Forest Management under Climate Change: A Decision Analysis of Thinning Interventions for Water Services and Biomass in a Norway Spruce Stand in South Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The 3PG-Hydro Model and Data Input
2.3. Thinning Regimes
2.4. Data Analysis
3. Results
3.1. Effect on Biomass
3.2. Effect on Transpiration, Evapotranspiration and Soil Evaporation
3.3. Effect on Water Yield
3.4. Accumulated Effect on Biomass and Water Yield
4. Discussion
4.1. Thinning Effects
4.2. 3PG-Hydro Model and Limitation of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Stand Initialization and Site Factor Data | |||
---|---|---|---|
Year planted = | 1919 | Snowmelt Factor = | 2.5 |
Month planted = | December | ||
Initial age = | 75y 0 m | Depth effective root zone (ER) [m] = | 0.6 |
End age = | 145 | Depth deep root zones (DR) [m] = | 5 |
Initial Weight Foliage [t/ha] = | 12 | Initial saturation ER [m3 × m−3] = | 0.15 |
Initial Weight Stem [t/ha] = | 316 | Initial saturation DR [m3 × m−3] = | 0.15 |
Initial Weight Root [t/ha] = | 22 | Skeleton ER [%] = | 0.5 |
Initial stocking = | 528 | Skeleton DR [%] = | 0.5 |
Latitude = | 50 | ||
Fertility rating = | 0.5 | Vol. saturation water content [m3 × m−3] = | 0.38 |
Atmospheric CO2 = | 380 | Vol. residual water content [m3 × m−3] = | 0.149 |
Soil class = | SL | Van-Genuchten n [-] = | 1.817 |
Van-Genuchten alpha [m−1] = | 0.663 | ||
Hydraulic conductivity saturated [m × day−1] = | 1.931 | ||
Output frequency: monthly/annual |
Appendix B
Age | Stocking | Foliage | Root | Stem |
---|---|---|---|---|
Thinning Intensity of 10% | ||||
Every 10 years | ||||
85 | 475 | 1 | 1 | 1 |
95 | 428 | 1 | 1 | 1 |
105 | 385 | 1 | 1 | 1 |
115 | 347 | 1 | 1 | 1 |
125 | 312 | 1 | 1 | 1 |
135 | 281 | 1 | 1 | 1 |
Every 25 years | ||||
85 | 475 | 1 | 1 | 1 |
110 | 428 | 1 | 1 | 1 |
135 | 385 | 1 | 1 | 1 |
Every 50 years | ||||
85 | 475 | 1 | 1 | 1 |
135 | 428 | 1 | 1 | 1 |
Thinning Intensity of 30% | ||||
Every 10 years | ||||
85 | 370 | 1 | 1 | 1 |
95 | 259 | 1 | 1 | 1 |
105 | 181 | 1 | 1 | 1 |
115 | 127 | 1 | 1 | 1 |
125 | 89 | 1 | 1 | 1 |
135 | 62 | 1 | 1 | 1 |
Every 25 years | ||||
85 | 370 | 1 | 1 | 1 |
110 | 259 | 1 | 1 | 1 |
135 | 181 | 1 | 1 | 1 |
Every 50 years | ||||
85 | 370 | 1 | 1 | 1 |
135 | 259 | 1 | 1 | 1 |
Thinning Intensity of 50% | ||||
Every 10 years | ||||
85 | 264 | 1 | 1 | 1 |
95 | 132 | 1 | 1 | 1 |
105 | 66 | 1 | 1 | 1 |
Every 25 years | ||||
85 | 264 | 1 | 1 | 1 |
110 | 132 | 1 | 1 | 1 |
135 | 66 | 1 | 1 | 1 |
Every 50 years | ||||
85 | 264 | 1 | 1 | 1 |
135 | 132 | 1 | 1 | 1 |
Appendix C
Source of Variation | SS | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
Thinning Intensity | 2,203,605 | 2 | 1,101,803 | 306.1976 | 2.8 × 10−100 | 3.006597 |
Thinning Interval | 4,987,354 | 3 | 1,662,451 | 462.0053 | 2.6 × 10−176 | 2.615656 |
Intensity × Interval | 839,720.1 | 6 | 139,953.3 | 38.89389 | 9.65 × 10−42 | 2.109512 |
Within | 2,979,424 | 828 | 3598.338 | |||
Total | 11,010,103 | 839 |
Source of Variation | SS | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
Thinning Intensity | 878.5411 | 2 | 439.2705 | 0.121148 | 0.885919 | 3.006597 |
Thinning Interval | 10,826.33 | 3 | 3608.777 | 0.995277 | 0.394369 | 2.615656 |
Intensity × Interval | 8274.181 | 6 | 1379.03 | 0.380328 | 0.891781 | 2.109512 |
Within | 3,002,246 | 828 | 3625.901 | |||
Total | 3,022,225 | 839 |
Appendix D
Source of Variation | SS | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
Thinning Intensity | 3,080,944 | 2 | 1,540,472 | 110.9454 | 2.05 × 10−43 | 3.006597 |
Thinning Interval | 6,097,663 | 3 | 2,032,554 | 146.3854 | 4.22 × 10−76 | 2.615656 |
Intensity × Interval | 1,550,298 | 6 | 258,382.9 | 18.60885 | 2.28 × 10−20 | 2.109512 |
Within | 11,496,739 | 828 | 13,884.95 | |||
Total | 22,225,644 | 839 |
Source of Variation | SS | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
Thinning Intensity | 3,344,931 | 2 | 1,672,466 | 103.0053 | 1.13 × 10−40 | 3.006597 |
Thinning Interval | 6,909,537 | 3 | 2,303,179 | 141.8503 | 3.64 × 10−74 | 2.615656 |
Intensity × Interval | 1,603,519 | 6 | 267,253.2 | 16.45984 | 5.61 × 10−18 | 2.109512 |
Within | 13,443,977 | 828 | 16,236.69 | |||
Total | 25,301,964 | 839 |
Source of Variation | SS | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
Thinning Intensity | 169,318.9 | 2 | 84,659.45 | 86.28948 | 9.13 × 10−35 | 3.006597 |
Thinning Interval | 303,911.2 | 3 | 101,303.7 | 103.2543 | 8.7 × 10−57 | 2.615656 |
Intensity × Interval | 88,259.1 | 6 | 14,709.85 | 14.99307 | 2.48 × 10−16 | 2.109512 |
Within | 812,358.8 | 828 | 981.1097 | |||
Total | 1,373,848 | 839 |
Appendix E
Source of Variation | SS | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
Thinning Intensity | 3,339,353 | 2 | 1,669,677 | 28.85641 | 7.68 × 10−13 | 3.006597 |
Thinning Interval | 6,896,379 | 3 | 2,298,793 | 39.72919 | 5.43 × 10−24 | 2.615656 |
Intensity × Interval | 1,601,548 | 6 | 266,924.7 | 4.613162 | 0.000128 | 2.109512 |
Within | 47,909,370 | 828 | 57,861.56 | |||
Total | 59,746,651 | 839 |
References
- FAO; UNECE. Forests and Water Valuation and Payments for Forest Ecosystem Services; FAO: Rome, Italy, 2018. [Google Scholar]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Furniss, M. Water, Climate Change, and Forests Watershed Stewardship for A Changing Climate ConTents; Diane Publishing: Collingdale, PA, USA, 2010. [Google Scholar]
- Hirsch, F.; Clark, D.; Vihervaara, P.; Primmer, E. Payments for Forest—Related Ecosystem Services: What role for a Green Economy? In Proceedings of the Background Paper for the Workshop on Payments for Ecosystem Services, UNECE/FAO Forestry and Timber Section, Geneva, Switzerland, 4–5 July 2011; pp. 1–46. [Google Scholar]
- Bayala, J.; Teklehaimanot, Z.; Ouedraogo, S.J. Millet production under pruned tree crowns in a parkland system. Agrofor. Syst. 2002, 54, 203–214. [Google Scholar] [CrossRef]
- Delzon, S.; Loustau, D. Age-related decline in stand water use: Sap flow and transpiration in a pine forest chronosequence. Agric. For. Meteorol. 2005, 129, 105–119. [Google Scholar] [CrossRef]
- Hakimi, L.; Sadeghi, S.M.M.; Van Stan, J.T.; Pypker, T.G.; Khosropour, E. Management of pomegranate (Punica granatum) orchards alters the supply and pathway of rain water reaching soils in an arid agricultural landscape. Agric. Ecosyst. Environ. 2018, 259, 77–85. [Google Scholar] [CrossRef]
- EEA. Exploring the Synergies between Floodplain Restoration, Water Policies and Thematic Policies; EEA Report 1/2016; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Neukum, C.; Azzam, R. Impact of climate change on groundwater recharge in a small catchment in the Black Forest, Germany. Appl. Hydrogeol. 2012, 20, 547–560. [Google Scholar] [CrossRef]
- Reyer, C.P.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garcia-Gonzalo, J.; Gardiner, B.; Gonzalez-Olabarria, J.R.; et al. Are Forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 2017, 12, 034027. [Google Scholar] [CrossRef]
- Gardiner, B.; Schuck, A.; Schelhaas, M.-J.; Orazio, C.; Blennow, K.; Nicoll, B. Living with Storm Damage to Forests; European Forest Institute: Jonesuu, Finland, 2013. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Lexer, M.J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Gonçalves, A.C. Thinning: An Overview. In Silviculture; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Honkaniemi, J.; Rammer, W.; Seidl, R. Norway spruce at the trailing edge: The effect of landscape configuration and composition on climate resilience. Landsc. Ecol. 2020, 35, 591–606. [Google Scholar] [CrossRef] [Green Version]
- Hawthorne, S.; Lane, P.N.; Bren, L.J.; Sims, N.C. The long term effects of thinning treatments on vegetation structure and water yield. For. Ecol. Manag. 2013, 310, 983–993. [Google Scholar] [CrossRef]
- Magruder, M.; Chhin, S.; Palik, B.; Bradford, J. Thinning increases climatic resilience of red pine. Can. J. For. Res. 2013, 43, 878–889. [Google Scholar] [CrossRef]
- Sohn, J.A.; Gebhardt, T.; Ammer, C.; Bauhus, J.; Häberle, K.-H.; Matyssek, R.; Grams, T. Mitigation of drought by thinning: Short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies). For. Ecol. Manag. 2013, 308, 188–197. [Google Scholar] [CrossRef]
- Katzensteiner, K.; Klimo, E.; Szukics, U.; Delaney, C.M. Impact of forest management alternatives on water budgets and runoff processes. In Papers on impacts of forest management on environmental services. EFI Tech. Rep. 2011, 57, 27–55. [Google Scholar]
- Sun, X.; Onda, Y.; Chiara, S.; Kato, H.; Gomi, T. The effect of strip thinning on spatial and temporal variability of throughfall in a Japanese cypress plantation. Hydrol. Process. 2015, 29, 5058–5070. [Google Scholar] [CrossRef]
- Simonin, K.; Kolb, T.; Montes-Helu, M.; Koch, G. The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought. Agric. For. Meteorol. 2007, 143, 266–276. [Google Scholar] [CrossRef]
- Kohler, M.; Sohn, J.; Nägele, G.; Bauhus, J. Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur. J. For. Res. 2010, 129, 1109–1118. [Google Scholar]
- Xu, P.; Zhou, T.; Yi, C.; Luo, H.; Zhao, X.; Fang, W.; Gao, S.; Liu, X. Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height. Int. J. Environ. Res. Public Health 2018, 15, 1257. [Google Scholar] [CrossRef] [Green Version]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA. 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, J.J.; Waring, R.H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Fatichi, S.; Vivoni, E.R.; Ogden, F.L.; Ivanov, V.Y.; Mirus, B.; Gochis, D.; Downer, C.W.; Camporese, M.; Davison, J.H.; Ebel, B.; et al. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. J. Hydrol. 2016, 537, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Forrester, D.I.; Hobi, M.L.; Mathys, A.S.; Stadelmann, G.; Trotsiuk, V. Calibration of the process-based model 3—PG for major central European tree species. Eur. J. For. Res. 2021, 140, 847–868. [Google Scholar] [CrossRef]
- Cuddington, K.; Fortin, M.-J.; Gerber, L.R.; Hastings, A.; Liebhold, A.; O’Connor, M.; Ray, C. Process-based models are required to manage ecological systems in a changing world. Ecosphere 2013, 4, 1–12. [Google Scholar] [CrossRef]
- Augustynczik, A.L.; Hartig, F.; Minunno, F.; Kahle, H.P.; Diaconu, D.; Hanewinkel, M.; Yousefpour, R. Productivity of Fagus sylvatica under climate change—A Bayesian analysis of risk and uncertainty using the model 3-PG. For. Ecol. Manag. 2017, 401, 192–206. [Google Scholar] [CrossRef]
- Bouwman, M.; Forrester, D.; Ouden, J.D.; Nabuurs, G.-J.; Mohren, G. Species interactions under climate change in mixed stands of Scots pine and pedunculate oak. For. Ecol. Manag. 2020, 481, 118615. [Google Scholar] [CrossRef]
- Palma, J.H.; Hakamada, R.; Moreira, G.G.; Nobre, S.; Rodriguez, L.C.E. Using 3PG to assess climate change impacts on management plan optimization of Eucalyptus plantations. A case study in Southern Brazil. Sci. Rep. 2021, 11, 2708. [Google Scholar]
- Gonzalez-Benecke, C.A.; Teskey, R.O.; Martin, T.A.; Jokela, E.J.; Fox, T.R.; Kane, M.B.; Noormets, A. Regional validation and improved parameterization of the 3-PG model for Pinus taeda stands. For. Ecol. Manag. 2016, 361, 237–256. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zheng, X.; Ren, Y. Parameter Optimization of the 3PG Model Based on Sensitivity Analysis and a Bayesian Method. Forests 2020, 11, 1369. [Google Scholar] [CrossRef]
- Yousefpour, R.; Djahangard, M. Simulating the Effects of Thinning Events on Forest Growth and Water Services Asks for Daily Analysis of Underlying Processes. Forests 2021, 12, 1729. [Google Scholar] [CrossRef]
- Copernicus. Climate and Energy Indicators for Europe from 2005 to 2100 Derived from Climate Projections: Daily Climate Data on NUTS2 Level. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-energy-derived-projections?tab=overview (accessed on 26 August 2021).
- Puhlmann, H.; von Wilpert, K. Waldbauliche Managementoptionen für die Sicherung der Sickerwasserqualität unter Wäldern—Fallstudie Conventwald. Hydrol. Wasserbewirtsch 2009, 2, 96–109. [Google Scholar]
- del Rio, M.; Bravo-Ovoedo, A.; Pretzch, H.; Lof, M.; Ruiz-Peinado, R. A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change. For. Syst. 2017, 26, 9. [Google Scholar]
- Puettmann, K.J. Silvicultural Challenges and Options in the Context of Global Change: ‘Simple’ Fixes and Opportunities for New Management Approaches. J. For. 2011, 109, 321–331. [Google Scholar]
- Pretzsch, H.; Rais, A. Wood quality in complex forests versus even-aged monocultures: Review and perspectives. Wood Sci. Technol. 2016, 50, 845–880. [Google Scholar] [CrossRef]
- Tarigan, S.; Wiegand, K.; Slamet, B. Minimum forest cover required for sustainable water flow regulation of a watershed: A case study in Jambi Province, Indonesia. Hydrol. Earth Syst. Sci. 2018, 22, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Wallentin, C.; Nilsson, U. Storm and snow damage in a Norway spruce thinning experiment in southern Sweden. For. Int. J. For. Res. 2014, 87, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Česonienė, L.; Daubaras, R.; Tamutis, V.; Kaškonienė, V.; Kaškonas, P.; Stakėnas, V.; Zych, M. Effect of clear-cutting on the understory vegetation, soil and diversity of litter beetles in scots pine-dominated forest. J. Sustain. For. 2019, 38, 791–808. [Google Scholar] [CrossRef]
- Gebhardt, T.; Häberle, K.H.; Matyssek, R.; Schulz, C.; Ammer, C. The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric. For. Meteorol. 2014, 197, 235–243. [Google Scholar]
- Cao, T.; Valsta, L.; Härkönen, S.; Saranpaa, P.; Mäkelä, A. Effects of thinning and fertilization on wood properties and economic returns for Norway spruce. For. Ecol. Manag. 2008, 256, 1280–1289. [Google Scholar] [CrossRef]
- Krajnc, L.; Farrelly, N.; Harte, A.M. The effect of thinning on mechanical properties of Douglas fir, Norway spruce, and Sitka spruce. Ann. For. Sci. 2019, 76, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H. Density and growth of forest stands revisited. Effect of the temporal scale of observation, site quality, and thin-ning. For. Ecol. Manag. 2020, 460, 117879. [Google Scholar] [CrossRef]
- Wallentin, C.; Nilsson, U. Initial effect of thinning on stand gross stem-volume production in a 33-year-old Norway spruce (picea abies (L.) Karst.) stand in Southern Sweden. Scand. J. For. Res. 2011, 26, 21–35. [Google Scholar] [CrossRef]
- Bottero, A.; Forrester, D.I.; Cailleret, M.; Kohnle, U.; Gessler, A.; Michel, D.; Bose, A.K.; Bauhus, J.; Bugmann, H.; Cuntz, M.; et al. Growth resistance and resilience of mixed silver fir and Norway spruce forests in central Europe: Contrasting responses to mild and severe droughts. Glob. Chang. Biol. 2021, 27, 4403–4419. [Google Scholar] [CrossRef]
- Binkley, D.; Campoe, O.; Gspaltl, M.; Forrester, D.I. Light absorption and use efficiency in forests: Why patterns differ for trees and stands. For. Ecol. Manag. 2013, 288, 5–13. [Google Scholar] [CrossRef]
- Köstner, B. Evaporation and transpiration from forests in Central Europe? relevance of patch-level studies for spatial scaling. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2001, 76, 69–82. [Google Scholar] [CrossRef]
- Greenwood, A. The Application and Limitations of Using Mean Annual Evapotranspiration and Rainfall in The Assessment of The Impacts of Plantation Forestry on Runoff; Technical Note; Government of South Australia, Department of Water, Land and Biodiversity Conservation: Adelaide, Australia, 2007.
- Shen, C.; Nelson, A.S.; Jain, T.B.; Foard, M.B.; Graham, R.T. Structural and Compositional Responses to Thinning over 50 Years in Moist Forest of the Northern Rocky Mountains. For. Sci. 2019, 65, 626–636. [Google Scholar] [CrossRef]
- Eriksson, E. Thinning operations and their impact on biomass production in stands of Norway spruce and Scots pine. Biomass Bioenergy 2006, 30, 848–854. [Google Scholar] [CrossRef]
- McIntosh, A.C.; Gray, A.N.; Garman, S.L. Canopy Structure on Forest Lands in Western Oregon: Differences among Forest Types and Stand Ages; General Technical Report PNW-GTR-794; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2009. [CrossRef] [Green Version]
- Miehle, P.; Battaglia, M.; Sands, P.J.; Forrester, D.I.; Feikema, P.M.; Livesley, S.; Morris, J.D.; Arndt, S. A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations. Ecol. Model. 2009, 220, 734–746. [Google Scholar] [CrossRef]
- Sohn, J.A.; Kohler, M.; Gessler, A.; Bauhus, J. Interactions of thinning and stem height on the drought response of radial stem growth and isotopic composition of Norway spruce (Picea abies). Tree Physiol. 2012, 32, 1199–1213. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 2011, 109, 33–57. [Google Scholar]
- Subramanian, N. Impacts of Climate Change on Forest Management and Implications for Swedish Forestry. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2016. [Google Scholar]
- Xie, Y.; Wang, H.; Lei, X. Simulation of climate change and thinning effects on productivity of Larix olgensis plantations in northeast China using 3-PG mix model. J. Environ. Manage. 2020, 261, 110249. [Google Scholar] [CrossRef]
- Alam, M.S.; Lamb, D.W.; Warwick, N.W.M. A Canopy Transpiration Model Based on Scaling Up Stomatal Conductance and Radiation Interception as Affected by Leaf Area Index. Water 2021, 13, 252. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Xu, D.; Cai, J.; Li, F. Evapotranspiraton estimation based on scaling up from leaf stomatal conductance to canopy conductance. Agric. For. Meteorol. 2011, 151, 1086–1095. [Google Scholar] [CrossRef]
- Forrester, D.I.; Tang, X. Analysing the spatial and temporal dynamics of species interactions in mixed-species forests and the effects of stand density using the 3-PG model. Ecol. Model. 2016, 319, 233–254. [Google Scholar] [CrossRef]
- Goude, M.; Nilsson, U.; Holmström, E. Comparing direct and indirect leaf area measurements for Scots pine and Norway spruce plantations in Sweden. Forstwiss. Cent. 2019, 138, 1033–1047. [Google Scholar] [CrossRef] [Green Version]
- Robles, M.D.; Marshall, R.M.; O’Donnell, F.; Smith, E.B.; Haney, J.A.; Gori, D.F. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests. PLoS ONE 2014, 9, e111092. [Google Scholar] [CrossRef] [Green Version]
Thinning Intensity | Thinning Interval | Ages of Stand during Thinning (Years) |
---|---|---|
10% | 10 years | 85, 95, 105, 115, 125, 135 |
25 years | 85, 110, 135 | |
50 years | 85, 135 | |
30% | 10 years | 85, 95, 105, 115, 125, 135 |
25 years | 85, 110, 135 | |
50 years | 85, 135 | |
50% | 10 years | 85, 95, 105 |
25 years | 85, 110, 135 | |
50 years | 85, 135 |
Source of Variation | p-Value for Stand Biomass | p-Value for Accumulated Biomass |
---|---|---|
Thinning Intensity | 2.8 × 10−100 | 0.885919 |
Thinning Interval | 2.6 × 10−176 | 0.394369 |
Intensity × Interval | 9.65 × 10−42 | 0.891781 |
Source of Variation | p-Value for Transpiration | p-Value for ET | p-Value for Soil Evaporation |
---|---|---|---|
Thinning Intensity | 2.05 × 10−43 | 1.13 × 10−40 | 9.13 × 10−35 |
Thinning Interval | 4.22 × 10−76 | 3.64 × 10−74 | 8.7 × 10−57 |
Intensity × Interval | 2.28 × 10−20 | 5.61 × 10−18 | 2.48 × 10−16 |
Source of Variation | p-Value for Water Yield |
---|---|
Thinning Intensity | 7.68 × 10−13 |
Thinning Interval | 5.43 × 10−24 |
Intensity × Interval | 0.000128 |
10 Years | 25 Years | 50 Years | |
---|---|---|---|
10% | 6 | 3 | 2 |
30% | 6 | 3 | 2 |
50% | 3 | 3 | 2 |
Stand Biomass | Water Yield | |
---|---|---|
10%, 10 years | 3 | 6 |
10%, 25 years | 2 | 8 |
10%, 50 years | 1 | 9 |
30%, 10 years | 8 | 2 |
30%, 25 years | 5 | 5 |
30%, 50 years | 4 | 7 |
50%, 10 years | 9 | 1 |
50%, 25 years | 7 | 3 |
50%, 50 years | 6 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimal, S.; Djahangard, M.; Yousefpour, R. Forest Management under Climate Change: A Decision Analysis of Thinning Interventions for Water Services and Biomass in a Norway Spruce Stand in South Germany. Land 2022, 11, 446. https://doi.org/10.3390/land11030446
Rimal S, Djahangard M, Yousefpour R. Forest Management under Climate Change: A Decision Analysis of Thinning Interventions for Water Services and Biomass in a Norway Spruce Stand in South Germany. Land. 2022; 11(3):446. https://doi.org/10.3390/land11030446
Chicago/Turabian StyleRimal, Simant, Marc Djahangard, and Rasoul Yousefpour. 2022. "Forest Management under Climate Change: A Decision Analysis of Thinning Interventions for Water Services and Biomass in a Norway Spruce Stand in South Germany" Land 11, no. 3: 446. https://doi.org/10.3390/land11030446
APA StyleRimal, S., Djahangard, M., & Yousefpour, R. (2022). Forest Management under Climate Change: A Decision Analysis of Thinning Interventions for Water Services and Biomass in a Norway Spruce Stand in South Germany. Land, 11(3), 446. https://doi.org/10.3390/land11030446