Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Screening
2.2. Categorization of the Measures
2.3. Data Analysis
3. Results
3.1. Overview of the Dataset
3.2. Effects of Measures on Crop Yields
3.3. Effects of Measures on Soil Bulk Density
3.4. Effects of Measures on Soil Penetration Resistance
3.5. Effects of Experimental Duration
3.6. Effects of Soil Texture
4. Discussion
4.1. Understanding the Cause-Effect Relationships
4.2. Impacts of Measures in Small-Holder Farming and Mechanized Agriculture
4.3. Managing Soil Compaction
4.4. Limitations of Our Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The DPSIR framework stands for Driving forces, Pressure, State, Impact and Responses. It allows for analyzing and understanding the cause-effect chain of soil comapction in a systematic manner, as further discussed in the Discussion section. |
References
- Schjønning, P.; van den Akker, J.H.; Keller, T.; Greve, M.H.; Lamandé, M.; Simojoki, A.; Stettler, M.; Arvidsson, J.; Breuning-Madsen, H. Soil compaction. In Soil Threats in Europe—Status, Methods, Drivers and Effects on Ecosystem Services; EU Joint Research Centre: Petten, The Netherlands, 2016; Chapter 6. [Google Scholar] [CrossRef]
- Schjønning, P.; van den Akker, J.J.H.; Keller, T.; Greve, M.H.; Lamandé, M.; Simojoki, A.; Stettler, M.; Arvidsson, J.; Breuning-Madsen, H. Driver-Pressure-State-Impact-Response (DPSIR) Analysis and Risk Assessment for Soil Compaction-A European Perspective. Adv. Agron. 2015, 133, 183–237. [Google Scholar] [CrossRef]
- Batey, T. Soil compaction and soil management—A review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrie, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.K.; Salahin, N.; Islam, S.; Begum, R.A.; Hasanuzzaman, M.; Islam, M.S.; Rahman, M.M. Patterns of change in soil organic matter, physical properties and crop productivity under tillage practices and cropping systems in Bangladesh. J. Agric. Sci. 2017, 155, 216–238. [Google Scholar] [CrossRef]
- Unger, P.W.; Kaspar, T.C. Soil Compaction and Root-Growth—A Review. Agron. J. 1994, 86, 759–766. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Laker, M.; Nortjé, G. Review of existing knowledge on subsurface soil compaction in South Africa. Adv. Agron. 2020, 162, 143–197. [Google Scholar] [CrossRef]
- Caon, L.; Vargas, R. Threats to Soils: Global trends and Perspectives. In A Contribution from the Intergovernmental Technical Panel on Soils, Global Soil Partnership; Global Land Outlook Working Paper; Pierzynski, G., Ed.; Food and Agriculture: Rome, Italy, 2017. [Google Scholar]
- Sonderegger, T.; Pfister, S. Global Assessment of Agricultural Productivity Losses from Soil Compaction and Water Erosion. Environ. Sci. Technol. 2021, 55, 12162–12171. [Google Scholar] [CrossRef]
- Alakukku, L.; Weisskopf, P.; Chamen, W.C.T.; Tijink, F.G.J.; van der Linden, J.P.; Pires, S.; Sommer, C.; Spoor, G. Prevention strategies for field traffic-induced subsoil compaction: A review Part 1. Machine/soil interactions. Soil Tillage Res. 2003, 73, 145–160. [Google Scholar] [CrossRef]
- Techen, A.K.; Helming, K.; Brueggemann, N.; Veldkamp, E.; Reinhold-Hurek, B.; Lorenz, M.; Bartke, S.; Heinrich, U.; Amelung, W.; Augustin, K.; et al. Soil research challenges in response to emerging agricultural soil management practices. Adv. Agron. 2020, 161, 179–240. [Google Scholar] [CrossRef]
- Keller, T.; Sandin, M.; Colombi, T.; Horn, R.; Or, D. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Ledermüller, S.; Fick, J.; Jacobs, A. Perception of the Relevance of Soil Compaction and Application of Measures to Prevent It among German Farmers. Agronomy 2021, 11, 969. [Google Scholar] [CrossRef]
- Soane, B.; Van Ouwerkerk, C. Implications of soil compaction in crop production for the quality of the environment. Soil Tillage Res. 1995, 35, 5–22. [Google Scholar] [CrossRef]
- Antille, D.L.; Peets, S.; Galambošová, J.; Botta, G.F.; Rataj, V.; Macak, M.; Tullberg, J.N.; Chamen, W.C.T.; White, D.R.; Misiewicz, P.A.; et al. Soil compaction and controlled traffic farming in arable and grass cropping systems. Agron. Res. 2019, 17, 653–682. [Google Scholar] [CrossRef]
- Daniells, I.G. Hardsetting soils: A review. Soil Res. 2012, 50, 349–359. [Google Scholar] [CrossRef]
- Passioura, J.; Leeper, G. Soil compaction and manganese deficiency. Nature 1963, 200, 29. [Google Scholar] [CrossRef]
- Wilkins, S.M.; Wilkins, H.; Wain, R. Chemical treatment of soil alleviates effects of soil compaction on pea seedling growth. Nature 1976, 259, 392–394. [Google Scholar] [CrossRef]
- Soane, B.; Van Ouwerkerk, C. Soil compaction problems in world agriculture. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1994; pp. 1–21. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems—A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Chamen, W.C.T.; Chamen, W.T.; Moxey, A.P.; Towers, W.; Balana, B.; Hallett, P.D. Mitigating arable soil compaction: A review and analysis of available cost and benefit data. Soil Tillage Res. 2015, 146, 10–25. [Google Scholar] [CrossRef]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield–What do we really know? Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Kodikara, J.; Islam, T.; Sounthararajah, A. Review of soil compaction: History and recent developments. Transp. Geotech. 2018, 17, 24–34. [Google Scholar] [CrossRef]
- Obour, P.B.; Ugarte, C.M. A meta-analysis of the impact of traffic-induced compaction on soil physical properties and grain yield. Soil Tillage Res. 2021, 211, 105019. [Google Scholar] [CrossRef]
- Hargreaves, P.R.; Baker, K.L.; Graceson, A.; Bonnett, S.; Ball, B.C.; Cloy, J.M. Soil compaction effects on grassland silage yields and soil structure under different levels of compaction over three years. Eur. J. Agron. 2019, 109, 125916. [Google Scholar] [CrossRef]
- Chen, S.; Yang, P.; Zhang, Y.; Dong, W.; Hu, C.; and Oenema, O. Responses of Cereal Yields and Soil Carbon Sequestration to Four Long-Term Tillage Practices in the North China Plain. Agronomy 2022, 12, 176. [Google Scholar] [CrossRef]
- FAO. Crop Prospects and Food Situation #2. In Quarterly Global Report; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Drew, M.; Saker, L. Assessment of a rapid method, using soil cores, for estimating the amount and distribution of crop roots in the field. Plant Soil 1980, 55, 297–305. [Google Scholar] [CrossRef]
- Liu, S.; Song, F.; Zhu, X.; Xu, H. Dynamics of root growth and distribution in maize from the black soil region of NE China. J. Agric. Sci. 2012, 4, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Lowder, S.K.; Skoet, J.; Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Hu, C.; Oenema, O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A meta-analysis. Sci. Rep. 2015, 5, 16210. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. R Core Team (2017) nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-131. Computer Software. 2017. Available online: https://CRAN.R-project.org/package=nlme (accessed on 1 April 2022).
- Van Groenigen, J.W.; Lubbers, I.M.; Vos, H.M.; Brown, G.G.; De Deyn, G.B.; Van Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 6365. [Google Scholar] [CrossRef] [Green Version]
- Brus, D.J.; Van Den Akker, J.J.H. How serious a problem is subsoil compaction in the Netherlands? A survey based on probability sampling. Soil 2018, 4, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Lebert, M.; Böken, H.; Glante, F. Soil compaction—indicators for the assessment of harmful changes to the soil in the context of the German Federal Soil Protection Act. J. Environ. Manag. 2007, 82, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.J.; Spoor, G.; Thomasson, A. Vulnerability of subsoils in Europe to compaction: A preliminary analysis. Soil Tillage Res. 2003, 73, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Hakansson, I.; Lipiec, J. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil Tillage Res. 2000, 53, 71–85. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Lipiec, J.; Usowicz, B. Spatial relationships among cereal yields and selected soil physical and chemical properties. Sci. Total Environ. 2018, 633, 1579–1590. [Google Scholar] [CrossRef]
- Yang, P.; Reijneveld, A.; Lerink, P.; Qin, W.; Oenema, O. Within-field spatial variations in subsoil bulk density related to crop yield and potential CO2 and N2O emissions. Catena 2022, 213, 106156. [Google Scholar] [CrossRef]
- Panayiotopoulos, K.; Salonikiou, E.; Siaga, K.; Germanopoulou, V.; Skaperda, S. Effect of uniaxial compression on water retention, hydraulic conductivity and the penetration resistance of six Greek soils. Int. Agrophysics 2003, 17, 191–197. [Google Scholar]
- Tullberg, J.; Antille, D.L.; Bluett, C.; Eberhard, J.; Scheer, C. Controlled traffic farming effects on soil emissions of nitrous oxide and methane. Soil Tillage Res. 2018, 176, 18–25. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Tullberg, J.; Yule, D.; McGarry, D. Controlled traffic farming—From research to adoption in Australia. Soil Tillage Res. 2007, 97, 272–281. [Google Scholar] [CrossRef]
- Rietra, R.; Heinen, M.; Oenema, O. A Review of Crop Husbandry and Soil Management Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems. Land 2022, 11, 255. [Google Scholar] [CrossRef]
- Troccoli, A.; Maddaluno, C.; Mucci, M.; Russo, M.; Rinaldi, M. Is it appropriate to support the farmers for adopting conservation agriculture? Economic and environmental impact assessment. Ital. J. Agron. 2015, 10, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; Van Groenigen, K.J.; Lee, J.; Lundy, M.E.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Graven, L.; Carter, P. Seed quality effect on corn performance under conventional and no-tillage systems. J. Prod. Agric. 1991, 4, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Ali Omar, N.; Whittenton, J.B.; Williams, J.J.; Watts, F.; Henry, W.B. Sub-Optimal Temperature Effects on Hybrid Corn Seed and Seedling Performance. Seed Technol. 2018, 39, 129–142. [Google Scholar]
- Peralta, G.; Alvarez, C.R.; Taboada, M.A. Soil compaction alleviation by deep non-inversion tillage and crop yield responses in no tilled soils of the Pampas region of Argentina. A meta-analysis. Soil Tillage Res. 2021, 211, 105022. [Google Scholar] [CrossRef]
- Spoor, G. Alleviation of soil compaction: Requirements, equipment and techniques. Soil Use Manag. 2006, 22, 113–122. [Google Scholar] [CrossRef]
- Bengough, A.G.; McKenzie, B.M.; Hallett, P.D.; Valentine, T.A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 2011, 62, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Mujdeci, M.; Isildar, A.A.; Uygur, V.; Alaboz, P.; Unlu, H.; Senol, H. Cooperative effects of field traffic and organic matter treatments on some compaction-related soil properties. Solid Earth 2017, 8, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 2017, 37, 26. [Google Scholar] [CrossRef] [Green Version]
- Horn, R.; Domżżał, H.; Słowińska-Jurkiewicz, A.; Van Ouwerkerk, C. Soil Compaction Processes and Their Effects on the Structure of Arable Soils and the Environment. Soil Tillage Res. 1995, 35, 23–36. [Google Scholar] [CrossRef]
- Thorsøe, M.H.; Noe, E.B.; Lamandé, M.; Frelih-Larsen, A.; Kjeldsen, C.; Zandersen, M.; Schjønning, P. Sustainable soil management-Farmers’ perspectives on subsoil compaction and the opportunities and barriers for intervention. Land Use Policy 2019, 86, 427–437. [Google Scholar] [CrossRef]
- European Commission. 699 Final: EU Soil Strategy for 2030 Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Chen, K.; Shaw, B. Public communication of soil conservation practices: A large-scale content analysis of Wisconsin’s agricultural trade publications. J. Soil Water Conserv. 2022, 77, 184–197. [Google Scholar] [CrossRef]
- Zhou, L.; Monreal, C.M.; Xu, S.; McLaughlin, N.B.; Zhang, H.; Hao, G.; Liu, J. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. Geoderma 2019, 338, 269–280. [Google Scholar] [CrossRef]
- Tian, S.; Ning, T.; Wang, Y.; Liu, Z.; Li, G.; Li, Z.; Lal, R. Crop yield and soil carbon responses to tillage method changes in North China. Soil Tillage Res. 2016, 163, 207–213. [Google Scholar] [CrossRef]
- He, J.; Shi, Y.; Zhao, J.; Yu, Z. Strip rotary tillage with subsoiling increases winter wheat yield by alleviating leaf senescence and increasing grain filling. Crop J. 2019, 8, 327–340. [Google Scholar] [CrossRef]
- Fen, W.; Zhai, L.; Xu, P.; Zhang, Z.; Baillo, E.; Tolosa, L.; Kimotho, R.; Jia, X.; Guo, H. Effects of deep vertical rotary tillage on the grain yield and resource use efficiency of winter wheat in the Huang-Huai-Hai Plain of China. J. Integr. Agric. 2021, 20, 593–605. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture–Trends and Challenges; Food and Agriculture Organisation: Rome, Italy, 2017; ISBN 978-92-5-109551-5. [Google Scholar]
- Hallett, P.; Balana, B.; Towers, W.; Moxey, A.; Chamen, T. Studies to Inform Policy Development with Regard to Soil Degradation: Subproject A: Cost Curve for Mitigation of Soil Compaction; The James Hutton Institute: Dundee, Scotland, 2012. [Google Scholar]
- Mariotti, B.; Hoshika, Y.; Cambi, M.; Marra, E.; Feng, Z.; Paoletti, E.; Marchi, E. Vehicle-induced compaction of forest soil affects plant morphological and physiological attributes: A meta-analysis. For. Ecol. Manag. 2020, 462, 118004. [Google Scholar] [CrossRef]
- Hoogmoed, W.; Berkhout, J.; Stroosnijder, L. Soil tillage options for water management under erratic-rainfall conditions. In Proceedings of the Tillage in Arid and Semi-Arid Areas, an International Seminar, Rabat, Morocco, 22–23 April 1992. [Google Scholar]
- Keller, T.; Colombi, T.; Ruiz, S.; Manalili, M.P.; Rek, J.; Stadelmann, V.; Wunderli, H.; Breitenstein, D.; Reiser, R.; Oberholzer, H.; et al. Long-Term Soil Structure Observatory for Monitoring Post-Compaction Evolution of Soil Structure. Vadose Zone J. 2017, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ball, B.; Bingham, I.; Rees, R.M.; Watson, C.A.; Litterick, A. The role of crop rotations in determining soil structure and crop growth conditions. Can. J. Soil Sci. 2005, 85, 557–577. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Dong, W.; Heinen, M.; Qin, W.; Oenema, O. Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis. Land 2022, 11, 645. https://doi.org/10.3390/land11050645
Yang P, Dong W, Heinen M, Qin W, Oenema O. Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis. Land. 2022; 11(5):645. https://doi.org/10.3390/land11050645
Chicago/Turabian StyleYang, Peipei, Wenxu Dong, Marius Heinen, Wei Qin, and Oene Oenema. 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis" Land 11, no. 5: 645. https://doi.org/10.3390/land11050645
APA StyleYang, P., Dong, W., Heinen, M., Qin, W., & Oenema, O. (2022). Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis. Land, 11(5), 645. https://doi.org/10.3390/land11050645