Which Factors Influence the Regional Difference of Urban–Rural Residential CO2 Emissions? A Case Study by Cross-Regional Panel Analysis in China
Abstract
:1. Introduction
2. Literature Review
3. Methods and Data
3.1. Methods
3.1.1. Estimating Energy-Related Residential CO2 Emissions
3.1.2. STIRPAT Model
3.2. Data
4. Results
4.1. Patterns of RCE
4.2. Factors Assocaited with Regional Differences of RCE
4.2.1. Unit Root Test
4.2.2. Cointegration Test
4.2.3. Panel Estimation Results
5. Discussion
5.1. Gradient Distribution of Regional Development Level
5.2. Agglomeration Effect of Urbanization
5.3. Forced Mechanism of Western Ecological Policy
6. Conclusions
- During the study period of 2010–2019, RCE in three regions of China (eastern, central, and western) increased overall, but RCE growth was varied among three regions, with the largest increase (59.91%) being in the central region.
- Regional and urban–rural differences existed in the factors driving RCE. Population size and income per capita were the two dominant factors affecting RCE for all regions. The contribution of per capita income to RCE was greater in developed regions such as eastern regions and eastern urban areas. When per capita income increased 1%, it led to 0.851% and 0.612% growth in RCEs, respectively. Urbanization exerted a negative effect on the RCE in the eastern region, while having a positive effect in the central and western regions. The inhibitory effect of energy structure on RCE decreased in sequence from the central, western, and eastern region, particularly in the central urban and western rural areas.
- The gradient distribution of regional development levels led to differences in RCE characteristics among regions and between urban–rural areas. The agglomeration effect of urbanization in developed regions led to the suppression of RCE, while promoting emissions in less developed areas. Due to industrial policies and poverty alleviation policies, the ecological regions in western China were forced to optimize the energy structure and accelerate the progress of urbanization, which affected RCE.
7. Limitation and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, J.Y.; Yu, G.R.; Liu, L.L.; Hu, S.J.; Chapin, F.S., III. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Ma, X.W.; Chen, B.Y.; Shang, Y.P.; Song, M.L. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energ Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Fan, J.L.; Liao, H.; Liang, Q.M.; Tatano, H.; Liu, C.F.; Wei, Y.M. Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis. Appl. Energy 2013, 101, 323–332. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Han, B.T.; Han, L.; Wei, Z.X. Uncovering the national and regional household carbon emissions in China using temporal and spatial decomposition analysis models. J. Clean. Prod. 2019, 232, 966–979. [Google Scholar] [CrossRef]
- Ding, Q.; Cai, W.; Wang, C.; Sanwal, M. The relationships between household consumption activities and energy consumption in chin—An input-output analysis from the lifestyle perspective. Appl. Energy 2017, 207, 520–532. [Google Scholar] [CrossRef]
- Fan, J.L.; Zhang, Y.J.; Wang, B. The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis. Renew. Sustain. Energ Rev. 2017, 75, 220–233. [Google Scholar] [CrossRef]
- Jorgenson, A.K.; Schor, J.B.; Huang, X.; Fitzgerald, J. Income inequality and residential carbon emissions in the United States: A preliminary analysis. Hum. Ecol. Rev. 2015, 22, 93–106. [Google Scholar] [CrossRef]
- Das, A.; Paul, S.K. CO2 emissions from household consumption in India between 1993-94 and 2006-07: A decomposition analysis. Energy Econ. 2014, 41, 90–105. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.Y.; Su, B. The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China. Ecol. Econ. 2019, 160, 145–155. [Google Scholar] [CrossRef]
- Serino, M.N.V. Is Decoupling Possible? Association between Affluence and Household Carbon Emissions in the Philippines. Asian Econ. J. 2017, 31, 165–185. [Google Scholar] [CrossRef]
- Soltani, M.; Rahmani, O.; Ghasimi, D.S.M.; Ghaderpour, Y.; Pour, A.B.; Misnan, S.H.; Ngah, I. Impact of household demographic characteristics on energy conservation and carbon dioxide emission: Case from Mahabad city, Iran. Energy 2020, 194, 116916. [Google Scholar] [CrossRef]
- Wang, J.; Li, N.; Huang, M.; Zhao, Y.; Qiao, Y. The challenges of rising income on urban household carbon emission: Do savings matter? J. Clean. Prod. 2021, 326, 129295. [Google Scholar] [CrossRef]
- Qi, W.; Li, G.D. Residential carbon emission embedded in China’s inter-provincial population migration. Energy Policy 2020, 136, 111065. [Google Scholar] [CrossRef]
- Allinson, D.; Irvine, K.N.; Edmondson, J.L.; Tiwary, A.; Hill, G.; Morris, J.; Bell, M.; Davies, Z.G.; Firth, S.K.; Fisher, J.; et al. Measurement and analysis of household carbon: The case of a UK city. Appl. Energy 2016, 164, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.L.; Yu, H.; Wei, Y.M. Residential energy-related carbon emissions in urban and rural China during 1996–2012: From the perspective of five end-use activities. Energy Build. 2015, 96, 201–209. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Q. Examining the Driving Factors of Urban Residential Carbon Intensity Using the LMDI Method: Evidence from China's County-Level Cities. Int. J. Environ. Res. Public Health 2021, 18, 3929. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, T. Panel estimation for the impacts of residential characteristic factors on CO2 emissions from residential sector in China. Atmos. Pollut. Res. 2018, 9, 595–606. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. The inequality of China's regional residential CO2 emissions. Sustain. Prod. Consump. 2021, 27, 2047–2057. [Google Scholar] [CrossRef]
- Zhao, X.; Li, N.; Ma, C. Residential energy consumption in urban China: A decomposition analysis. Energy Policy 2012, 41, 644–653. [Google Scholar] [CrossRef]
- Jin, X.; Li, Y.; Sun, D.; Zhang, J.; Zheng, J. Factors Controlling Urban and Rural Indirect Carbon Dioxide Emissions in Household Consumption: A Case Study in Beijing. Sustainability 2019, 11, 6563. [Google Scholar] [CrossRef] [Green Version]
- Todorov, V.; Dimov, I.; Ostromsky, T.; Apostolov, S.; Georgieva, R.; Dimitrov, Y.; Zlatev, Z. Advanced stochastic approaches for Sobol’ sensitivity indices evaluation. Neural Comput. Appl. 2021, 33, 1999–2014. [Google Scholar] [CrossRef]
- Zlatev, Z.; Dimov, I.; Faragó, I.; Georgiev, K.; Havasi, Á. Studying the Influence of Climate Changes on European Ozone Levels. In Proceedings of the International Conference on Large-Scale Scientific Computing, Sozopol, Bulgaria, 7–11 June 2021; Springer: Cham, Switzerland, 2019; pp. 391–399. [Google Scholar]
- Wang, Y.; Zhao, M.; Chen, W. Spatial effect of factors affecting household CO2 emissions at the provincial level in China: A geographically weighted regression model. Carbon Manag. 2018, 9, 187–200. [Google Scholar] [CrossRef]
- Zhao, L.T.; Zhao, T.; Yuan, R. Scenario simulations for the peak of provincial household CO2 emissions in China based on the STIRPAT model. Sci. Total Environ. 2022, 809, 151098. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, G.; Yue, Y.; Lai, Z.; Chen, Y.; Yang, D.; Yang, X.; Wang, Z. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets. Appl. Energy 2019, 235, 612–624. [Google Scholar] [CrossRef]
- Cui, C.; Zhao, T.; Wang, Y. Factor analysis of urban residential CO2 emissions in Tianjin: 1995–2014. Int. J. Glob. Warm. 2018, 15, 293–314. [Google Scholar] [CrossRef]
- Zang, X.L.; Zhao, T.; Wang, J.; Guo, F. The effects of urbanization and household-related factors on residential direct CO2 emissions in Shanxi, China from 1995 to 2014: A decomposition analysis. Atmos. Pollut. Res. 2017, 8, 297–309. [Google Scholar] [CrossRef]
- Xie, Z.; Gao, X.; Yuan, W.; Fang, J.; Jiang, Z. Decomposition and prediction of direct residential carbon emission indicators in Guangdong Province of China. Ecol. Indic. 2020, 115, 106344. [Google Scholar]
- Wang, C.; Zhan, J.; Li, Z.; Zhang, F.; Zhang, Y. Structural decomposition analysis of carbon emissions from residential consumption in the Beijing-Tianjin-Hebei region, China. J. Clean. Prod. 2019, 208, 1357–1364. [Google Scholar] [CrossRef]
- Chang, K.L.; Du, Z.F.; Chen, G.J.; Zhang, Y.X.; Sui, L.L. Panel estimation for the impact factors on carbon dioxide emissions: A new regional classification perspective in China. J. Clean. Prod. 2021, 279, 12367. [Google Scholar] [CrossRef]
- Wang, H.K.; Lu, X.; Deng, Y.; Sun, Y.G.; Nielsens, C.P.; Li, Y.F.; Zhu, G.; Bu, M.L.; Bi, J.; McElroy, M.B. China’s CO2 peak before 2030 implied from characteristics and growth of cities. Nat. Sustain. 2019, 2, 748–754. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, S.; Liu, C. Comparing Urban and Rural Household CO2 Emissions-Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing. Energies 2018, 11, 1257. [Google Scholar] [CrossRef] [Green Version]
- Wiedenhofer, D.; Guan, D.B.; Liu, Z.; Meng, J.; Zhang, N.; Wei, Y.M. Unequal household carbon footprints in China. Nat. Clim. Chang. 2017, 7, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.R.; Chen, S.Q. Urban–rural carbon footprint disparity across China from essential household expenditure: Survey-based analysis, 2010–2014. J. Environ. Manag. 2020, 267, 110570. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, J.S.; Chen, C.D. Residential Energy-Related CO2 Emissions in China's Less Developed Regions: A Case Study of Jiangxi. Sustainability 2020, 12, 2000. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006. [Google Scholar]
- Liu, Z.; Guan, D.B.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.L.; Huang, Q.; Guan, D.B.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Ecology and Environment of the People’s Republic of China. 2019 Emission Reduction Project China Regional Grid Baseline Emission Factor [Chinese Document]. 2020. Available online: https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/t20201229_815386.shtml (accessed on 19 January 2020).
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Rethinking the environmental impacts of population, Affluence and technology. Hum. Ecol. Rev. 1994, 1, 277–300. [Google Scholar]
- Ke, L.; Lin, B. Impacts of urbanization and industrialization on energy consumption CO2 emissions: Does the level of development matter? Renew. Sustain. Energ Rev. 2015, 52, 1107–1122. [Google Scholar]
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A comparative study of unit root tests with panel data and a new simple test. Oxf. Bull. Econ. Stat. 1999, 61, 631–652. [Google Scholar] [CrossRef]
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Rsal, D.D.K. Comparison of panel cointegration tests. J. Quant. Tech. Econ. 2010, 33, 1–20. [Google Scholar]
- Esfandi, S.; Rahmdel, L.; Nourian, F.; Sharifi, A. The role of urban spatial structure in energy resilience: An integrated assessment framework using a hybrid factor analysis and analytic network process model. Sustain. Cities Soc. 2022, 76, 103458. [Google Scholar] [CrossRef]
- Li, Y.T.; Pizer, W.A.; Wu, L.B. Climate change and residential electricity consumption in the Yangtze River Delta, China. Proc. Natl. Acad. Sci. USA 2019, 116, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Matsumoto, K.i. Drivers of the change in carbon dioxide emissions under the progress of urbanization in 30 provinces in China: A decomposition analysis. J. Clean. Prod. 2021, 322, 29000. [Google Scholar] [CrossRef]
- Su, K.; Wei, D.Z.; Lin, W.X. Influencing factors and spatial patterns of energy-related carbon emissions at the city-scale in Fujian province, Southeastern China. J. Clean. Prod. 2020, 244, 118840. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, H.; Yang, Z.; Wang, M.; Kammen, D.M.; Liu, Z.; Ma, Z.; Xia, Q.; Kang, C. Exploring the trade-offs between electric heating policy and carbon mitigation in China. Nat. Commun. 2020, 11, 6054. [Google Scholar] [CrossRef]
- National Development and Reform Commission. The Major Functional Oriented Zoning of China; Chinese People’s Publishing House: Beijing, China, 2015; pp. 36–40.
- Liu, Y.; Guo, Y.; Zhou, Y. Poverty alleviation in rural China: Policy changes, future challenges and policy implications. China Agric. Econ. Rev. 2018, 10, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Y. Rural land engineering and poverty alleviation: Lessons from typical regions in China. J. Geogr. Sci. 2019, 29, 643–657. [Google Scholar] [CrossRef] [Green Version]
Variables | Symbol | Definition | Unit |
---|---|---|---|
Population size | P | The amount of permanent residents | 104 persons |
Urbanizaton level | UR | The percentage of the urban population in the total population | % |
Economic level | A | Income divided by the population at the end of the year | Yuan/person |
Energy intensity | EI | Energy consumser per constant 2010 yuan GDP | Tons/104 yuan |
Energy consumption structure | ES | The share of natural gas and electricity consumption over total energy consumption | % |
Variable | Levels | First Difference | ||||||
---|---|---|---|---|---|---|---|---|
LLC | IPS | Fisher-ADF | Fisher-PP | LLC | IPS | Fisher-ADF | Fisher-PP | |
Eastern | ||||||||
LnP | 0.366 | 2.983 | −0.010 | 8.313 *** | −1.037 ** | 0.224 ** | −1.473 ** | −0.296 ** |
LnA | −3.556 *** | 4.030 | −2.227 | 4.158 *** | −11.976 *** | −0.347 ** | −0.802 ** | 25.102 *** |
LnUR | −1.995 ** | 0.577 | 0.3912 | 15.890 *** | −0.475 ** | −0.088 ** | 1.911 ** | 4.591 *** |
LnEI | −5.701 *** | 2.650 | −2.143 | −1.839 | −6.452 ** | −1.832 ** | −1.241 ** | 4.519 *** |
LnES | −6.373 *** | −0.230 | −2.285 | −2.432 | −6.831 *** | −3.031 ** | −0.912 ** | 1.844 ** |
Eastern Urban | ||||||||
LnP | 18.946 *** | 3.020 *** | 1.083 | −2.242 ** | −3.632 *** | −0.087 ** | −0.014 ** | −0.351 ** |
LnA | −3.668 ** | −1.784 ** | −2.372 | 8.385 *** | −16.866 *** | −3.549 *** | 60.943 *** | 15.415 *** |
LnEI | −14.621 *** | −0.203 | −0.474 | 0.611 | −15.197 *** | −2.815 *** | 13.109 *** | 0.369 ** |
LnES | −11.134 *** | −0.327 | 1.893 ** | 0.424 | −21.196 *** | −2.803 *** | 16.072 *** | 8.347 *** |
Eastern rural | ||||||||
LnP | −3.758 *** | 0.173 | 0.369 | 4.736 *** | −4.738 ** | −2.086 ** | 2.009 ** | 1.619 ** |
LnA | −3.693 *** | −0.526 | −1.741 | 24.498 *** | −10.428 *** | −3.026 *** | 25.685 *** | 39.336 *** |
LnEI | −4.519 *** | −4.100 *** | 1.771 ** | 6.730 *** | −2.949 *** | −5.009 *** | 2.292 ** | 4.923 *** |
LnES | −4.182 *** | 1.418 | −1.857 | −0.644 | −3.378 *** | −3.499 *** | 0.302 ** | 8.460 *** |
Central | ||||||||
LnP | −5.598 *** | 0.476 | −0.714 | −1.926 | −4.834 *** | −1.699 ** | −0.476 ** | 0.145 ** |
LnA | −0.782 | 4.421 | −2.076 | 3.809 *** | −0.390 ** | 0.803 ** | −0.170 ** | 18.848 *** |
LnUR | −12.055 *** | 0.212 | −2.135 | 16.284 *** | −9.074 *** | −1.487 ** | 12.943 *** | 4.225 *** |
LnEI | −7.736 *** | 0.8628 | −1.187 | 4.761 *** | −15.772 *** | −0.814 ** | 8.683 *** | 5.610 *** |
LnES | −10.155 *** | −0.027 | 3.567 *** | 3.453 *** | −4.413 *** | −2.414 *** | 10.337 *** | 1.230 ** |
Central Urban | ||||||||
LnP | −6.540 *** | −1.074 | −2.040 | 16.163 *** | −18.973 *** | −0.189 ** | 8.403 *** | 1.620 *** |
LnA | −0.646 | −1.608 * | −1.468 | 18.066 *** | −16.019 *** | −2.726 ** | 49.953 *** | 18.941 *** |
LnEI | −7.820 *** | −0.752 | 8.213 *** | 15.287 *** | −4.867 *** | −2.495 *** | 4.861 *** | 2.621 *** |
LnES | −6.680 *** | −0.090 | 3.566 *** | 9.269 *** | −28.4646 ** | −1.865 ** | 12.549 *** | 3.419 *** |
Central rural | ||||||||
LnP | −8.404 *** | −0.080 | −2.693 | −1.174 | −0.144 ** | −2.012** | 8.155 *** | 2.204 ** |
LnA | −3.593 *** | −2.201 ** | −0.339 | 19.204 *** | −20.548 *** | −3.051*** | −0.743 ** | 6.354 *** |
LnEI | −9.949 *** | −1.151 | 3.645 *** | 3.483 *** | −25.761 *** | −1.582** | 12.637 *** | 1.237 ** |
LnES | −9.913 *** | −1.165 | 1.202 | 0.681 | −16.732 *** | −2.242** | 11.402 *** | 2.000 ** |
Western | ||||||||
LnP | −3.361 *** | 0.476 | −0.714 | −1.926 | −7.577 *** | −2.704 *** | 4.006 *** | 16.095 *** |
LnA | −2.630 *** | 4.421 | −2.076 | 3.809 *** | −1.882 ** | −2.859 *** | 2.137 ** | 10.768 *** |
LnUR | −11.043 *** | −1.555 * | −0.456 | 15.459 *** | −11.017 *** | −1.484 ** | 19.435 *** | 2.338 *** |
LnEI | −3.527 *** | 0.618 | 0.569 | 8.438 *** | −13.225 *** | −2.158 ** | 1.019 ** | 2.657 *** |
LnES | −4.818 *** | −1.184 | −1.571 | −2.472 | −8.028 *** | −2.968 *** | 9.573 *** | 2.721 *** |
Western Urban | ||||||||
LnP | −8.680 *** | −1.890 ** | −0.860 | 10.700 *** | −12.358 *** | −1.965 ** | 12.420 *** | 1.703 ** |
LnA | 0.459 | 0.050 | 1.459 * | 22.195 *** | −36.073 *** | −3.444 *** | 62.986 *** | 20.129 *** |
LnEI | −9.942 *** | −1.687 ** | −1.928 | −0.917 | −15.197 *** | −2.815 *** | 13.109 *** | 0.368 ** |
LnES | −10.365 *** | −1.207 | 3.192 *** | −0.544 | −21.196 *** | −2.803 *** | 16.072 *** | 8.347 *** |
Western rural | ||||||||
LnP | −10.286 ** | −0.108 | −1.646 | 2.286 ** | −6.214 *** | −1.407 ** | 16.422 *** | 3.614 *** |
LnA | −12.095 *** | −2.727 *** | 0.983 | 18.821 *** | −21.879 *** | −3.966 *** | −0.517 ** | 3.543 *** |
LnEI | −5.166 *** | 2.559 | −1.160 | 0.791 | −8.143 *** | −3.281 *** | 9.629 *** | 0.114 ** |
LnES | −0.644 | 2.157 | −1.542 | −1.996 | −5.725 *** | −3.137 *** | 2.992 *** | 2.089 ** |
Eastern | Central | Western | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Urban | Rural | Total | Urban | Rural | Total | Urban | Rural | ||
Pedroni test | Panel v-Statistic | −3.715 | −4.441 | −4.202 | −4.025 | −4.453 | −4.156 | −4.271 | −3.708 | −4.454 |
Panel rho-Statistic | 2.207 | 2.516 | 1.683 | 1.356 | 2.725 | 4.086 | 3.861 | 3.392 | 4.358 | |
Panel PP-Statistic | −11.248 * | −19.096 *** | −23.849 *** | −8.941 ** | −6.939 *** | −10.272 *** | −21.344 *** | −20.219 *** | −16.338 *** | |
Panel ADF-Statistic | −13.942 *** | −15.264 *** | −21.871 *** | −8.364 *** | −6.625 *** | −8.900 *** | −13.254 *** | −17.184 *** | −15.804 *** | |
Group rho-Statistic | 4.076 | 4.441 | 4.265 | 4.381 | 4.453 | 4.257 | 4.685 | 3.708 | 4.320 | |
Group PP-Statistic | −14.365 ** | −19.096 *** | −22.908 *** | −9.367 *** | −6.939 *** | −12.241 *** | −19.254 *** | −20.219 *** | −17.647 *** | |
Group ADF-Statistic | −9.684 *** | −15.264 *** | −17.766 *** | −6.625 *** | −10.691 *** | −17.184 *** | −10.238 *** | |||
Kao test | ADF stat | −1.761 *** | −2.443 *** | −1.165 *** | −2.645 *** | −3.038 *** | −1.435 ** | −2.216 *** | −1.857 ** | −2.531 *** |
Residual variance | −0.642 | −0.341 | −1.526 | −1.327 ** | −1.704 ** | 0.089 | −2.156 | -3.141 | −0.881 | |
HAC variance | 0.257 | −1.223 | −4.632 | −2.147 | −2.719 *** | −1.073 | −2.351 | −3.956 | −2.092 ** |
Eastern | Central | Western | |
---|---|---|---|
LnP | 0.710 *** | 0.862 *** | 1.973 *** |
LnA | 0.851 *** | 0.412 *** | 0.289 ** |
LnUR | −0.071 * | 1.354 *** | 0.438 ** |
LnEI | 0.664 *** | 0.443 *** | 0.275 *** |
LnES | −0.026 | −0.139 ** | −0.066 ** |
P value | 0.3838 | 0.290 | 0.021 |
Model type | RM | RM | FM |
R2 | 0.988 | 0.890 | 0.878 |
National | Eastern | Central | Western | |||||
---|---|---|---|---|---|---|---|---|
Urban (FM) | Rural (FM) | Urban (FM) | Rural (RM) | Urban (FM) | Rural (RM) | Urban (RM) | Rural (FM) | |
LnP | 0.39 *** | −0.484 ** | 0.533 ** | 0.984 *** | 1.370 *** | 0.814 *** | 0.465 ** | 0.962 *** |
LnA | 0.65 *** | 0.456 *** | 0.612 *** | 0.709 *** | 0.415 ** | 0.778 *** | 0.465 ** | 0.641 *** |
LnEI | 0.229 *** | 0.286 *** | 0.119 * | 0.420 *** | 0.222 ** | 0.707 *** | 0.148 ** | 0.19 * |
LnES | −0.094 ** | −0.094 ** | −0.118 ** | −0.109 ** | −0.216 ** | −0.065 * | −0.058 | −0.162 * |
P value | 0.000 | 0.000 | 0.001 | 0.000 | 0.004 | 0.035 | 0.184 | 0.378 |
R2 | 0.808 | 0.605 | 0.842 | 0.964 | 0.844 | 0.897 | 0.801 | 0.656 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, S.; Lu, C.; Hu, L. Which Factors Influence the Regional Difference of Urban–Rural Residential CO2 Emissions? A Case Study by Cross-Regional Panel Analysis in China. Land 2022, 11, 632. https://doi.org/10.3390/land11050632
Wang Z, Wang S, Lu C, Hu L. Which Factors Influence the Regional Difference of Urban–Rural Residential CO2 Emissions? A Case Study by Cross-Regional Panel Analysis in China. Land. 2022; 11(5):632. https://doi.org/10.3390/land11050632
Chicago/Turabian StyleWang, Zheng, Shaojian Wang, Chuanhao Lu, and Lei Hu. 2022. "Which Factors Influence the Regional Difference of Urban–Rural Residential CO2 Emissions? A Case Study by Cross-Regional Panel Analysis in China" Land 11, no. 5: 632. https://doi.org/10.3390/land11050632
APA StyleWang, Z., Wang, S., Lu, C., & Hu, L. (2022). Which Factors Influence the Regional Difference of Urban–Rural Residential CO2 Emissions? A Case Study by Cross-Regional Panel Analysis in China. Land, 11(5), 632. https://doi.org/10.3390/land11050632