Accounting for Value Changes in Cultivated Land Resources within the Karst Mountain Area of Southwest China, 2001–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Spatial Data
2.2.2. Socioeconomic Data
2.3. Methods
2.3.1. Cropland Resources Value Accounting Framework
2.3.2. Landscape Index
- Patch Density (PD)
- Edge Density (ED)
- Fragmentation Index of Patch Numbers (FN)
- Area-Weighted Mean Shape Index (AWMSI)
- Fragmentation Shape Index (FS)
- Aggregation Index (AI).
2.3.3. Revisions of the Ecological Value Equivalent Factors
- Previous studies have shown that the ecosystem function is positively correlated with NPP and precipitation. As such, we used two temporal and spatial factors (NPP and precipitation) to modify the ecosystem service value equivalent table of China for each year.
- 2.
- According to Costanza’s research, the economic value of ecological service value equivalent factors is 54 USD/hm2 (1997). Combined with China’s grain production income, Chinese scholars have calculated that the economic value of an ecological service value equivalent factor in China is 449 CNY/hm2 (58.5 USD/hm2 in 2007), using the shadow land rent method. However, the price index and grain yield vary interannually, and so to reflect the indirect value change of cultivated land resources more accurately, we revised the economic value by year to form the final economic value of the ecological function, to make it suitable for the study area [55].
3. Results
3.1. Physical Account Changes
3.1.1. Spatial Changes of Guizhou Province
3.1.2. Crop Production Changes in Guizhou Province
3.2. Conditional Account Changes
3.2.1. Changes in Site Conditions
3.2.2. Landscape Index Changes
3.3. Monetary Account Changes
4. Discussion
4.1. Analysis of Reasons for the Change in Physical and Conditional Account
4.2. Analysis of Reasons for the Change in Monetary Account
4.3. Shortcomings/Uncertainties of This Research
5. Conclusions
- In the physical account, the cultivated land resources in Guizhou Province showed an obvious downward trend, but the planting structure of agricultural products showed obvious changes, and the gross output increased significantly. This shows that the value of the cultivated land is not strongly related to the size of the land area.
- In the condition account, the quality of the cultivated land resources in Guizhou Province improved. Specifically, the fragmentation of the cultivated land improved, and the area of cultivated land on steep slopes decreased. This shows that the local governance policy on cultivated land is effective.
- In the monetary account, the monetary value of the cropland resources in Guizhou Province increased greatly and rapidly. Additionally, an increase in economic value did not place negative impacts upon the ecological value of the cultivated land. This shows that reasonable policy and financial investment are of positive significance for the sustainable utilization of the cultivated land resources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Name | Value | Description |
---|---|---|
Evergreen Needleleaf Forests | 1 | Dominated by evergreen conifer trees (canopy > 2 m). Tree cover > 60%. |
Evergreen Broadleaf Forests | 2 | Dominated by evergreen broadleaf and palmate trees (canopy > 2 m). Tree cover > 60%. |
Deciduous Needleleaf Forests | 3 | Dominated by deciduous needleleaf (larch) trees (canopy > 2 m). Tree cover > 60%. |
Deciduous Broadleaf Forests | 4 | Dominated by deciduous broadleaf trees (canopy > 2 m). Tree cover > 60%. |
Mixed Forests | 5 | Dominated by neither deciduous nor evergreen (40–60% of each) tree type (canopy > 2 m). Tree cover > 60%. |
Closed Shrublands | 6 | Dominated by woody perennials (1–2 m height), > 60% cover. |
Open Shrublands | 7 | Dominated by woody perennials (1–2 m height), 10–60% cover. |
Woody Savannas | 8 | Tree cover 30–60% (canopy > 2 m). |
Savannas | 9 | Tree cover 10–30% (canopy > 2 m). |
Grasslands | 10 | Dominated by herbaceous annuals (<2 m) |
Permanent Wetlands | 11 | Permanently inundated lands with 30–60% water cover and >10% vegetated cover. |
Croplands | 12 | At least 60% of area is cultivated cropland. |
Urban and Built-up Lands | 13 | At least 30% impervious surface area, including building materials, asphalt, and vehicles. |
Cropland/Natural Vegetation Mosaics | 14 | Mosaics of small-scale cultivation, 40–60% with natural trees, shrubs, or herbaceous vegetation. |
Permanent Snow and Ice | 15 | At least 60% of area is covered by snow and ice for at least 10 months of the year. |
Barren | 16 | At least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than 10% vegetation. |
Water Bodies | 17 | At least 60% of area is covered by permanent water bodies. Unclassified 255 Has not received a map label because of missing inputs. |
Ecosystem Classification | Provisioning Services | Regulating Services | Supporting Services | Cultural Services | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Primary Classification | Secondary Classification | Food Production | Raw Material Production | Water Supply | Gas Regulation | Climate Regulation | Environmental Purification | Hydrological Regulation | Soil Conservation | Maintenance of Nutrient Cycles | Biodiversity | Aesthetic Landscape |
Crop land | Dryland | 0.85 | 0.4 | 0.02 | 0.67 | 0.36 | 0.1 | 0.27 | 1.03 | 0.12 | 0.13 | 0.06 |
Paddy field | 1.36 | 0.09 | −2.63 | 1.11 | 0.57 | 0.17 | 2.72 | 0.01 | 0.19 | 0.21 | 0.09 | |
Forest | Coniferous | 0.22 | 0.52 | 0.27 | 1.7 | 5.07 | 1.49 | 3.34 | 2.06 | 0.16 | 1.88 | 0.82 |
Mixed coniferous | 0.31 | 0.71 | 0.37 | 2.35 | 7.03 | 1.99 | 3.51 | 2.86 | 0.22 | 2.6 | 1.14 | |
Broad-leaved | 0.29 | 0.66 | 0.34 | 2.17 | 6.5 | 1.93 | 4.74 | 2.65 | 0.2 | 2.41 | 1.06 | |
Shrub | 0.19 | 0.43 | 0.22 | 1.41 | 4.23 | 1.28 | 3.35 | 1.72 | 0.13 | 1.57 | 0.69 | |
Grassland | Grass | 0.1 | 0.14 | 0.08 | 0.51 | 1.34 | 0.44 | 0.98 | 0.62 | 0.05 | 0.56 | 0.25 |
Scrub | 0.38 | 0.56 | 0.31 | 1.97 | 5.21 | 1.72 | 3.82 | 2.4 | 0.18 | 2.18 | 0.96 | |
Meadow | 0.22 | 0.33 | 0.18 | 1.14 | 3.02 | 1 | 2.21 | 1.39 | 0.11 | 1.27 | 0.56 | |
Wetland | Wetlands | 0.51 | 0.5 | 2.59 | 1.9 | 3.6 | 3.6 | 24.23 | 2.31 | 0.18 | 7.87 | 4.73 |
Desert | Desert | 0.01 | 0.03 | 0.02 | 0.11 | 0.1 | 0.31 | 0.21 | 0.13 | 0.01 | 0.12 | 0.05 |
Bare ground | 0 | 0 | 0 | 0.02 | 0 | 0.1 | 0.03 | 0.02 | 0 | 0.02 | 0.01 | |
Waters | Water system | 0.8 | 0.23 | 8.29 | 0.77 | 2.29 | 5.55 | 102.24 | 0.93 | 0.07 | 2.55 | 1.89 |
Glacial snow | 0 | 0 | 2.16 | 0.18 | 0.54 | 0.16 | 7.13 | 0 | 0 | 0.01 | 0 |
Appendix B
Unit: Billion CNY | General Public Budget Expenditure | Farming, Forestry and Water Conservancy | Transportation | Energy Saving and Environment Protection |
---|---|---|---|---|
2001 | 27.52 | 4.25 | 4.31 | - |
2002 | 31.67 | 4.86 | 3.64 | - |
2003 | 33.24 | 4.53 | 3.16 | - |
2004 | 41.84 | 7.23 | 3.83 | - |
2005 | 52.07 | 7.66 | 4.12 | - |
2006 | 61.041 | 6.155 | 4.193 | - |
2007 | 79.54 | 8.75 | 4.88 | 2.67 |
2008 | 105.54 | 12.17 | 4.94 | 4.04 |
2009 | 137.23 | 20.41 | 12.08 | 5.53 |
2010 | 163.15 | 24.68 | 10.96 | 5.43 |
2011 | 224.94 | 27.85 | 30.52 | 5.55 |
2012 | 275.57 | 36.19 | 28.86 | 6.57 |
2013 | 308.266 | 40.031 | 29.979 | 6.644 |
2014 | 354.28 | 44.719 | 43.201 | 8.534 |
2015 | 393.95 | 53.426 | 39.225 | 9.649 |
2016 | 426.236 | 62.938 | 28.997 | 12.709 |
2017 | 461.252 | 61.205 | 33.691 | 12.539 |
2018 | 502.968 | 66.484 | 38.149 | 13.438 |
2019 | 594.874 | 99.89 | 34.779 | 18.853 |
2020 | 573.95 | 102.431 | 34.15 | 14.615 |
References
- Blignaut, J.; Aronson, J.; de Groot, R. Restoration of natural capital: A key strategy on the path to sustainability based on lucc. Ecol. Eng. 2014, 65, 54–61. [Google Scholar] [CrossRef]
- Development, United Nations; European Union; Food and Agriculture Organization of the United Nations; Organisation for Economic Co-Operation; World Bank Group. System of Environmental Economic Accounting 2012—Experimental Cosystem Accounting. 2014. Available online: https://seea.un.org/home/Natural-Capital-Accounting-Project (accessed on 1 December 2021).
- Liu, L. Comparison and implications of natural resource asset accounting at home and abroad. Stat. Decis. Mak. 2019, 35, 9–12. [Google Scholar]
- Liu, G.; Hu, L.; Gao, X.; Du, L.; Li, J.; Xiao, N. Research on the connotation of natural capital and its accounting. Ecoeconomics 2018, 34, 63, 153–157. [Google Scholar]
- Geng, J.; Hu, T.; Liu, Z. A preliminary study on the preparation and application of china’s national balance sheet and natural resource balance sheet: An analysis of SNA 2008 and SEA 2012. J. Account. Res. 2015, 1, 15–24, 96. [Google Scholar]
- Hu, W.; Shi, D. A study on the balance sheet framework system of natural resources in China: An idea based on SEEA 2012, SNA 2008 and national balance sheets. Chin. Resour. Environ. 2015, 25, 1–9. [Google Scholar]
- Liu, S.; Yang, S. Comparison of accounting for natural resource assets at home and abroad and its implications. Land Resour. Inf. 2020, 12, 24–31. [Google Scholar]
- Xiang, S.; Zheng, R. A study of the category of assets in the balance sheet of natural resources. Stat. Res. 2015, 32, 3–11. [Google Scholar]
- Li, N. Discussion on the construction of statistical indicators of all natural resource assets owned by the whole people. Land Resour. Inf. 2020, 11, 16–21, 51. [Google Scholar]
- Missemer, A. Natural capital as an economic concept, history and contemporary issues. Ecol. Econ. 2018, 143, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Virto, L.R.; Weber, J.L.; Jeantil, M. Natural capital accounts and public policy decisions: Findings from a survey. Ecol. Econ. 2018, 144, 244–259. [Google Scholar] [CrossRef]
- Department of National Accounts, NBS. Outlines of Natural Capital Accounting and Valuation of Ecosystem Services Project in China. 2021. Available online: https://seea.un.org/content/china-0 (accessed on 1 March 2022).
- He, L.; Shen, L.; Zhang, W.; Tao, J.; Fan, Z. Practical progress and theoretical system construction of natural resource accounting in China. J. Nat. Resour. 2020, 35, 2968–2979. [Google Scholar] [CrossRef]
- Cheng, S.; Shen, L.; Feng, Z.; Zhong, S. The development history and prospect of natural resources research in China. J. Nat. Resour. 2020, 35, 1757–1772. [Google Scholar]
- Tao, J.; Lv, Y.; He, L.; Shen, L. Research on land resource asset accounting and report preparation based on double-entry bookkeeping. Chin. Resour. Environ. 2020, 30, 22–29. [Google Scholar]
- Li, Y.; Wu, D.; Liu, Y. Research hotspots and trends of arable land ecological risk assessment: Based on citespace visual analysis. J. Agric. Resour. Environ. 2019, 36, 502–512. [Google Scholar]
- Li, X. Changes in China’s arable land area in the past 20 years and its policy implications. J. Nat. Resour. 1999, 4, 329–333. [Google Scholar]
- Wang, Y.J.; Xie, B.G.; Li, X.Q.; Zhao, W.Q.; Wang, J.Y.; Luo, H.B. Ecosystem carrying capacity balance of the Karst region in China, based on the supply and demand of cultivated land. Acta Ecol. Sin. 2017, 37, 7030–7038. [Google Scholar]
- Wu, M.; Liu, S.J.; Ye, Y.Y.; Zhang, W.; Wang, K.L.; Chen, H.S. Spatial variability of surface soil organic carbon and its influencing factors in cultivated slopes and abandoned lands in a Karst peak-cluster depression area. Acta Ecol. Sin. 2016, 36, 1619–1627. [Google Scholar]
- Li, D.; Yang, Y.; Du, G.; Huang, S. Understanding the contradiction between rural poverty and rich cultivated land resources: A case study of heilongjiang province in northeast China. Land Use Policy 2021, 108, 105673. [Google Scholar] [CrossRef]
- Yang, Q.; Bi, G.; Chen, Z.; Zeng, L.; Yang, R. Spatial allocation of fallow land in karst ecologically fragile areas: A case study of Qinglong county, Guizhou province. Acta Geogr. Sin. 2018, 73, 2250–2266. [Google Scholar]
- Chen, Q. Study on the mechanism of remote sensing assessment and temporal evolution of ecological assets in karst rocky desertification area. Guizhou Norm. Univ. 2021, 20–25. [Google Scholar]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using landsat images based on the google earth engine platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Su, W.; Zhu, W.; Xiong, K. Rocky desertification and its ecological and economic governance model in karst mountainous area of Guizhou province. Karst China Karst 2002, 1, 21–26. [Google Scholar]
- Chen, H.; Zhu, D.; Chen, H.; Wen, Y.; Lin, D.; Wang, C. A comparative study on the characteristics of climate change in different water systems in the Yangtze River basin in Guizhou province. Bull. Soil Water Conserv. 2018, 38, 189–197, 203. [Google Scholar]
- Xiong, K. Remote sensing of karst rock desertification—A typical study of Gis—Aa case study in Guizhou Province; Geological Publishing House: Beijing, China, 2002. [Google Scholar]
- Zhang, Y.; An, Y.; Ma, L.; Li, X. Land use change on steep slopes in karst mountains of Guizhou Province from 1960 to 2010. Prog. Geogr. 2012, 31, 878–884. [Google Scholar]
- Zhu, D.; Yang, Q.; Chen, H.; Chen, J.; Li, S. Temporal and spatial variation characteristics of rainfall erosion forces in different water systems in Guizhou Province from 1960 to 2017. Bull. Soil Water Conserv. 2021, 41, 6–14. [Google Scholar]
- Zhang, Y.; Zhou, Z.; Huang, D.; Zhu, M.; Wu, Y.; Sun, J. Spatio-temporal evolution and impact factor analysis of cultivated land in karst mountainous areas. Trans. Chin. Soc. Agric. Eng. 2020, 36, 266–275. [Google Scholar]
- Wang, L.; Diao, C.; Xian, G.; Yin, D.; Lu, Y.; Zou, S.; Erickson, T.A. A summary of the special issue on remote sensing of land change science with google earth engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in china using time series landsat and sentinel-2 images and google earth engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all landsat images in google earth engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Robinson, N.P.; Allred, B.W.; Smith, W.K.; Jones, M.O.; Moreno, A.; Erickson, T.A.; Naugle, D.E.; Running, S.W. Terrestrial Primary Production for the Conterminous United States Derived from Landsat 30 M and Modis 250 M. Remote Sens. Ecol. Conserv. 2018, 4, 264–280. [Google Scholar] [CrossRef]
- United Nations. Study on the Valuation Accounting Method of the Natural Resources Assets and Liabilities. 2020. Available online: https://seea.un.org/home/Natural-Capital-Accounting-Project (accessed on 1 December 2021).
- Jiao, Z.; Wang, H.; Xu, X.; Yang, B. Natural resource balance sheet preparation design and application I.: Design. J. Nat. Resour. 2018, 33, 1706–1714. [Google Scholar]
- Jiao, Z.; Wang, H.; Xu, X.; Yang, B. Natural resource balance sheet preparation design and application II: Application. J. Nat. Resour. 2018, 33, 1715–1724. [Google Scholar]
- Shi, J.; Wang, P.; Li, N.; Li, Y. A Framework of ideas for the preparation of balance sheets of all natural resources for all people. J. Nat. Resour. 2020, 35, 2270–2282. [Google Scholar]
- Hu, Y.; Yu, L.; Wu, J. Construction of a balance sheet accounting system for natural resources: A case study of forest resources. For. Resour. Manag. 2020, 3, 22–25, 31. [Google Scholar]
- Nations, United. Final Report on Ncaves Pilot Project in Guizhou Province. 2021. Available online: https://seea.un.org/content/china-0 (accessed on 1 March 2022).
- Long, X.; Lin, H.; An, X.; Chen, S.; Qi, S.; Zhang, M. Evaluation and analysis of ecosystem service value based on land use/cover change in dongting lake wetland. Ecol. Indic. 2022, 136, 108619. [Google Scholar] [CrossRef]
- Wan, W. Spatial differentiation of cultivated land fragmentation in Zhejiang province based on county scale. Environ. Ecol. 2021, 3, 15–21, 48. [Google Scholar]
- Hou, B.; Ma, R.; Jin, Y.; Zhang, Y.; Zhao, Y.; Dou, S. Spatial structure and audit zoning of land resource assets in Zhejiang province from the perspective of landscape ecology. Bull. Soil Water Conserv. 2018, 38, 268–276. [Google Scholar]
- Li, W. Study on the Quality Change of Cultivated Land in the Suburban Area of Black Soil Based on the Standing Conditions and Localization Characteristics. Ph.D. Thesis, Jilin University, Jilin, China, 2018. [Google Scholar]
- Liu, W.; Liao, H.; Wu, X.; Guo, Q.; Mao, X.; Li, C. A study on the spatial coupling relationship between arable land fragmentation and poverty in southwest karst region. J. Southwest Univ. 2019, 41, 10–20. [Google Scholar]
- Zhang, X.; Cai, Z.; Li, G.; Sun, J.; Li, G.; Chen, Z. Analysis of the Causes of fragmentation of cultivated land landscape and its impact on rural income. Sci. Surv. Mapp. 2020, 45, 134–141. [Google Scholar]
- Chen, W.; Feng, X.; Ma, R.; Hong, Q. Evaluation methods and empirical research on fragmentation of cultivated land: A case study of Ningbo city, Zhejiang province. China Land Sci. 2016, 30, 80–87. [Google Scholar]
- Fu, B.; Ding, D. Principles and Applications of Landscape Ecology; Science Press: Beijing, China, 2002. [Google Scholar]
- Forman, R.T.; Godron, M. Landscape Ecology; John & Wiley: New York, NY, USA, 1986. [Google Scholar]
- Bosch, M. Pylandstats: An open-source pythonic library to compute landscape metrics. PLoS ONE 2019, 14, e0225734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; ONeill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, C.; Xiao, Y.; Lu, C. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. A value-based approach to ecosystem services based on expert knowledge. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Valuation of ecological assets on the tibetan plateau. J. Nat. Resour. 2003, 5, 189–196. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of valueization methods for ecosystem services based on value equivalence factor per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Gu, X.; Long, A.; Liu, G.; Yu, J.; Wang, H.; Yang, Y.; Zhang, P. Changes in ecosystem service value in the 1 km lakeshore zone of Poyang lake from 1980 to 2020. Land 2021, 10, 951. [Google Scholar] [CrossRef]
- Wang, C.; Maclaren, V. Evaluation of economic and social impacts of the sloping land conversion program: A case study in Dunhua county, China. For. Policy Econ. 2012, 14, 50–57. [Google Scholar] [CrossRef]
- Fan, M.; Xiao, Y.T. Impacts of the grain for green program on the spatial pattern of land uses and ecosystem services in mountainous settlements in Southwest China. Glob. Ecol. Conserv. 2020, 21, e00806. [Google Scholar] [CrossRef]
- Cai, Z.; Jiang, Z.; Li, Y.; Zhang, L.; Jia, M.; Xie, Y. The Effectiveness of farmland reforestation policies and the existence of effective policies. Resour. Environ. 2015, 25, 60–69. [Google Scholar]
- Wu, Y.; Zhou, Z.; Zhu, C.; Ma, G.; Huang, D. A study on the measurement and spatial differentiation of rural poverty in Karst mountainous areas: A case study of panzhou city. Resour. Environ. Yangtze River Basin 2020, 29, 1247–1256. [Google Scholar]
- Hao, L.; Cai, Y.; Chen, R.; Chen, Q.; Xiang, Y. Evaluation of the effect of reforestation of farmland in southwest Karst based on vegetation remote sensing: A case study of Bijie area in Guizhou Province. Acta Ecol. Sin. 2011, 31, 3255–3264. [Google Scholar]
- Shu, T.; Xiong, K.N.; Chen, L. Land use and landscape pattern changes under the control of rocky desertification. Southwest China J. Agric. Sci. 2022, 35, 446–452. [Google Scholar]
- Chen, Q.; Xiong, K.; Dan, W.; Niu, L. Analysis of coupled characteristics of ecology and poverty in typical karst areas: A case study of 9000 provincial-level poor villages in Guizhou Province. Acta Ecol. Sin. 2021, 41, 2968–2982. [Google Scholar]
- Zhang, T.; Shi, H.; Xu, Y.; Xue, J.; Zhu, J.; Geng, Q. Quantitative evaluation of the impact of returning farmland to forest on the landscape pattern of land use in karst areas. J. Beijing For. Univ. 2015, 37, 34–43. [Google Scholar]
- Wang, X.; Yu, S.; Shi, Z.; Wang, L. Responses of ecosystem service trade-offs and synergies to the return of farmland to forests in the red soil area of southern China. Chin. J. Ecol. 2021, 41, 7002–7014. [Google Scholar]
- Ding, Z.; Yao, S. Ecological effectiveness of payment for ecosystem services to identify incentive priority areas: Sloping land conversion program in China. Land Use Policy 2021, 104, 105350. [Google Scholar] [CrossRef]
- Liu, Q.; Qiong, Q.; Xiao, H. The impact of farmland operation scale and financial support policies on agricultural carbon emissions. Resour. Sci. 2020, 42, 1063–1073. [Google Scholar]
- Jin, F.; Jin, R. Spatial Effect Analysis of the Impact of Fiscal Support on changes in agricultural industrial structure. J. Financ. Econ. 2020, 5, 82–91. [Google Scholar]
- Wu, H. A Study on the Impact of Local Fiscal Expenditure on Agricultural Production. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2002; pp. 22–31. [Google Scholar]
- Yang, L. The impact of transfer payments on local fiscal agricultural expenditure: A study based on prefecture-level panel data from 2003–2009. Econ. Rev. 2016, 5, 148–160. [Google Scholar]
- Hu, Z.; Wang, S.; Bai, X.; Luo, G.; Li, Q.; Wu, L.; Yang, Y.; Tian, S.; Li, C.; Deng, Y. Changes in ecosystem service values in Karst areas of China. Agric. Ecosyst. Environ. 2020, 301, 107026. [Google Scholar] [CrossRef]
- Gong, B.L.; Wang, S. The multi-channel impact of fiscal spending on China’s agricultural growth. Issues Agric. Econ. 2021, 1, 54–68. [Google Scholar]
Resource Type | Data Sources | |
---|---|---|
Spatial Data | Land cover (MCD12Q1 V6) | Google Earth Engine Plateform (https://developers.google.cn/earth-engine/datasets) accessed on 4 April 2022 |
Digital elevation models (DEMs) | ||
Landsat net primary production (NPP) | ||
Global precipitation measurement (GPM) | ||
Socioeconomic Data | Yields of major farm crops (YMFC) | Guizhou statistical yearbook (2001–2021) (http://stjj.guizhou.gov.cn/) accessed on 4 April 2022 |
Gross output value of farming (GOVF) | ||
Gross domestic product (GDP) | ||
Permanent resident population (PRP) | ||
Financial expenditure | ||
Employments in agriculture | ||
Grain prices | The National Compilation of Cost-benefit data of Agricultural Products |
Account | First-Level Indicators | Second-Level Indicators |
---|---|---|
Physical Account | Extent | Area |
Biomass provision | Crop Production | |
Conditional Account | Site conditions | Elevation |
Slope | ||
Landscape index | Patch Density (PD) | |
Edge Density (ED) | ||
Area-Weighted Mean Shape Index (AWMSI) | ||
Fragmentation Index of Patch Numbers (FN) | ||
Fragmentation Shape Index (FS) | ||
Aggregation Index (AI) | ||
Monetary Account | Direct value | Crop Market Value |
Indirect value | Gas Regulation | |
Climate Regulation | ||
Environmental Purification | ||
Hydrological Regulation | ||
Soil Conservation | ||
Maintenance of Nutrient Cycles | ||
Biodiversity | ||
Aesthetic Landscape |
2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | |
Cropland Area (km2) | 8473.22 | 8968.61 | 9416.08 | 9294.78 | 8980.94 | 8469.23 | 7800.17 | 7286.11 | 6902.27 | 6667.85 |
Croplands Proportion | 4.81% | 5.09% | 5.35% | 5.28% | 5.10% | 4.81% | 4.43% | 4.14% | 3.92% | 3.79% |
Croplands per capita (m2) | 223.04 | 233.74 | 243.31 | 238.08 | 240.78 | 229.52 | 214.76 | 202.62 | 195.14 | 191.66 |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
Croplands Area (km2) | 6047.527 | 5356.4 | 4894.82 | 4683.90 | 4526.89 | 4494.66 | 4236.63 | 4032.42 | 3543.72 | 3768.34 |
Croplands Proportion | 3.43% | 3.04% | 2.78% | 2.66% | 2.57% | 2.55% | 2.41% | 2.29% | 2.01% | 2.14% |
Croplands per capita (m2) | 174.33 | 153.74 | 139.77 | 133.52 | 128.24 | 119.60 | 111.40 | 105.51 | 92.09 | 97.68 |
Woody Savannas | Savannas | Grasslands | Cropland/Natural Vegetation Mosaics | ||
---|---|---|---|---|---|
2002 | Area (km2) | −0.32 | 187.22 | 135.42 | 175.06 |
Proportion | 0.06% | 37.79% | 27.34% | 35.34% | |
2003 | Area (km2) | 0.45 | 148.45 | 105.53 | 193.05 |
Proportion | 0.10% | 33.17% | 23.58% | 43.14% | |
2004 | Area (km2) | −1.23 | −4.68 | 17.78 | −133.17 |
Proportion | 0.79% | 2.98% | 11.34% | 84.90% | |
2005 | Area (km2) | 0.34 | −64.31 | −16.98 | −232.89 |
Proportion | 0.11% | 20.47% | 5.40% | 74.13% | |
2006 | Area (km2) | −0.22 | −138.36 | −39.78 | −333.35 |
Proportion | 0.04% | 27.04% | 7.77% | 65.14% | |
2007 | Area (km2) | −0.22 | −161.69 | −50.45 | −456.26 |
Proportion | 0.03% | 24.17% | 7.54% | 68.19% | |
2008 | Area (km2) | −0.22 | −138.62 | −16.06 | −359.17 |
Proportion | 0.04% | 26.97% | 3.12% | 69.87% | |
2009 | Area (km2) | −0.56 | −123.74 | −23.01 | −236.31 |
Proportion | 0.15% | 32.24% | 6.00% | 61.56% | |
2010 | Area (km2) | 0.38 | −60.77 | 2.67 | −176.47 |
Proportion | 0.16% | 25.27% | 1.11% | 73.37% | |
2011 | Area (km2) | 1.63 | −165.25 | −26.13 | −430.57 |
Proportion | 0.26% | 26.50% | 4.19% | 69.05% | |
2012 | Area (km2) | −0.11 | −133.43 | −17.06 | −540.31 |
Proportion | 0.02% | 19.31% | 2.47% | 78.18% | |
2013 | Area (km2) | −0.76 | −96.93 | −11.00 | −352.89 |
Proportion | 0.17% | 21.00% | 2.38% | 76.45% | |
2015 | Area (km2) | −0.11 | −12.31 | −24.25 | 4.43 |
Proportion | 0.35% | 25.13% | 15.53% | 58.99% | |
2016 | Area (km2) | −0.11 | −12.31 | −24.25 | 4.43 |
Proportion | 0.26% | 29.95% | 59.01% | 10.78% | |
2017 | Area (km2) | 0.16 | −50.65 | −37.40 | −170.15 |
Proportion | 0.06% | 19.60% | 14.48% | 65.86% | |
2018 | Area (km2) | 0.28 | −10.01 | −11.73 | −182.74 |
Proportion | 0.13% | 4.89% | 5.73% | 89.25% | |
2019 | Area (km2) | 0.00 | −96.45 | −12.99 | −379.26 |
Proportion | 0.00% | 19.74% | 2.66% | 77.61% | |
2020 | Area (km2) | 0.12 | −19.17 | −20.16 | 263.83 |
Proportion | 0.04% | 6.32% | 6.65% | 86.99% |
Grain | Oil Plants | Others | Tubers | Total Yields | |||||
---|---|---|---|---|---|---|---|---|---|
2001 | 919.2 | 72.55% | 71.32 | 5.63% | 91.61 | 7.23% | 184.9 | 14.59% | 1267.03 |
2002 | 829.7 | 68.49% | 72.48 | 5.98% | 104.73 | 8.65% | 204.5 | 16.88% | 1211.41 |
2003 | 903.5 | 45.33% | 72.31 | 3.63% | 816.72 | 40.97% | 200.8 | 10.07% | 1993.33 |
2004 | 939.32 | 44.69% | 82.71 | 3.94% | 869.38 | 41.37% | 210.26 | 10.00% | 2101.67 |
2005 | 906.24 | 41.59% | 84.89 | 3.90% | 942.08 | 43.23% | 245.82 | 11.28% | 2179.03 |
2006 | 820.07 | 41.23% | 68.24 | 3.43% | 882.59 | 44.38% | 217.93 | 10.96% | 1988.83 |
2007 | 869.73 | 40.53% | 69.66 | 3.25% | 975.53 | 45.46% | 231.13 | 10.77% | 2146.05 |
2008 | 911.67 | 39.18% | 68.39 | 2.94% | 1100.62 | 47.30% | 246.33 | 10.59% | 2327.01 |
2009 | 918.76 | 37.87% | 78.68 | 3.24% | 1179 | 48.60% | 249.51 | 10.29% | 2425.95 |
2010 | 901.9 | 36.60% | 60.34 | 2.45% | 1291.3 | 52.41% | 210.4 | 8.54% | 2463.94 |
2011 | 605.13 | 26.52% | 78.85 | 3.46% | 1326.15 | 58.12% | 271.77 | 11.91% | 2281.9 |
2012 | 804.91 | 29.73% | 87.38 | 3.23% | 1540.9 | 56.91% | 274.59 | 10.14% | 2707.78 |
2013 | 718.88 | 25.46% | 91.53 | 3.24% | 1701.53 | 60.27% | 311.11 | 11.02% | 2823.05 |
2014 | 790.33 | 25.78% | 98.05 | 3.20% | 1829.23 | 59.67% | 348.17 | 11.36% | 3065.78 |
2015 | 815.89 | 25.48% | 101.34 | 3.16% | 1920.9 | 59.99% | 364.11 | 11.37% | 3202.24 |
2016 | 828.38 | 24.09% | 113.66 | 3.31% | 2132.24 | 62.01% | 364 | 10.59% | 3438.28 |
2017 | 808.94 | 22.11% | 109.82 | 3.00% | 2370.18 | 64.78% | 369.6 | 10.10% | 3658.54 |
2018 | 732.59 | 18.93% | 112.62 | 2.91% | 2698.65 | 69.72% | 327.11 | 8.45% | 3870.97 |
2019 | 707.57 | 17.81% | 103.01 | 2.59% | 2819.22 | 70.95% | 343.67 | 8.65% | 3973.47 |
2020 | 692.04 | 16.34% | 103.4 | 2.44% | 3073.27 | 72.58% | 365.59 | 8.63% | 4234.3 |
Mean | Median | Std-Dev | Mix | Max | |
---|---|---|---|---|---|
2001 | 1577.95 | 1461 | 526.76 | 299 | 2831 |
2002 | 1557.5 | 1440 | 524.91 | 229 | 2831 |
2003 | 1540.92 | 1426 | 527.19 | 229 | 2831 |
2004 | 1529.13 | 1415 | 534.46 | 229 | 2831 |
2005 | 1516.96 | 1403 | 538.91 | 229 | 2831 |
2006 | 1521.53 | 1402 | 536.46 | 229 | 2834 |
2007 | 1535.18 | 1407 | 531.34 | 229 | 2815 |
2008 | 1549.44 | 1418 | 527.26 | 229 | 2815 |
2009 | 1571.46 | 1433 | 524.21 | 229 | 2815 |
2010 | 1587.78 | 1448 | 517.44 | 229 | 2834 |
2011 | 1623.42 | 1483 | 516.99 | 229 | 2834 |
2012 | 1648.67 | 1516 | 520.09 | 229 | 2834 |
2013 | 1674.58 | 1564 | 516.2 | 229 | 2834 |
2014 | 1682.55 | 1576 | 510.25 | 261 | 2834 |
2015 | 1689.86 | 1585 | 506.38 | 261 | 2834 |
2016 | 1682.65 | 1559 | 500.84 | 260 | 2834 |
2017 | 1659.46 | 1508 | 493.31 | 260 | 2811 |
2018 | 1661.55 | 1520 | 494.06 | 260 | 2811 |
2019 | 1700.18 | 1633 | 492.13 | 241 | 2769 |
2020 | 1693.96 | 1587 | 475.21 | 262 | 2757 |
Year | 0–5° | 5°–10° | 10°–15° | 15°–20° | 20°–25° | 25°–30° | 30°–35° | 35°–40° | 40°–45° | 45°–50° |
---|---|---|---|---|---|---|---|---|---|---|
2001 | 38,599 | 26,799 | 11,162 | 3935 | 1391 | 324 | 86 | 32 | 8 | 2 |
2002 | 42,765 | 27,879 | 11,562 | 4118 | 1422 | 338 | 91 | 34 | 8 | 2 |
2003 | 46,059 | 29,252 | 12,208 | 4396 | 1533 | 373 | 106 | 38 | 11 | 2 |
2004 | 46,812 | 28,556 | 11,993 | 4438 | 1553 | 363 | 94 | 31 | 10 | 2 |
2005 | 46,240 | 27,146 | 11,490 | 4369 | 1540 | 340 | 84 | 21 | 6 | 2 |
2006 | 44,636 | 25,236 | 10,535 | 3907 | 1335 | 286 | 74 | 19 | 6 | 2 |
2007 | 41,474 | 22,768 | 9360 | 3399 | 1127 | 256 | 64 | 17 | 6 | 2 |
2008 | 38,024 | 21,051 | 8620 | 3068 | 1024 | 233 | 59 | 16 | 6 | 2 |
2009 | 35,303 | 20,253 | 8232 | 2857 | 948 | 220 | 55 | 16 | 6 | 2 |
2010 | 33,253 | 19,613 | 7985 | 2790 | 936 | 218 | 57 | 16 | 6 | 2 |
2011 | 29,369 | 17,972 | 7294 | 2559 | 868 | 209 | 57 | 16 | 6 | 2 |
2012 | 25,028 | 15,550 | 6414 | 2260 | 781 | 187 | 48 | 15 | 8 | 2 |
2013 | 22,197 | 14,107 | 5833 | 2103 | 720 | 181 | 49 | 12 | 8 | 1 |
2014 | 20,752 | 13,127 | 5398 | 1925 | 636 | 147 | 38 | 10 | 5 | 1 |
2015 | 19,857 | 12,350 | 5021 | 1783 | 563 | 133 | 32 | 8 | 4 | 1 |
2016 | 19,717 | 11,945 | 4768 | 1597 | 496 | 117 | 32 | 7 | 4 | 1 |
2017 | 19,346 | 10,659 | 4098 | 1380 | 463 | 85 | 31 | 7 | 4 | 1 |
2018 | 17,932 | 9610 | 3763 | 1242 | 406 | 72 | 28 | 2 | 3 | 0 |
2019 | 15,385 | 8921 | 3498 | 1162 | 368 | 68 | 20 | 2 | 0 | 0 |
2020 | 17,405 | 9697 | 3497 | 1056 | 312 | 54 | 19 | 3 | 0 | 0 |
Max Change rate | 62.82% | 66.85% | 71.35% | 76.20% | 79.89% | 85.11% | 82.08% | 92.11% | 100.00% | 100.00% |
Year | PD | ED | FN | AWMSI | FS | AI |
---|---|---|---|---|---|---|
2001 | 0.0117 | 0.9973 | 14.802622 | 7.954 | 0.28310273 | 79.5801 |
2002 | 0.012 | 1.0353 | 14.666524 | 7.9734 | 0.28356498 | 79.9096 |
2003 | 0.0119 | 1.0653 | 13.813862 | 7.6421 | 0.29263634 | 80.2707 |
2004 | 0.0113 | 1.0362 | 12.507077 | 7.6585 | 0.29358576 | 80.6063 |
2005 | 0.0106 | 0.9917 | 11.415985 | 7.6782 | 0.29088073 | 80.8496 |
2006 | 0.0097 | 0.9384 | 10.262608 | 7.3696 | 0.29567545 | 80.878 |
2007 | 0.0093 | 0.8818 | 10.142569 | 6.8898 | 0.29473165 | 80.5931 |
2008 | 0.0089 | 0.846 | 9.9882939 | 6.5778 | 0.29903267 | 80.132 |
2009 | 0.0088 | 0.8114 | 10.413669 | 6.5818 | 0.29173454 | 79.9631 |
2010 | 0.0089 | 0.7977 | 10.807041 | 6.3748 | 0.2917847 | 79.6394 |
2011 | 0.0084 | 0.7385 | 10.757928 | 6.4825 | 0.28861066 | 79.3885 |
2012 | 0.0081 | 0.6836 | 11.313965 | 6.597 | 0.28310273 | 78.6491 |
2013 | 0.0078 | 0.6439 | 11.563548 | 6.4575 | 0.27917538 | 78.1715 |
2014 | 0.0081 | 0.638 | 12.935312 | 6.6323 | 0.27436325 | 77.4089 |
2015 | 0.0083 | 0.6324 | 13.99703 | 6.729 | 0.26691592 | 76.8763 |
2016 | 0.0085 | 0.6407 | 14.919812 | 6.7727 | 0.26524614 | 76.3702 |
2017 | 0.0081 | 0.6163 | 14.078087 | 6.3173 | 0.27028605 | 76.0021 |
2018 | 0.0083 | 0.6109 | 15.651382 | 6.0193 | 0.26975318 | 75.0247 |
2019 | 0.0071 | 0.54 | 13.104289 | 5.8462 | 0.27103076 | 75.385 |
2020 | 0.007 | 0.5548 | 11.886296 | 6.0001 | 0.274942 | 76.1123 |
Year | Cross Output Value (Million Yuan) | Agriculture Employment (104) | Cross Output Value per Capita (CNY) |
---|---|---|---|
2001 | 27,995 | 1368 | 2046.42 |
2002 | 27,888 | 1354 | 2059.68 |
2003 | 46,672 | 1322 | 3530.41 |
2004 | 52,464 | 1288 | 4073.29 |
2005 | 33,353 | 1268 | 2630.36 |
2006 | 34,797 | 1247 | 2790.46 |
2007 | 39,220 | 1388 | 2825.65 |
2008 | 30,848 | 1350 | 2285.04 |
2009 | 33,050 | 1299 | 2544.26 |
2010 | 38,561 | 1210 | 3186.86 |
2011 | 43,084 | 1194 | 3608.38 |
2012 | 56,132 | 1189 | 4720.94 |
2013 | 64,612 | 1180 | 5475.59 |
2014 | 85,189 | 1171 | 7274.89 |
2015 | 109,654 | 1162 | 9436.66 |
2016 | 119,650 | 883 | 13,550.35 |
2017 | 130,643 | 828 | 15,778.11 |
2018 | 143,929 | 765 | 18,814.19 |
2019 | 156,647 | 700 | 22,378.14 |
2020 | 180,025 | 634 | 28,395.11 |
Regulating Services | Supporting Services | Cultural Services | ||||||
---|---|---|---|---|---|---|---|---|
Gas Regulation | Climate Regulation | Environmental Purification | Hydrological Regulation | Soil Conservation | Maintenance of Nutrient Cycle | Biodiversity | Aesthetic Landscape | |
2001 | 3.25 | 1.70 | 0.49 | 5.27 | 1.90 | 0.57 | 0.62 | 0.27 |
2002 | 3.01 | 1.57 | 0.46 | 5.36 | 1.76 | 0.52 | 0.57 | 0.25 |
2003 | 2.77 | 1.45 | 0.42 | 4.64 | 1.62 | 0.48 | 0.53 | 0.23 |
2004 | 2.70 | 1.41 | 0.41 | 5.40 | 1.58 | 0.47 | 0.52 | 0.23 |
2005 | 2.91 | 1.52 | 0.44 | 4.44 | 1.70 | 0.51 | 0.56 | 0.25 |
2006 | 2.98 | 1.56 | 0.45 | 5.00 | 1.74 | 0.52 | 0.57 | 0.25 |
2007 | 3.09 | 1.61 | 0.47 | 5.47 | 1.80 | 0.54 | 0.59 | 0.26 |
2008 | 3.00 | 1.57 | 0.46 | 5.51 | 1.75 | 0.52 | 0.57 | 0.25 |
2009 | 3.03 | 1.58 | 0.46 | 4.49 | 1.77 | 0.53 | 0.58 | 0.26 |
2010 | 2.72 | 1.42 | 0.41 | 4.63 | 1.59 | 0.47 | 0.52 | 0.23 |
2011 | 2.84 | 1.48 | 0.43 | 4.17 | 1.66 | 0.49 | 0.54 | 0.24 |
2012 | 2.86 | 1.50 | 0.43 | 4.56 | 1.67 | 0.50 | 0.55 | 0.24 |
2013 | 3.15 | 1.64 | 0.48 | 4.16 | 1.84 | 0.55 | 0.60 | 0.27 |
2014 | 2.95 | 1.54 | 0.45 | 5.99 | 1.72 | 0.51 | 0.56 | 0.25 |
2015 | 3.03 | 1.58 | 0.46 | 5.48 | 1.77 | 0.53 | 0.58 | 0.26 |
2016 | 3.08 | 1.61 | 0.47 | 4.84 | 1.80 | 0.54 | 0.59 | 0.26 |
2017 | 3.07 | 1.60 | 0.47 | 4.97 | 1.79 | 0.53 | 0.59 | 0.26 |
2018 | 2.75 | 1.44 | 0.42 | 4.81 | 1.61 | 0.48 | 0.53 | 0.23 |
2019 | 3.19 | 1.66 | 0.48 | 5.39 | 1.86 | 0.55 | 0.61 | 0.27 |
2020 | 2.86 | 1.49 | 0.43 | 5.83 | 1.67 | 0.50 | 0.55 | 0.24 |
Regulating Services | Supporting Services | Cultural Services | ||||||
---|---|---|---|---|---|---|---|---|
Gas Regulation | Climate Regulation | Environmental Purification | Hydrological Regulation | Soil Conservation | Maintenance of Nutrient Cycle | Biodiversity | Aesthetic Landscape | |
2001 | 1042.31 | 544.58 | 158.10 | 1687.38 | 608.99 | 181.53 | 199.09 | 87.83 |
2002 | 1037.58 | 542.11 | 157.39 | 1850.00 | 606.23 | 180.70 | 198.19 | 87.44 |
2003 | 1185.91 | 619.61 | 179.89 | 1989.32 | 692.89 | 206.54 | 226.52 | 99.94 |
2004 | 1353.88 | 707.36 | 205.36 | 2708.69 | 791.03 | 235.79 | 258.61 | 114.09 |
2005 | 1337.41 | 698.76 | 202.87 | 2036.25 | 781.41 | 232.92 | 255.46 | 112.70 |
2006 | 1443.82 | 754.36 | 219.01 | 2424.08 | 843.58 | 251.45 | 275.79 | 121.67 |
2007 | 1735.44 | 906.72 | 263.24 | 3075.90 | 1013.97 | 302.24 | 331.49 | 146.25 |
2008 | 1587.42 | 829.38 | 240.79 | 2913.23 | 927.48 | 276.46 | 303.22 | 133.77 |
2009 | 1699.16 | 887.76 | 257.74 | 2512.78 | 992.77 | 295.92 | 324.56 | 143.19 |
2010 | 1560.85 | 815.50 | 236.76 | 2655.25 | 911.96 | 271.83 | 298.14 | 131.53 |
2011 | 1012.34 | 528.92 | 153.56 | 1486.50 | 591.48 | 176.31 | 193.37 | 85.31 |
2012 | 1321.58 | 690.49 | 200.46 | 2102.56 | 772.16 | 230.16 | 252.44 | 111.37 |
2013 | 1121.78 | 586.10 | 170.16 | 1483.78 | 655.42 | 195.37 | 214.27 | 94.53 |
2014 | 1069.32 | 558.69 | 162.20 | 2173.93 | 624.77 | 186.23 | 204.25 | 90.11 |
2015 | 908.11 | 474.46 | 137.75 | 1645.79 | 530.58 | 158.15 | 173.46 | 76.53 |
2016 | 788.70 | 412.07 | 119.63 | 1239.54 | 460.81 | 137.36 | 150.65 | 66.46 |
2017 | 841.59 | 439.71 | 127.66 | 1364.21 | 491.72 | 146.57 | 160.75 | 70.92 |
2018 | 661.68 | 345.71 | 100.37 | 1157.39 | 386.60 | 115.24 | 126.39 | 55.76 |
2019 | 698.34 | 364.86 | 105.93 | 1181.51 | 408.02 | 121.62 | 133.39 | 58.85 |
2020 | 924.71 | 483.14 | 140.27 | 1885.77 | 540.28 | 161.05 | 176.63 | 77.93 |
Year | Direct Value | Indirect Value | Total Value |
---|---|---|---|
2001 | 27,995.00 | 4509.80 | 32,504.80 |
2002 | 27,888.00 | 4659.64 | 32,547.64 |
2003 | 46,672.00 | 5200.60 | 51,872.60 |
2004 | 52,464.00 | 6374.81 | 58,838.81 |
2005 | 33,353.00 | 5657.76 | 39,010.76 |
2006 | 34,797.00 | 6333.76 | 41,130.76 |
2007 | 39,220.00 | 7775.25 | 46,995.25 |
2008 | 30,848.00 | 7211.75 | 38,059.75 |
2009 | 33,050.00 | 7113.88 | 40,163.88 |
2010 | 38,561.00 | 6881.84 | 45,442.84 |
2011 | 43,084.00 | 4227.79 | 47,311.79 |
2012 | 56,132.00 | 5681.21 | 61,813.21 |
2013 | 64,612.00 | 4521.42 | 69,133.42 |
2014 | 85,189.00 | 5069.51 | 90,258.51 |
2015 | 109,654.00 | 4104.83 | 113,758.83 |
2016 | 119,649.56 | 3375.23 | 123,024.78 |
2017 | 130,642.73 | 3643.13 | 134,285.85 |
2018 | 143,928.56 | 2949.13 | 146,877.69 |
2019 | 156,647.00 | 3072.52 | 159,719.52 |
2020 | 180,025.00 | 4389.76 | 184,414.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhou, Z.; Chen, Q.; Wu, L.; Feng, Q.; Luo, D.; Wu, T. Accounting for Value Changes in Cultivated Land Resources within the Karst Mountain Area of Southwest China, 2001–2020. Land 2022, 11, 765. https://doi.org/10.3390/land11060765
Zhang L, Zhou Z, Chen Q, Wu L, Feng Q, Luo D, Wu T. Accounting for Value Changes in Cultivated Land Resources within the Karst Mountain Area of Southwest China, 2001–2020. Land. 2022; 11(6):765. https://doi.org/10.3390/land11060765
Chicago/Turabian StyleZhang, Lu, Zhongfa Zhou, Quan Chen, Lan Wu, Qing Feng, Dan Luo, and Tangyin Wu. 2022. "Accounting for Value Changes in Cultivated Land Resources within the Karst Mountain Area of Southwest China, 2001–2020" Land 11, no. 6: 765. https://doi.org/10.3390/land11060765
APA StyleZhang, L., Zhou, Z., Chen, Q., Wu, L., Feng, Q., Luo, D., & Wu, T. (2022). Accounting for Value Changes in Cultivated Land Resources within the Karst Mountain Area of Southwest China, 2001–2020. Land, 11(6), 765. https://doi.org/10.3390/land11060765