endangered Ecosystems of the United States: A Preliminary Assessment of Loss and Degradation; US Department of the Interior, National Biological Service: Washington, DC, USA, 1995; Volume 28.
- Keith, D.A.; Rodríguez, J.P.; Rodriguez-Clark, K.; Nicholson, E.; Aapala, K.; Alonso, A.; Asmussen, M.; Bachman, S.; Basset, A.; Barrow, E.G.; et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 2013, 8, e62111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comer, P.J. Red Listing Temperate Grasslands and Savannas in North America. In Imperiled: The Encyclopedia of Conservation. Reference Module in Earth Systems and Environmental Sciences; ScienceDirect, Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Comer, P.J.; Hak, J.C.; Seddon, E. Documenting at-risk status of terrestrial ecosystems in temperate and tropical North America. Conserv. Sci. Pract. 2022, 4, e603. [Google Scholar] [CrossRef]
- Swetnam, T.W.; Betancourt, J.L. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J. Clim. 1998, 11, 3128–3147. [Google Scholar] [CrossRef]
- Wells, P.V. Paleobiogeography of montane islands in the Great Basin since the last glaciopluvial. Ecol. Monogr. 1983, 53, 341–382. [Google Scholar] [CrossRef]
- Betancourt, J.L.; Van Devender, T.R.; Martin, P.S. (Eds.) Packrat Middens: The Last 40,000 Years of Biotic Change; University of Arizona Press: Tucson, AZ, USA, 1990. [Google Scholar]
- Barros, V.R.; Field, C.B.; Dokken, D.J.; Mastrandrea, M.D.; Mach, K.J.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. Climate Change 2014: Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Bland, L.M.; Keith, D.A.; Miller, R.M.; Murray, N.J.; Rodriguez, J.P. (Eds.) Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria; Version 1.0; IUCN: Gland, Switzerland, 2017; ix + 94pp. [Google Scholar]
- Comer, P.J.; Hak, J.C.; Reid, M.S.; Auer, S.L.; Schulz, K.A.; Hamilton, H.H.; Smyth, R.L.; Kling, M.M. Habitat Climate Change Vulnerability Index Applied to Major Vegetation Types of the Western Interior United States. Land 2019, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Comer, P.; Faber-Langendoen, D.; Evans, R.; Gawler, S.; Josse, C.; Kittel, G.; Menard, S.; Pyne, M.; Reid, M.; Schulz, K.; et al. Ecological Systems of the United States: A Working Classification of US Terrestrial Systems; NatureServe: Arlington, VA, USA, 2003. [Google Scholar]
- Comer, P.J.; Schulz, K.A. Standardized ecological classification for mesoscale mapping in the southwestern United States. Rangel. Ecol. Manag. 2007, 60, 324–335. [Google Scholar] [CrossRef]
- Rollins, M.G. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int. J. Wildland Fire 2009, 18, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Comer, P.J.; Hak, J.C.; Josse, C.; Smyth, R. Long-term loss in extent and current protection of terrestrial ecosystem diversity in the temperate and tropical Americas. PLoS ONE 2020, 15, e0234960. [Google Scholar] [CrossRef]
- O’Donnell, M.S.; Ignizio, D.A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Surv. Data Ser. 2012, 691, 4–9. [Google Scholar]
- Damschen, E.I.; Baker, D.V.; Bohrer, G.; Nathan, R.; Orrock, J.L.; Turner, J.R.; Brudvig, L.A.; Haddad, N.M.; Levey, D.J.; Tewksbury, J.J. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proc. Natl. Acad. Sci. USA 2014, 111, 3484–3489. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Keeley, J.E. Abrupt climate-independent fire regime changes. Ecosystems 2014, 17, 1109–1120. [Google Scholar] [CrossRef]
- Krist, F.J., Jr.; Ellenwood, J.R.; Wood, M.E.; McMahan, A.J.; Cowardin, J.P.; Ryerson, D.E.; Sapio, F.J.; Zweifler, M.O.; Romero, A.S. 2027 National Insect and Disease Forest Risk Assessment; USDA Forest Service, Forest Health Technology Enterprise Team: Fort Collins, CO, USA, 2013.
- Whitney, G.G. From Coastal Wilderness to Fruited Plain: A History of Environmental Change in Temperate North America from 1500 to the Present; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Noss, R.F.; Franklin, J.F.; Baker, W.L.; Schoennagel, T.; Moyle, P.B. Managing fire-prone forests in the western United States. Front. Ecol. Environ. 2006, 4, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Bradley, B.A. Assessing ecosystem threats from global and regional change: Hierarchical modeling of risk to sagebrush ecosystems from climate change, land use and invasive species in Nevada, USA. Ecography 2010, 33, 198–208. [Google Scholar] [CrossRef]
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. Chaparral landscape conversion in southern California. In Valuing Chaparral; Springer: Cham, Switzerland, 2018; pp. 323–346. [Google Scholar]
- Fralish, J.S. Community succession, diversity, and disturbance in the central hardwood forest. In Conservation in Highly Fragmented Landscapes; Springer: Boston, MA, USA, 1997; pp. 234–266. [Google Scholar]
- Smith, M.D.; Knapp, A.K. Exotic plant species in a C 4-dominated grassland: Invasibility, disturbance, and community structure. Oecologia 1999, 120, 605–612. [Google Scholar] [CrossRef]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.; Field, C.B.; Ackerly, D. The velocity of climate change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Dobrowski, S.Z.; Abatzoglou, J.; Swanson, A.K.; Greenberg, J.A.; Mynsberge, A.R.; Holden, Z.A.; Schwartz, M.K. The climate velocity of the contiguous U nited S tates during the 20th century. Glob. Chang. Biol. 2013, 19, 241–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandel, B.; Arge, L.; Dalsgaard, B.; Davies, R.G.; Gaston, K.J.; Sutherland, W.J.; Svenning, J.-C. The influence of Late Quaternary climate-change velocity on species endemism. Science 2011, 334, 660–664. [Google Scholar] [CrossRef] [Green Version]
- Bland, L.M.; A Rowland, J.; Regan, T.J.; A Keith, D.; Murray, N.J.; E Lester, R.; Linn, M.; Rodríguez, J.P.; Nicholson, E. Developing a standardized definition of ecosystem collapse for risk assessment. Front. Ecol. Environ. 2018, 16, 29–36. [Google Scholar] [CrossRef]
- Dorrough, J.; Tozer, M.; Armstrong, R.; Summerell, G.; Scott, M.L. Quantifying uncertainty in the identification of endangered ecological communities. Conserv. Sci. Pract. 2021, 3, e537. [Google Scholar] [CrossRef]
- Unnasch, R.S.; Braun, D.P.; Comer, P.J.; Eckert, G.E. The Ecological Integrity Assessment Framework: A Framework for Assessing the Ecological Integrity of Biological and Ecological Resources of the National Park System (Version 1.1); Natural Resource Report; NPS/NRSS/BRD/NRR—2018/1602; National Park Service: Fort Collins, CO, USA, 2018.
- Comer, P.J.; Crist, P.J.; Reid, M.S.; Hak, J.; Hamilton, H.; Braun, D.; Kittel, G.; Varley, I.; Unnasch, B.; Auer, S.; et al. A Rapid Ecoregional Assessment of the Central Basin and Range Ecoregion; Report, Appendices, and Databases Provided to the Bureau of Land Management; BLM: Washington, DC, USA, 2013. [Google Scholar]
- Chambers, J.C.; Bradley, B.A.; Brown, C.S.; D’Antonio, C.; Germino, M.J.; Grace, J.B.; Hardegree, S.P.; Miller, R.F.; Pyke, D.A. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in cold desert shrublands of western North America. Ecosystems 2014, 17, 360–375. [Google Scholar] [CrossRef]
- Hansen, L.; Biringer, J.L.; Hoffman, J. Buying Time: A User’s Manual to Building Resistance and Resilience to Climate Change in Natural Systems; World Wildlife Fund: Berlin, Germany, 2003. [Google Scholar]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.C.; Beck, J.L.; Campbell, S.; Carlson, J.; Christiansen, T.J.; Clause, K.J.; Dinkins, J.B.; Doherty, K.E.; Griffin, K.A.; Havlina, D.W.; et al. Using Resilience and Resistance Concepts to Manage Threats to Sagebrush Ecosystems, Gunnison Sage-Grouse, and Greater Sage-Grouse in Their Eastern Range: A Strategic Multi-Scale Approach; Gen. Tech. Rep. RMRS-GTR-356; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2016; 143p.
Criterion | A | B | C | D |
---|---|---|---|---|
Reduction in Distribution | Restricted Distribution | Environmental Degradation | Disruption of Biotic Processes | |
Application of Indicator | Extent over time: | Current extent: | Relative severity and extent: | Relative severity and extent: |
A1. Past 50 years | B1. Extent of occurrence | C1. Past 50 years | D1. Past 50 years | |
A2a. Next 50 years | B2. Area of occurrence | C2a. Next 50 years | D2a. Next 50 years | |
A2b. Any 50 years including present | B3. Number of locations | C2b. Any 50 years including present | D2b. Any 50 years including present | |
A3. Since 1750 (or pre-industrial land use) | C3. Since 1750 (or pre-industrial land use) | D3. Since 1750 (or pre-industrial land use) |
Criterion C2 (a and b) | Critically Endangered | Endangered | Vulnerable |
---|---|---|---|
Environmental degradation based on change in abiotic variables affecting a fraction of the extent of the ecosystem and with relative severity | ≥80% extent with ≥80% relative severity | ≥50% extent with ≥80% relative severity | ≥30% extent with ≥80% relative severity |
≥80% extent with ≥50% relative severity | ≥50% extent with ≥50% relative severity | ||
≥80% extent with ≥30% relative severity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comer, P.J.; Hak, J.C.; McIntyre, P. Addressing Climate Change Vulnerability in the IUCN Red List of Ecosystems—Results Demonstrated for a Cross-Section of Major Vegetation-Based Ecosystem Types in the United States. Land 2022, 11, 302. https://doi.org/10.3390/land11020302
Comer PJ, Hak JC, McIntyre P. Addressing Climate Change Vulnerability in the IUCN Red List of Ecosystems—Results Demonstrated for a Cross-Section of Major Vegetation-Based Ecosystem Types in the United States. Land. 2022; 11(2):302. https://doi.org/10.3390/land11020302
Chicago/Turabian StyleComer, Patrick J., Jon C. Hak, and Patrick McIntyre. 2022. "Addressing Climate Change Vulnerability in the IUCN Red List of Ecosystems—Results Demonstrated for a Cross-Section of Major Vegetation-Based Ecosystem Types in the United States" Land 11, no. 2: 302. https://doi.org/10.3390/land11020302
APA StyleComer, P. J., Hak, J. C., & McIntyre, P. (2022). Addressing Climate Change Vulnerability in the IUCN Red List of Ecosystems—Results Demonstrated for a Cross-Section of Major Vegetation-Based Ecosystem Types in the United States. Land, 11(2), 302. https://doi.org/10.3390/land11020302