Disturbances Brought about by Human Activities in Relation to the Eco-Environment of the Main Stream of the Tarim River, 2000–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Disturbance Degree Model
2.3.2. The Revised ESV Model
3. Results
3.1. Spatiotemporal Analysis of the Disturbance of Human Activities to the Main Stream of the Tarim River
3.1.1. Change of Cultivated Land and Its Conversion with Other Land Cover Categories
3.1.2. The Spatiotemporal Distribution and Variation of the Disturbance Index
The Spatiotemporal Distribution of the Disturbance Index
Spatiotemporal Variation of Disturbance Index
3.2. The Influence of Human Activities on the ESV in the Main Stream of the Tarim River
3.2.1. Changes in ESV Caused by Changes in the Area of Cultivated Land
3.2.2. The Spatiotemporal Distribution of and Variation in ESV
The Spatiotemporal Distribution of ESV
The Spatiotemporal Variation of ESV
4. Discussion
5. Conclusions
- (1)
- The disturbance index values increased over the study period, and the values took on a varied spatial distribution. During the 20 years studied, the disturbance index value of human activities in relation to the main stream of the Tarim River increased from 0.3285 to 0.3744, or by 13.96%. Of all the land cover categories addressed, the area of cultivated land increased the most, and its disturbance to the ecosystem was also found to be the most significant. High disturbance index values took on a patchy distribution in the west and a band or dot distribution in the eastern part of the middle reaches of the river; the level of disturbance to the local ecosystem brought about by human activities was found to decrease as one moves downstream. We note that the areas characterized by high and moderate disturbance index values expanded over the period studied but that the area of low values decreased. The growth areas of lower values were scattered in patches, bands, and dots and did not maintain significant spatial continuity.
- (2)
- The total ESV levels increased over the study period, and the spatial distribution of the ESV levels was uneven. During the 20 years studied, the ESV levels experienced a net growth of 25,733.20 million Yuan, adopting a growth rate of 180.06%; this indicates that the eco-environment improved in the main stream of the Tarim River. Wetland and water bodies were the land cover categories that contributed most to this observed increase in ESV levels. A substantial increase in the area of cultivated land within the subject site resulted in a reduction in ESV to the sum of 579.2 million Yuan, a decrease that, to a large extent, counteracted the effect of ecological governance measures. The distribution of ESV levels was uneven across the subject site, with the high ESV values mainly being located in the western and central parts of the site as bands, while the low values were mainly found in the eastern part of the middle reaches and in the site’s east. The ESV levels increased in most parts of the site, and the regions with higher growth rates were mainly located in the western part of the study area and the western part of the middle reaches of the river and adopted a distribution in the form of bands, while areas of decrease took on a more scattered form, presenting as dots or patches.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. 2015. Available online: http://www.un.org/content/undp/en/home/mdgoverview.html (accessed on 26 October 2020).
- UN. 2015. Available online: http://www.un.org/sustainabledevelopment/biodiversity.html (accessed on 26 October 2020).
- Xing, Z.; Ma, M.; Wei, Y.; Zhang, X.; Yu, Z.; Yi, P. A new agricultural drought index considering the irrigation water demand and water supply availability. Nat. Hazards 2020, 104, 2409–2429. [Google Scholar] [CrossRef]
- Kedzior, M.; Zawadzki, J. SMOS data as a source of the agricultural drought information: Case study of the Vistula catchment, Poland. Geoderma 2017, 306, 167–182. [Google Scholar] [CrossRef]
- Qian, Z. A preliminary understanding of the governance of the Tarim River Basin. Chin. Water Resour. 2000, 1, 5–8. (In Chinese) [Google Scholar]
- Zhang, M.; Wang, K.; Liu, H.; Zhang, C.; Yue, Y.; Qi, X. Effect of ecological engineering projects on ecosystem services in a karst region: A case study of northwest Guangxi, China. J. Clean. Prod. 2018, 183, 831–842. [Google Scholar] [CrossRef]
- Liu, G.; Yin, G. Twenty-five years of reclamation dynamics and potential eco-environmental risks along the Tarim River, NW China. Environ. Earth Sci. 2020, 79, 11. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Y.; Shi, P.; Zhang, L.; Pan, J.; Zhao, H. Land use and land cover change and driving mechanism in the arid inland river basin: A case study of the Tarim River, Xinjiang, China. Environ. Earth Sci. 2013, 68, 591–604. [Google Scholar] [CrossRef]
- Pickett, S.; White, P. The Ecology of Natural Disturbance and Patch Dynamics; Academic Press Inc.: Orlando, FL, USA, 1985. [Google Scholar]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef]
- Doherty, T.; Hays, G.; Driscoll, D. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 2021, 5, 513–519. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, J.; Kuang, W.; Ouyang, Z.; Xie, Z. Disturbance impacts of land use change on biodiversity conservation priority areas across China: 1990–2010. J. Geogr. Sci. 2015, 25, 515–529. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Yang, R.; Zhuang, D.; Lu, Z. Spatial gradient differences of ecosystem services supply and demand in the Pearl River Delta region. J. Clean. Prod. 2021, 279, 12. [Google Scholar] [CrossRef]
- Grondin, P.; Gauthier, S.; Borcard, D.; Bergeron, Y.; Noel, J. A new approach to ecological land classification for the Canadian boreal forest that integrates disturbances. Landsc. Ecol. 2014, 29, 1–16. [Google Scholar] [CrossRef]
- Thiffault, N.; Grondin, P.; Noel, J.; Poirier, V. Ecological gradients driving the distribution of four Ericaceae in boreal Quebec, Canada. Ecol. Evol. 2015, 5, 1837–1853. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S. The characteristics of spatial disturbance of surface processes in oasis on the background of desert. Acta Ecol. Sin. 2005, 25, 2459–2466. [Google Scholar]
- Couillard, P.; Payette, S.; Grondin, P. Recent impact of fire on high-altitude balsam fir forests in south-central Quebec. Can. J. For. Res. 2012, 42, 1289–1305. [Google Scholar] [CrossRef]
- Sotomayor-Beltran, C. Positive and negative ionospheric disturbances prior to the 2016 christmas earthquake in Chile. Geomat. Nat. Hazards Risk 2019, 10, 622–632. [Google Scholar] [CrossRef]
- Chang, W.; Li, W.; Ma, H.; Wang, D.; Bandala, E.; Yu, Y.; Rodrigo-Comino, J. An integrated approach for shaping drought characteristics at the watershed scale. J. Hydrol. 2022, 604, 127248. [Google Scholar] [CrossRef]
- Yin, X.; Li, X.; An, J.; Wang, F. Characteristics of ecological distribution of soil microarthropod communities in the wetlands of the Lhasa River on the Qinghai-Tibet Plateau. Wetlands 2015, 35, 589–596. [Google Scholar] [CrossRef]
- Wang, X.; Yan, F.; Zeng, Y.; Chen, M.; He, B.; Kang, L.; Su, F. Ecosystem services changes on farmland in response to urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area of China. Land 2021, 10, 501. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Wu, X.; Li, W.; Liu, Y.; Tran, L.-S.P. Driving factor analysis of ecosystem service balance for watershed management in the Lancang River Valley, Southwest China. Land 2021, 10, 522. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Woldeyohannes, A.; Cotter, M.; Biru, W.D.; Kelboro, G. Assessing changes in ecosystem service values over 1985–2050 in response to land use and land cover dynamics in Abaya-Chamo Basin, Southern Ethiopia. Land 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Geng, Y.; Huang, B.; Zhu, Q.; Cui, X.; Wu, F. Quantitative assessment of eco-compensation standard from the perspective of ecosystem services: A case study of Erhai in China. J. Clean. Prod. 2020, 263, 121530. [Google Scholar] [CrossRef]
- La Notte, A.; Dalmazzone, S. Sustainability assessment and causality nexus through ecosystem service accounting: The case of water purification in Europe. J. Environ. Manag. 2018, 223, 964–974. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. (In Chinese) [Google Scholar]
- Liu, B.; Pan, L.; Qi, Y.; Guan, X.; Li, J. Land use and land cover change in the Yellow River Basin from 1980 to 2015 and its impact on the ecosystem services. Land 2021, 10, 1080. [Google Scholar] [CrossRef]
- Huang, F.; Wu, S.; Tang, H. Response of ecological environment to land use/cover change in Xinjiang during 1990–2008 based on remote sensing and GIS. J. Desert Res. 2012, 32, 1486–1493. (In Chinese) [Google Scholar]
- Bai, Y.; Xu, H.; Ling, H.; Fu, J. Analysis on land use changes and ecosystem services value in the area along the Tarim River. J. Desert Res. 2013, 33, 1912–1920. (In Chinese) [Google Scholar]
- Hua, D.; Hao, X. Spatiotemporal change and drivers analysis of desertification in the arid region of northwest China based on geographic detector. Environ. Chall. 2021, 4, 100082. [Google Scholar]
- Sannigrahi, S.; Bhatt, S.; Rahmat, S.; Paul, S.K.; Sen, S. Estimating global ecosystem service values and its response to land surface dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef]
- Gu, X.; Long, A.; Liu, G.; Yu, J.; Wang, H.; Yang, Y.; Zhang, P. Changes in ecosystem service value in the 1 km lakeshore zone of Poyang Lake from 1980 to 2020. Land 2021, 10, 951. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabó, G. Impact of land use and land cover changes on urban ecosystem service value in Dhaka, Bangladesh. Land 2021, 10, 793. [Google Scholar] [CrossRef]
- Jiao, W.; Liu, X.; Zhang, L.; Liang, L. Ecological response to the land development in Tarim River Basin. Arid Land Geogr. 2018, 41, 1396–1404. [Google Scholar]
- Wu, L. Administrative Division of the Tarim Rivers. 2014. Available online: http://westdc.westgis.ac.cn/data/0404bef8-04b8-4a9e-8488-075870b7cba1 (accessed on 18 May 2021).
- Wu, L. Tarim River Basin Boundary. 2014. Available online: http://westdc.westgis.ac.cn/data/4f8d5d77-0945-4591-a09d-172ddc6d3273 (accessed on 18 May 2021).
- Chen, J.; Ban, Y.; Li, S. Open access to earth land-cover map. Nature 2014, 514, 434. [Google Scholar]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chen, J.; Liao, A.; Han, G.; Chen, X.; Chen, L.; Peng, S.; Wu, H.; Zhang, J. Geospatial knowledge-based verification and improvement of GlobeLand30. Sci. China Earth Sci. 2016, 59, 1709–1719. [Google Scholar] [CrossRef]
- Yan, H.; Liu, F.; Liu, J.; Xiao, X.; Qin, Y. Status of land use intensity in China and its impacts on land carrying capacity. J. Geogr. Sci. 2017, 27, 387–402. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Chen, Y.; Ma, J. Analysis of the ecosystem services value of the typical river basin in desert areas of Northwest China. J. Nat. Resour. 2011, 26, 1364–1376. (In Chinese) [Google Scholar]
- Shi, Y. The Anthology of Shi Yulin; Higher Education Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Li, C.; Zheng, H.; Li, S.; Chen, X.; Li, J.; Zeng, W.; Liang, Y.; Polasky, S.; Feldman, M.; Ruckelshaus, M. Impacts of conservation and human development policy across stakeholders and scales. Proc. Natl. Acad. Sci. USA 2015, 112, 7396–7401. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Yao, Y.; Ding, J.; Zhang, F.; Lei, L.; Jiang, H. Impact of human driving factors for land use change on ecosystem servise value in Xinjiang Wei Aotunomous Region. Bull. Soil Water Conserv. 2013, 33, 298–304. [Google Scholar]
- Wang, W.; Chen, Y.; Wang, W.; Jiang, J.; Cai, M.; Xu, Y. Evolution characteristics of groundwater and its response to climate and land-cover changes in the oasis of dried-up river in Tarim Basin. J. Hydrol. 2021, 594, 125644. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, L.; Wei, G.; Dong, Z.; Meng, X. Assessing vegetation dynamics and landscape ecological risk on the mainstream of Tarim River, China. Water 2020, 12, 2156. [Google Scholar] [CrossRef]
Use Type | Useable Type | Used Type | ||||
---|---|---|---|---|---|---|
Ecological Type | Hard to Use | Easy to Use | Renewable | Non-Renewable | ||
I Type | II Type | |||||
Ecosystem types | Bare land | Forests, Grassland, Shrub land | Wetlands, Water bodies | Cultivated land | Artificial surfaces | |
Disturbance index levels | 1 | 2 | 3 | 4 | 5 |
Ecosystem Types | Cultivated Land | Forests | Grassland | Shrub Land | Wetlands | Water Bodies | Artificial Surfaces | Bare Land |
---|---|---|---|---|---|---|---|---|
Correction coefficient | 0.37 | 0.4622 | 0.3334 | 0.3918 | 1 | 0.94 | 0.31 | 0.16 |
Ecosystem Types | Cultivated Land | Forest | Grassland | Shrub Land | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |
---|---|---|---|---|---|---|---|---|---|
Ecosystem Function | |||||||||
Gas regulation | 0.19 | 1.62 | 0.27 | 0.90 | 1.80 | 0.00 | −0.50 | −0.60 | |
Climate regulation | 0.33 | 1.25 | 0.30 | 0.77 | 17.1 | 0.43 | 0.13 | −0.89 | |
Hydrological regulation | 0.22 | 1.48 | 0.27 | 0.96 | 15.5 | 19.58 | −0.08 | −0.60 | |
Soil formation and conservation | 0.61 | 0.61 | 0.44 | 0.52 | 18.18 | 17.09 | 0.01 | 0.01 | |
Waste treatment | 0.54 | 1.80 | 0.65 | 1.10 | 1.71 | 0.01 | 0.06 | 0.02 | |
Biodiversity maintenance | 0.26 | 1.51 | 0.36 | 0.87 | 2.50 | 2.34 | 0.29 | 0.34 | |
Food production | 0.37 | 0.05 | 0.10 | 0.04 | 0.30 | 0.09 | 0.02 | 0.01 | |
Raw materials production | 0.04 | 1.20 | 0.02 | 0.20 | 0.07 | 0.01 | 0.01 | 0.00 | |
Aesthetic values | 0.00 | 0.59 | 0.01 | 0.20 | 5.55 | 4.08 | 2.58 | 0.01 | |
Total | 2.56 | 10.11 | 2.42 | 5.56 | 62.71 | 43.63 | 2.52 | −1.70 |
Ecosystem Types | Cultivated Land | Forest | Grassland | Shrub Land | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |
---|---|---|---|---|---|---|---|---|---|
Ecosystem Function | |||||||||
Gas regulation | 524.41 | 4471.26 | 745.21 | 2484.04 | 4968.07 | 0.00 | −1380.02 | −1656.02 | |
Climate regulation | 910.81 | 3450.05 | 828.01 | 2125.23 | 47,196.68 | 1186.82 | 358.81 | −2456.44 | |
Hydrological regulation | 607.21 | 4084.86 | 745.21 | 2649.64 | 42,780.62 | 54,041.58 | −220.80 | −1656.02 | |
Soil formation and conservation | 1683.62 | 1683.62 | 1214.42 | 1435.22 | 50,177.53 | 47,169.08 | 27.60 | 27.60 | |
Waste treatment | 1490.42 | 4968.07 | 1794.03 | 3036.04 | 4719.67 | 27.60 | 165.60 | 55.20 | |
Biodiversity maintenance | 717.61 | 4167.66 | 993.61 | 2401.23 | 6900.10 | 6458.49 | 800.41 | 938.41 | |
Food production | 1021.21 | 138.00 | 276.00 | 110.40 | 828.01 | 248.40 | 55.20 | 27.60 | |
Raw materials production | 110.40 | 3312.05 | 55.20 | 552.01 | 193.20 | 27.60 | 27.60 | 0.00 | |
Aesthetic values | 0.00 | 1628.42 | 27.60 | 552.01 | 15,318.22 | 11,260.96 | 7120.90 | 27.60 | |
Total | 7065.70 | 27,904.00 | 6679.30 | 15,345.82 | 173,082.11 | 120,420.55 | 6955.30 | −4692.07 |
Land Cover Category | 2000–2010 | 2010–2020 | 2000–2020 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Roll-In | Roll-Out | Net Convert | Roll-In | Roll-Out | Net Convert | Roll-In | Roll-Out | Net Convert | ||||||||||
Area | % | Area | % | Area | % | Area | % | Area | % | Area | % | Area | % | Area | % | Area | % | |
Forest | 456.12 | 0.77 | 379.89 | 3.86 | 76.23 | 0.16 | 4436.64 | 8.24 | 366.84 | 1.49 | 4069.80 | 13.90 | 4899.06 | 4.77 | 495.27 | 2.17 | 4403.79 | 5.51 |
Grassland | 19,395.27 | 32.92 | 5854.50 | 59.44 | 13,540.77 | 27.59 | 18,808.97 | 34.93 | 8436.24 | 34.34 | 10,372.73 | 35.43 | 34,638.49 | 33.74 | 8500.50 | 37.30 | 26,137.99 | 32.72 |
Shrub land | 2045.34 | 3.47 | 231.12 | 2.35 | 1814.22 | 3.70 | 4313.97 | 8.01 | 158.22 | 0.64 | 4155.75 | 14.19 | 5939.91 | 5.79 | 75.24 | 0.33 | 5864.67 | 7.34 |
Wetland | 124.74 | 0.21 | 148.14 | 1.50 | −23.40 | −0.05 | 1337.49 | 2.48 | 887.58 | 3.61 | 449.91 | 1.54 | 872.46 | 0.85 | 901.35 | 3.96 | −28.89 | −0.04 |
Water bodies | 284.31 | 0.48 | 1209.06 | 12.28 | −924.75 | −1.88 | 3294.45 | 6.12 | 2247.93 | 9.15 | 1046.52 | 3.57 | 2058.75 | 2.01 | 2681.91 | 11.77 | −623.16 | −0.78 |
Artificial surfaces | 677.61 | 1.15 | 1756.09 | 17.83 | −1078.48 | −2.20 | 729.90 | 1.36 | 9675.54 | 39.38 | −8945.64 | −30.55 | 902.52 | 0.88 | 8709.84 | 38.22 | −7807.32 | −9.77 |
Bare land | 35,940.06 | 60.99 | 269.91 | 2.74 | 35,670.15 | 72.69 | 20,926.80 | 38.86 | 2797.11 | 11.38 | 18,129.69 | 61.92 | 53,355.87 | 51.97 | 1425.24 | 6.25 | 51,930.63 | 65.01 |
Total | 58,923.45 | 100 | 9848.71 | 100 | 49,074.74 | 100 | 53,848.22 | 100 | 24,569.46 | 100 | 29,278.76 | 100 | 102,667.06 | 100 | 22,789.35 | 100 | 79,877.71 | 100 |
Land Cover Category | Roll-In of Cultivated Land (hm2) | ESV before Conversion (Million Yuan) | ESV after Conversion (Million Yuan) | Change in ESV (Million Yuan) | Proportion (%) |
---|---|---|---|---|---|
Forest | 4899.06 | 136.70 | 34.62 | −102.09 | 17.63 |
Grassland | 34,638.49 | 231.36 | 0.09 | −231.27 | 39.93 |
Shrub land | 5939.91 | 91.15 | 0.02 | −91.14 | 15.74 |
Wetland | 872.46 | 151.01 | 0.00 | −151.00 | 26.07 |
Water bodies | 2058.75 | 247.92 | 0.01 | −247.91 | 42.80 |
Artificial surfaces | 902.52 | 6.28 | 0.00 | −6.27 | 1.08 |
Bare land | 53,355.87 | −250.35 | 0.14 | 250.49 | −43.25 |
Total | 102,667.06 | 614.07 | 34.87 | −579.20 | 100.00 |
Land Cover Category | The Volume of ESV | The Variation of ESV | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000–2010 | 2010–2020 | 2000–2020 | |||||||
ESV | Proportion | ESV | Proportion | ESV | Proportion | Variation | Variation Rate | Variation | Variation Rate | Variation | Variation Rate | |
Cultivated land | 2153.98 | 15.07 | 2511.40 | 12.58 | 3287.17 | 8.21 | 357.42 | 16.59 | 775.78 | 30.89 | 1133.20 | 52.61 |
Forest | 2390.42 | 16.73 | 2032.08 | 10.18 | 2270.80 | 5.67 | −358.34 | −14.99 | 238.72 | 11.75 | −119.62 | −5.00 |
Grassland | 6467.46 | 45.25 | 6124.60 | 30.67 | 6270.45 | 15.67 | −342.86 | −5.30 | 145.86 | 2.38 | −197.01 | −3.05 |
Shrub land | 748.02 | 5.23 | 700.37 | 3.51 | 335.43 | 0.84 | −47.65 | −6.37 | −364.95 | −52.11 | −412.60 | −55.16 |
Wetland | 6429.83 | 44.99 | 7959.27 | 39.86 | 23,828.83 | 59.54 | 1529.43 | 23.79 | 15,869.56 | 199.38 | 17,398.99 | 270.60 |
Water bodies | 5108.42 | 35.74 | 9462.48 | 47.38 | 11,664.86 | 29.14 | 4354.06 | 85.23 | 2202.38 | 23.27 | 6556.44 | 128.35 |
Artificial surfaces | 37.31 | 0.26 | 40.65 | 0.20 | 115.41 | 0.29 | 3.35 | 8.97 | 74.76 | 183.90 | 78.11 | 209.37 |
Bare land | −9044.10 | −63.28 | −8860.47 | −44.37 | −7748.41 | −19.36 | 183.63 | −2.03 | 1112.06 | −12.55 | 1295.69 | −14.33 |
Total | 14,291.34 | 100.00 | 19,970.38 | 100.00 | 40,024.54 | 100.00 | 5679.04 | 39.74 | 20,054.16 | 100.42 | 25,733.20 | 180.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, W.; Li, C.; Ma, S.; Zhang, X.; Jiang, H. Disturbances Brought about by Human Activities in Relation to the Eco-Environment of the Main Stream of the Tarim River, 2000–2020. Land 2022, 11, 424. https://doi.org/10.3390/land11030424
Zhao Y, Zhang W, Li C, Ma S, Zhang X, Jiang H. Disturbances Brought about by Human Activities in Relation to the Eco-Environment of the Main Stream of the Tarim River, 2000–2020. Land. 2022; 11(3):424. https://doi.org/10.3390/land11030424
Chicago/Turabian StyleZhao, Yabo, Weiwei Zhang, Cansong Li, Shifa Ma, Xiwen Zhang, and Haiyan Jiang. 2022. "Disturbances Brought about by Human Activities in Relation to the Eco-Environment of the Main Stream of the Tarim River, 2000–2020" Land 11, no. 3: 424. https://doi.org/10.3390/land11030424
APA StyleZhao, Y., Zhang, W., Li, C., Ma, S., Zhang, X., & Jiang, H. (2022). Disturbances Brought about by Human Activities in Relation to the Eco-Environment of the Main Stream of the Tarim River, 2000–2020. Land, 11(3), 424. https://doi.org/10.3390/land11030424