Big Data-Driven Urban Management: Potential for Urban Sustainability
Abstract
:1. Introduction
2. Methodology
2.1. Research Design
2.2. Interdisciplinary Approach for Data Extraction
2.3. Development of a Research Protocol
2.4. Search Strategy
2.5. Inclusion and Exclusion Criteria
3. Results
3.1. Selection of Documents
3.2. Word Clouds for Data-Driven Urban Management and Sustainability
3.3. Analytical Results
3.3.1. Major Dimensions of Data-Driven Urban Management
3.3.2. Relationships between Urban Management and Urban Sustainability
3.3.3. Urban Big Data Sources
3.3.4. Role of BDA for Urban Management and Sustainability
4. Discussion
4.1. Urban Management through Big Data Analytics (BDA)
4.1.1. Digital Instrumentation
4.1.2. Data-Informed Policy Making
4.1.3. Policy Governance
4.1.4. Real-Time Management
4.1.5. Evidence-Based Planning Decisions
4.2. Linkages between Urban Management and Sustainability
4.3. Application of Big Data Analytics (BDA) for Smart Urban Governance
4.4. Big Data Analytics (BDA) for Sustainable Urban Management (SUM)
5. Conclusions
6. Limitations and Future Research Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. United Nations E-Government 2016: E-Government in Support of Sustainable Development; Department of Economic and Social Affairs, UN: New York, NY, USA, 2016; ISBN 9789211232059. [Google Scholar]
- Cocchia, A. Smart and Digital City: A Systematic Literature Review. In Smart City; Dameri, R.P., Rosenthal-Sabroux, C., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 13–44. ISBN 978-3-319-06159-7. [Google Scholar]
- Liu, J.; Hou, X.; Xia, C.; Kang, X.; Zhou, Y. Examining the spatial coordination between metrorail accessibility and urban spatial form in the context of big data. Land 2021, 10, 580. [Google Scholar] [CrossRef]
- Abdul-Rahman, M.; Chan, E.H.W.; Wong, M.S.; Irekponor, V.E.; Abdul-Rahman, M.O. A framework to simplify pre-processing location-based social media big data for sustainable urban planning and management. Cities 2021, 109, 102986. [Google Scholar] [CrossRef]
- Du, M.; Zhang, X.; Wang, Y.; Tao, L.; Li, H. An operationalizing model for measuring urban resilience on land expansion. Habitat Int. 2020, 102, 102206. [Google Scholar] [CrossRef]
- Bernardes, M.B.; de Andrade, F.P.; Novais, P.; Lopes, N.V. Participatory Governance of Smart Cities. In Proceedings of the 11th International Conference on Theory and Practice of Electronic Governance, Galway, Ireland, 4–6 April 2018; ACM: New York, NY, USA, 2018; pp. 526–536. [Google Scholar]
- Venticinque, S.; Amato, A. Smart Sensor and Big Data Security and Resilience, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128113738. [Google Scholar]
- Aina, Y.A.; Wafer, A.; Ahmed, F.; Alshuwaikhat, H.M. Top-down sustainable urban development? Urban governance transformation in Saudi Arabia. Cities 2019, 90, 272–281. [Google Scholar] [CrossRef]
- Boeing, G. Spatial information and the legibility of urban form: Big data in urban morphology. Int. J. Inf. Manag. 2021, 56, 102013. [Google Scholar] [CrossRef] [Green Version]
- Kamrowska-Załuska, D. Impact of ai-based tools and urban big data analytics on the design and planning of cities. Land 2021, 10, 1209. [Google Scholar] [CrossRef]
- Milojevic-Dupont, N.; Creutzig, F. Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain. Cities Soc. 2021, 64, 102526. [Google Scholar] [CrossRef]
- Ye, L.; Pan, S.L.; Wang, J.; Wu, J.; Dong, X. Big data analytics for sustainable cities: An information triangulation study of hazardous materials transportation. J. Bus. Res. 2021, 128, 381–390. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Data-Driven Smart Sustainable Cities of the Future: A Novel Model of Urbanism and Its Core Dimensions, Strategies, and Solutions. J. Futur. Stud. 2020, 25, 77–94. [Google Scholar] [CrossRef]
- Shah, I.H.; Dong, L.; Park, H.S. Tracking urban sustainability transition: An eco-efficiency analysis on eco-industrial development in Ulsan, Korea. J. Clean. Prod. 2020, 262, 121286. [Google Scholar] [CrossRef]
- Deng, S. Exploring the relationship between new-type urbanization and sustainable urban land use: Evidence from prefecture-level cities in China. Sustain. Comput. Inform. Syst. 2020, 30, 100446. [Google Scholar] [CrossRef]
- Ali, H.; Titah, R. Is big data used by cities? Understanding the nature and antecedents of big data use by municipalities. Gov. Inf. Q. 2021, 38, 101600. [Google Scholar] [CrossRef]
- Feroz, A.K.; Zo, H.; Chiravuri, A. Digital Transformation and Environmental Sustainability: A Review and Research Agenda. Sustainability 2021, 13, 1530. [Google Scholar] [CrossRef]
- Liu, L. Green urban environmental sustainability and health sport based on MapReduce fitness big data and ZigBee technology. Environ. Technol. Innov. 2021, 23, 101676. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T.; Spiegal, S.; Winkler, R.; James, D.; Levi, M.; Williamson, J. Assessing Sustainability Goals Using Big Data: Collaborative Adaptive Management in the Malpai Borderlands. Rangel. Ecol. Manag. 2021, 77, 17–29. [Google Scholar] [CrossRef]
- Engin, Z.; van Dijk, J.; Lan, T.; Longley, P.A.; Treleaven, P.; Batty, M.; Penn, A. Data-driven urban management: Mapping the landscape. J. Urban Manag. 2020, 9, 140–150. [Google Scholar] [CrossRef]
- Bibri, S.E. Data-driven smart sustainable cities of the future: An evidence synthesis approach to a comprehensive state-of-the-art literature review. Sustain. Futur. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. ICT of the new wave of computing for sustainable urban forms: Their big data and context-aware augmented typologies and design concepts. Sustain. Cities Soc. 2017, 32, 449–474. [Google Scholar] [CrossRef]
- Wang, S.J.; Moriarty, P. Big Data for Urban Sustainability; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-73608-2. [Google Scholar]
- Sarker, M.N.I.; Kamruzzaman, M.M.; Huq, M.E.; Zaman, R.; Hossain, B.; Khurshid, S. Smart City Governance through Big Data: Transformation towards Sustainability. In Proceedings of the International Conference of Women in Data Science at Taif University (WiDSTaif), Taif, Saudi Arabia, 30–31 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Khan, S.; Wani, M.M.; Alam, M. IoT applications in urban sustainability. arXiv 2020, arXiv:2008.10656. [Google Scholar]
- Dong, J.; Meng, W.; Liu, Y.; Ti, J. A framework of pavement management system based on IoT and big data. Adv. Eng. Inform. 2021, 47, 101226. [Google Scholar] [CrossRef]
- Allam, Z.; Jones, D.S. Future (post-COVID) digital, smart and sustainable cities in the wake of 6G: Digital twins, immersive realities and new urban economies. Land Use Policy 2021, 101, 105201. [Google Scholar] [CrossRef]
- Arfanuzzaman, M. Harnessing artificial intelligence and big data for SDGs and prosperous urban future in South Asia. Environ. Sustain. Indic. 2021, 11, 100127. [Google Scholar] [CrossRef]
- Mans, U.; Giest, S.; Baar, T. Can Big Data Make a Difference for Urban Management? In Urban Planet; Cambridge University Press: Cambridge, UK, 2018; pp. 218–238. ISBN 9781316647554. [Google Scholar]
- Ivanov, N.; Gnevanov, M. Big data: Perspectives of using in urban planning and management. MATEC Web Conf. 2018, 170, 01107. [Google Scholar] [CrossRef]
- Bibri, S.E. On the sustainability of smart and smarter cities in the era of big data: An interdisciplinary and transdisciplinary literature review. J. Big Data 2019, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Sarker, M.N.I.; Khatun, M.N.; Alam, G.M.; Islam, M.S. Big Data Driven Smart City: Way to Smart City Governance. In Proceedings of the International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 9–10 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar]
- Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [Google Scholar] [CrossRef]
- Madu, C.N.; Kuei, C.H.; Lee, P. Urban sustainability management: A deep learning perspective. Sustain. Cities Soc. 2017, 30, 1–17. [Google Scholar] [CrossRef]
- Buzási, A.; Jäger, B.S. District-scale assessment of urban sustainability. Sustain. Cities Soc. 2020, 62, 102388. [Google Scholar] [CrossRef]
- Fang, X.; Shi, X.; Gao, W. Measuring urban sustainability from the quality of the built environment and pressure on the natural environment in China: A case study of the Shandong Peninsula region. J. Clean. Prod. 2021, 289, 125145. [Google Scholar] [CrossRef]
- Yang, J. Big data and the future of urban ecology: From the concept to results. Sci. China Earth Sci. 2020, 63, 1443–1456. [Google Scholar] [CrossRef]
- Bibri, S.E. Advances in the Leading Paradigms of Urbanism and Their Amalgamation: Compact Cities, Eco–Cities, and Data–Driven Smart Cities; Springer Nature: Berlin, Germany, 2020; ISBN 9783030417451. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, S.; Barchers, C.; Zhang, W. Moving beyond operations: Leveraging big data for urban planning decisions. In Proceedings of the CUPUM 2015—14th International Conference on Computers in Urban Planning and Urban Management, Cambridge, MA, USA, 7–10 July 2015; pp. 1–16. [Google Scholar]
- Hao, J.; Zhu, J.; Zhong, R. The rise of big data on urban studies and planning practices in China: Review and open research issues. J. Urban Manag. 2015, 4, 92–124. [Google Scholar] [CrossRef] [Green Version]
- Morioka, M.; Kuramochi, K.; Mishina, Y.; Akiyama, T.; Taniguchi, N. City management platform using big data from people and traffic flows. Hitachi Rev. 2015, 64, 52–57. [Google Scholar]
- Pan, Y.; Tian, Y.; Liu, X.; Gu, D.; Hua, G. Urban Big Data and the Development of City Intelligence. Engineering 2016, 2, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Kharrazi, A.; Qin, H.; Zhang, Y. Urban Big Data and Sustainable Development Goals: Challenges and Opportunities. Sustainability 2016, 8, 1293. [Google Scholar] [CrossRef] [Green Version]
- Bibri, S.E.; Krogstie, J. The core enabling technologies of big data analytics and context-aware computing for smart sustainable cities: A review and synthesis. J. Big Data 2017, 4, 38. [Google Scholar] [CrossRef]
- Nathali Silva, B.; Khan, M.; Han, K. Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making. Wirel. Commun. Mob. Comput. 2017, 2017, 9429676. [Google Scholar] [CrossRef] [Green Version]
- Glaeser, E.L.; Kominers, S.D.; Luca, M.; Naik, N. Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life. Econ. Inq. 2018, 56, 114–137. [Google Scholar] [CrossRef]
- Silva, B.; Khan, M.; Jung, C.; Seo, J.; Muhammad, D.; Han, J.; Yoon, Y.; Han, K. Urban Planning and Smart City Decision Management Empowered by Real-Time Data Processing Using Big Data Analytics. Sensors 2018, 18, 2994. [Google Scholar] [CrossRef] [Green Version]
- Sörensen, J.; Persson, A.S.; Olsson, J.A. A data management framework for strategic urban planning using blue-green infrastructure. J. Environ. Manag. 2021, 299, 113658. [Google Scholar] [CrossRef]
- He, Q.; He, W.; Song, Y.; Wu, J.; Yin, C.; Mou, Y. The impact of urban growth patterns on urban vitality in newly built-up areas based on an association rules analysis using geographical ‘big data’. Land Use Policy 2018, 78, 726–738. [Google Scholar] [CrossRef]
- Du, J.; Kuang, B.; Yang, Y. A Data-Driven Framework for Smart Urban Domestic Wastewater: A Sustainability Perspective. Adv. Civ. Eng. 2019, 2019, 6530626. [Google Scholar] [CrossRef]
- Bibri, S.E. The anatomy of the data-driven smart sustainable city: Instrumentation, datafication, computerization and related applications. J. Big Data 2019, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Ersoy, A.; Alberto, K.C. Understanding urban infrastructure via big data: The case of Belo Horizonte. Reg. Stud. Reg. Sci. 2019, 6, 374–379. [Google Scholar] [CrossRef]
- Kong, L.; Liu, Z.; Wu, J. A systematic review of big data-based urban sustainability research: State-of-the-science and future directions. J. Clean. Prod. 2020, 273, 123142. [Google Scholar] [CrossRef]
- Zhang, J.; He, S. Smart technologies and urban life: A behavioral and social perspective. Sustain. Cities Soc. 2020, 63, 102460. [Google Scholar] [CrossRef]
- Bibri, S.E. Compact urbanism and the synergic potential of its integration with data-driven smart urbanism: An extensive interdisciplinary literature review. Land Use Policy 2020, 97, 104703. [Google Scholar] [CrossRef]
- D’Amico, G.; L’Abbate, P.; Liao, W.; Yigitcanlar, T.; Ioppolo, G. Understanding sensor cities: Insights from technology giant company driven smart urbanism practices. Sensors 2020, 20, 4391. [Google Scholar] [CrossRef]
- Jararweh, Y.; Al-Ayyoub, M.; Al-Zoubi, D.; Benkhelifa, E. An experimental framework for future smart cities using data fusion and software defined systems: The case of environmental monitoring for smart healthcare. Futur. Gener. Comput. Syst. 2020, 107, 883–897. [Google Scholar] [CrossRef]
- Kandt, J.; Batty, M. Smart cities, big data and urban policy: Towards urban analytics for the long run. Cities 2021, 109, 102992. [Google Scholar] [CrossRef]
- Thakuriah, P.; Tilahun, N.Y.; Zellner, M. Big Data and Urban Informatics: Innovations and Challenges to Urban Planning and Knowledge Discovery. In Seeing Cities Through Big Data; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 11–45. [Google Scholar]
- Zhang, D.; Pee, L.G.; Pan, S.L.; Cui, L. Big data analytics, resource orchestration, and digital sustainability: A case study of smart city development. Gov. Inf. Q. 2021, 39, 101626. [Google Scholar] [CrossRef]
- Palumbo, R.; Manesh, M.F.; Pellegrini, M.M.; Caputo, A.; Flamini, G. Organizing a sustainable smart urban ecosystem: Perspectives and insights from a bibliometric analysis and literature review. J. Clean. Prod. 2021, 297, 126622. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban form and composition of street canyons: A human-centric big data and deep learning approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
- Xiao, X.; Xie, C. Rational planning and urban governance based on smart cities and big data. Environ. Technol. Innov. 2021, 21, 101381. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, X. A human-scale investigation into economic benefits of urban green and blue infrastructure based on big data and machine learning: A case study of Wuhan. J. Clean. Prod. 2021, 316, 128321. [Google Scholar] [CrossRef]
- Ye, Y.; Xue, X.; Huang, L.; Gan, M.; Tong, C.; Wang, K.; Deng, J. A new perspective to map the supply and demand of artificial night light based on Loujia1-01 and urban big data. J. Clean. Prod. 2020, 276, 123244. [Google Scholar] [CrossRef]
- Sai, W.; Wang, H. Optimal design of urban transportation planning based on big data. Environ. Technol. Innov. 2021, 23, 101545. [Google Scholar] [CrossRef]
- Liu, G.; Agostinho, F.; Duan, H.; Song, G.; Wang, X.; Giannetti, B.F.; Santagata, R.; Casazza, M.; Lega, M. Environmental impacts characterization of packaging waste generated by urban food delivery services. A big-data analysis in Jing-Jin-Ji region (China). Waste Manag. 2020, 117, 157–169. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, S.L.; Yu, J.; Liu, W. Orchestrating big data analytics capability for sustainability: A study of air pollution management in China. Inf. Manag. 2019, 103231. [Google Scholar] [CrossRef]
- Russo, F.; Comi, A. Sustainable Urban Delivery: The Learning Process of Path Costs Enhanced by Information and Communication Technologies. Sustainability 2021, 13, 13103. [Google Scholar] [CrossRef]
- Valls, F.; Roca, J. Visualizing digital traces for sustainable urban management: Mapping tourism activity on the virtual public space. Sustainability 2021, 13, 3159. [Google Scholar] [CrossRef]
- Kaginalkar, A.; Kumar, S.; Gargava, P.; Niyogi, D. Review of urban computing in air quality management as smart city service: An integrated IoT, AI, and cloud technology perspective. Urban Clim. 2021, 39, 100972. [Google Scholar] [CrossRef]
- Anthopoulos, L.; Kazantzi, V. Urban energy efficiency assessment models from an AI and big data perspective: Tools for policy makers. Sustain. Cities Soc. 2022, 76, 103492. [Google Scholar] [CrossRef]
- Šoštarić, M.; Vidović, K.; Jakovljević, M.; Lale, O. Data-driven methodology for sustainable urban mobility assessment and improvement. Sustainability 2021, 13, 7162. [Google Scholar] [CrossRef]
- Wu, D.; Wang, H.; Seidu, R. Smart data driven quality prediction for urban water source management. Futur. Gener. Comput. Syst. 2020, 107, 418–432. [Google Scholar] [CrossRef]
- Tu, W.; Zhu, T.; Xia, J.; Zhou, Y.; Lai, Y.; Jiang, J.; Li, Q. Portraying the spatial dynamics of urban vibrancy using multisource urban big data. Comput. Environ. Urban Syst. 2020, 80, 101428. [Google Scholar] [CrossRef]
- Li, V.O.K.; Lam, J.C.K.; Han, Y.; Chow, K. A Big Data and Artificial Intelligence Framework for Smart and Personalized Air Pollution Monitoring and Health Management in Hong Kong. Environ. Sci. Policy 2021, 124, 441–450. [Google Scholar] [CrossRef]
- Sochacka, B.A.; Kenway, S.J.; Renouf, M.A. Liveability and its interpretation in urban water management: Systematic literature review. Cities 2021, 113, 103154. [Google Scholar] [CrossRef]
- Chen, S.; Haase, D.; Xue, B.; Wellmann, T.; Qureshi, S. Integrating quantity and quality to assess urban green space improvement in the compact city. Land 2021, 10, 1367. [Google Scholar] [CrossRef]
- Mohamed, A.; Worku, H.; Lika, T. Urban and regional planning approaches for sustainable governance: The case of Addis Ababa and the surrounding area changing landscape. City Environ. Interact. 2020, 8, 100050. [Google Scholar] [CrossRef]
- Essien, E. Impacts of Governance toward Sustainable Urbanization in a Midsized City: A Case Study of Uyo, Nigeria. Land 2021, 11, 37. [Google Scholar] [CrossRef]
- Sarker, M.N.I.; Wu, M.; Hossin, M.A. Smart governance through bigdata: Digital transformation of public agencies. In Proceedings of the International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 26–28 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 62–70. [Google Scholar]
- Davidson, K. Urban Governance for a Sustainable Future. One Earth 2020, 2, 117–119. [Google Scholar] [CrossRef] [Green Version]
- Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Pardo, T.A.; Scholl, H.J. Understanding Smart Cities: An Integrative Framework. In Proceedings of the 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 2289–2297. [Google Scholar]
- Pourzolfaghar, Z.; Bremser, C.; Helfert, M.; Piller, G. A Comparison of Smart City Development and Big Data Analytics Adoption Approaches. In Proceedings of the 7th International Conference on Smart Cities and Green ICT Systems, Funchal, Portugal, 16–18 March 2018; SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2018; pp. 157–164. [Google Scholar]
- Yamagata, Y.; Yang, P.P.J.; Chang, S.; Tobey, M.B.; Binder, R.B.; Fourie, P.J.; Jittrapirom, P.; Kobashi, T.; Yoshida, T.; Aleksejeva, J. Urban Systems and the Role of Big Data; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128160558. [Google Scholar]
- Zeng, X.; Yu, Y.; Yang, S.; Lv, Y.; Sarker, M.N.I. Urban Resilience for Urban Sustainability: Concepts, Dimensions, and Perspectives. Sustainability 2022, 14, 2481. [Google Scholar] [CrossRef]
- Meijer, A.; Bolívar, M.P.R. Governing the smart city: A review of the literature on smart urban governance. Int. Rev. Adm. Sci. 2016, 82, 392–408. [Google Scholar] [CrossRef]
- Korachi, Z.; Bounabat, B. Data driven maturity model for assessing smart cities. In Proceedings of the 2nd International Conference on Smart Digital Environment; Association for Computing Machinery: New York, NY, USA, 2018; pp. 140–147. [Google Scholar] [CrossRef]
- Tan, S.Y.; Taeihagh, A. Smart city governance in developing countries: A systematic literature review. Sustainability 2020, 12, 899. [Google Scholar] [CrossRef] [Green Version]
- Razaghi, M.; Finger, M. Smart Governance for Smart Cities. Proc. IEEE 2018, 106, 680–689. [Google Scholar] [CrossRef]
- Allam, Z.; Newman, P. Redefining the Smart City: Culture, Metabolism and Governance. Smart Cities 2018, 1, 4–25. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Items | Explanation |
---|---|
Used databases | Web of Science, Engineering Village, Scopus, and ScienceDirect |
Criteria for publication | Only peer-reviewed journals |
Language | Articles published in English |
Span of search | From 1 January 2001–15 January 2022 |
Search keywords | Urban management, city, big data, BDA, sustainability, sustainable development |
Fields of search | Title, abstract, and keywords |
Inclusion criteria | The article should focus on big data, urban management, and sustainability |
Exclusion criteria | Not full text, and duplication and/or publication in languages other than English. Articles are also excluded if their content does not cover big data, urban management, and sustainability. |
Databases | Search String |
---|---|
ISI Web of Science | TS = (city * or urban * or management * or big data * AND sustain *) |
Engineering Village | City, urban management AND big data AND sustainability |
Scopus | City, urban management AND big data AND sustainability |
Science Direct | City, urban management AND big data AND sustainability |
Urban Management Characteristics | Cited Sources |
---|---|
Smart planning | French et al. [41], Hao et al. [42], Morioka et al. [43], Pan et al. [44], Kharrazi et al. [45], Bibri and Krogstie [46], Nathali et al. [47], Madu et al. [35], Glaeser et al. [48], Silva et al. [49], Sörensen et al. [50] |
Smart transport | He et al. [51], Wang et al. [24], Mans [30], Ivanov and Gnevanov [31], Du et al. [52], Bibri [53], Ersoy and Alberto [54], Kong et al. [55], Yang [38], Bibri and Krogstie [14], Milojevic-Dupont and Creutzig [12], Zhang and He [56], Bibri [57], Engin et al. [21] |
Smart traffic | Morioka et al. [43], Ivanov and Gnevanov [31], Glaeser et al. [48], Silva et al. [49], He et al. [51], Wang et al. [24], Mans [30], Ivanov and Gnevanov [31], Du et al. [52], Bibri [53], Ersoy and Alberto [54], Kong et al. [55], Yang [38] |
Smart waste management | D’Amico et al. [58], Morioka et al. [43], Pan et al. [44], Kharrazi et al. [45], Bibri and Krogstie [46], Nathali et al. [47], Madu et al. [35], Glaeser et al. [48], Silva et al. [51] |
Smart energy | Wang et al. [24], Du et al. [52], Bibri [53], Ersoy and Alberto [54], Kong et al. [55], Yang [38], Bibri and Krogstie [14], Zhang and He [56], Bibri [57] |
Smart environment | Jararweh et al. [59], Ersoy and Alberto [54], Kong et al. [55], Yang [38], Bibri and Krogstie [14], Zhang and He [56], Bibri [57], Engin et al. [21] |
Smart infrastructure | Bibri [53], Bibri and Krogstie [46], Nathali et al. [47], Madu et al. [35], Glaeser et al. [49], Silva et al. [49], He et al. [51], Wang et al. [24], Mans [30], Ivanov and Gnevanov [31], Du et al. [52] |
Smart safety | D’Amico et al. [58], Kandt and Batty [60], He et al. [51], Wang et al. [24], Mans [30], Ivanov and Gnevanov [31], Du et al. [52], Bibri [53], Ersoy and Alberto [54], Kong et al. [55] |
Smart healthcare | D’Amico et al. [58], Hao et al. [42], Morioka et al. [43], Pan et al. [44], Kharrazi et al. [45], Bibri and Krogstie [46], Nathali et al. [47], Madu et al. [35], Glaeser et al. [48] |
Citizen participation | Wang et al. [24], Engin et al. [21], Bibri [53], Ersoy and Alberto [54], Kong et al. [55], Yang [38], Bibri and Krogstie [14] |
Major Dimensions | Key Indicators | Key Influences | Sources |
---|---|---|---|
Social dimension | Social justice |
| Zhang and He [56], Thakuriah et al. [61], Zhang et al. [62], Bibri [22] |
Quality of urban life |
| Bibri [57], Silva et al. [49], Bibri and Krogstie [23] | |
People’s participation |
| Du et al. [52], Palumbo et al. [63] | |
Economic dimension | Average income |
| Bibri [53], Middel et al. [64] |
Affordability |
| Ersoy and Alberto [54] | |
Access to food and nutrition |
| Madu et al. [35] | |
Access to finance |
| Glaeser et al. [48], Xiao and Xie [65] Deng [16], Pan et al. [44] | |
Environmental dimension | Urban green space |
| Silva et al. [49], Jia and Zhang [66] Sörensen et al. [50], Ye et al. [67] |
Sustainable transportation |
| He et al. [51], Kong et al. [55], Silva et al. [49], Sai and Wang [68] | |
Waste management |
| Bibri [53], Bibri [39], Feroz et al. [18], Liu et al. [69], Zhang et al. [70] | |
Energy management |
| Ersoy and Alberto [54], Yang [38] |
Major Sources | Identified Specific Data Sources | Sources |
---|---|---|
Public sources |
| He et al. [51], Kong et al. [55], Bibri [39], Kaginalkar et al. [73], Engin et al. [21], Bibri and Krogstie [46], D’Amico et al. [58], Xiao and Xie [65] |
Individual sources |
| French et al. [41], Bibri [53], Ersoy and Alberto [54], Sörensen et al. [50], Bibri and Krogstie [14], Anthopoulos and Kazantzi [74] |
Sensor devices |
| He et al. [51], Šoštarić et al. [75], Ersoy and Alberto [54], Yang [38], Sai and Wang [68], D’Amico et al. [58], Xiao and Xie [65], Bibri [39], Dong et al. [27], Liu et al. [69], D’Amico et al. [58] |
Key Dimensions | Application of Big Data | Sources |
---|---|---|
Smart planning | Big data are usually used for smart planning and better delivery of public services. | Silva et al. [49], Bibri and Krogstie [14] |
Smart transport | Big data make it easier to find the simplest form of transport. | Silva et al. [49], Zhang and He [56] |
Smart traffic | Automated traffic systems can be developed by using big data technologies. | Morioka et al. [43], Ivanov and Gnevanov [31] |
Smart waste management | Smart waste management can be ensured through big data. | D’Amico et al. [58], Silva et al. [49] |
Smart energy | Renewable energy can be produced and distributed smoothly by using big data. | Wang and Moriarty [24], Kong et al. [55] |
Smart environment | Big data protect the atmosphere and control resources by pollution elimination. | Jararweh et al. [59], Bibri and Krogstie [14] |
Smart infrastructure | Urban infrastructure can be developed by using big data. | Bibri [53], Silva et al. [49] |
Smart safety | To establish appropriate urban planning, BDA ensure good healthcare, better education, safety, and security, and better tourism facilities. | D’Amico et al. [58], Kandt and Batty [60] |
Smart healthcare | Data-based healthcare services can be ensured through big data. | D’Amico et al. [58] |
People’s participation | Members of the general public have the opportunity to participate in and add their opinions to achieve sustainable urban development. | Wang and Moriarty [24], Engin et al. [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Yan, B.; Huang, Y.; Sarker, M.N.I. Big Data-Driven Urban Management: Potential for Urban Sustainability. Land 2022, 11, 680. https://doi.org/10.3390/land11050680
Wu M, Yan B, Huang Y, Sarker MNI. Big Data-Driven Urban Management: Potential for Urban Sustainability. Land. 2022; 11(5):680. https://doi.org/10.3390/land11050680
Chicago/Turabian StyleWu, Min, Bingxin Yan, Ying Huang, and Md Nazirul Islam Sarker. 2022. "Big Data-Driven Urban Management: Potential for Urban Sustainability" Land 11, no. 5: 680. https://doi.org/10.3390/land11050680
APA StyleWu, M., Yan, B., Huang, Y., & Sarker, M. N. I. (2022). Big Data-Driven Urban Management: Potential for Urban Sustainability. Land, 11(5), 680. https://doi.org/10.3390/land11050680