Life Cycle Assessment Perspective for Sectoral Adaptation to Climate Change: Environmental Impact Assessment of Pig Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life Cycle Assessment (LCA)
2.2. Methodological Design
- Goal and Scope Definition—We defined the objective, scope of the study, pork value chain system, functional units, and impact categories.
- Inventory—We collected the relevant data for the relevant parts of the pork value chain.
- Impact assessment—We analysed the environmental impacts of the different pig production systems.
- Interpretation—We presented this step as the results and discussion.
2.2.1. Goal and Scope
2.2.2. Life Cycle Inventory
2.2.3. Impact Assessment
3. Results and Discussion
3.1. Inputs and Feed Production
3.2. System Performance
3.3. Managerial Aspects across the Value Chain and Their Associated Impacts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thoidou, E. Climate Adaptation Planning: The context of EU Cohesion Policy and Evidence from Urban Projects in Greece. Procedia Environ. Sci. 2017, 38, 721–728. [Google Scholar] [CrossRef]
- Hristov, J.; Toreti, A.; Pérez Domínguez, I.; Dentener, F.; Fellmann, T.; Elleby, C.; Ceglar, A.; Fumagalli, D.; Niemeyer, S.; Cerrani, I.; et al. Analysis of Climate Change Impacts on EU Agriculture by 2050; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Jose, S. Innovation in Agriculture: A Key Process for Sustainable Development; Institutional position paper; Inter-American Institute for Cooperation on Agriculture (IICA): Turrialba, Costa Rica, 2014; pp. 1–20. [Google Scholar]
- McAuliffe, G.A.; Takahashi, T.; Mogensen, L.; Hermansen, J.E.; Sage, C.L.; Chapman, D.V.; Lee, M.R. Environmental trade-offs of pig production systems under varied operational efficiencies. J. Clean. Prod. 2017, 165, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Watson, K.; Wiedemann, S.; Biggs, L.; McGahan, E. Trends in environmental impacts from the pork industry. Integr. AG Environ. Highfields 2018. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030; OECD: Paris, France, 2021. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2020–2029; OECD: Paris, France, 2020. [Google Scholar] [CrossRef]
- Zira, S.; Rydhmer, L.; Ivarsson, E.; Hoffmann, R.; Röös, E. A life cycle sustainability assessment of organic and conventional pork supply chains in Sweden. Sustain. Prod. Consum. 2021, 28, 21–38. [Google Scholar] [CrossRef]
- MacLeod, M.J.; Vellinga, T.; Opio, C.; Falcucci, A.; Tempio, G.; Henderson, B.; Makkar, H.; Mottet, A.; Robinson, T.; Steinfeld, H.; et al. Invited review: A position on the global livestock environmental assessment model (GLEAM). Animal 2018, 12, 383–397. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.P.; Wint, G.W.; Conchedda, G.; Van Boeckel, T.P.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.I.; Gilbert, M. Mapping the global distribution of livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef] [Green Version]
- Hörtenhuber, S.J.; Schauberger, G.; Mikovits, C.; Schönhart, M.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Anders, I.; Andre, K.; Hennig-Pauka, I.; et al. The effect of climate change-induced temperature increase on performance and environmental impact of intensive pig production systems. Sustainability 2020, 12, 9442. [Google Scholar] [CrossRef]
- Noya, I.; Villanueva-Rey, P.; González-García, S.; Fernandez, M.D.; Rodriguez, M.R.; Moreira, M.T. Life Cycle Assessment of pig production: A case study in Galicia. J. Clean. Prod. 2017, 142, 4327–4338. [Google Scholar] [CrossRef]
- Noya, I.; Aldea, X.; González-García, S.; Gasol, C.M.; Moreira, M.T.; Amores, M.J.; Marín, D.; Boschmonart-Rives, J. Environmental assessment of the entire pork value chain in Catalonia–A strategy to work towards Circular Economy. Sci. Total Environ. 2017, 589, 122–129. [Google Scholar] [CrossRef]
- Handayani, K.; Filatova, T.; Krozer, Y.; Anugrah, P. Seeking for a climate change mitigation and adaptation nexus: Analysis of a long-term power system expansion. Appl. Energy 2020, 262, 114485. [Google Scholar] [CrossRef]
- Wiedemann, S.G.; McGahan, E.J.; Murphy, C.M. Environmental impacts and resource use from Australian pork production assessed using lifecycle assessment. 1. Greenhouse gas emissions. Anim. Prod. Sci. 2016, 56, 1418–1431. [Google Scholar] [CrossRef] [Green Version]
- Thoma, G.; Matlock, M.; Putman, B.; Burek, J. A life Cycle Analysis of Land Use in US Pork Production; University of Arkansas: Fayetteville, AR, USA, 2015. [Google Scholar]
- Biró, K.; Szalmáné Csete, M. Corporate social responsibility in agribusiness: Climate-related empirical findings from Hungary. Environ. Dev. Sustain. 2021, 23, 5674–5694. [Google Scholar] [CrossRef] [PubMed]
- Biró, K.; Szalmáné Csete, M.; Németh, B. Climate-Smart Agriculture: Sleeping Beauty of the Hungarian Agribusiness. Sustainability 2021, 13, 10269. [Google Scholar] [CrossRef]
- Wiedemann, S.G.; McGahan, E.J.; Murphy, C.M. Resource use and environmental impacts from Australian chicken meat production. J. Clean. Prod. 2017, 140, 675–684. [Google Scholar] [CrossRef] [Green Version]
- Bonou, A.; Birkved, M. LCA of Pork Products & Evaluation of Alternative Super-Chilling Techniques; Technical University of Denmark (DTU): Lyngby, Denmark, 2016. [Google Scholar]
- De Quelen, F.; Brossard, L.; Wilfart, A.; Dourmad, J.Y.; Garcia-Launay, F. Eco-Friendly Feed Formulation and On-Farm Feed Production as Ways to Reduce the Environmental Impacts of Pig Production Without Consequences on Animal Performance. Front. Vet. Sci. 2021, 8, 703. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Hermansen, J.E.; Mogensen, L.I. Environmental Assessment of Danish Pork; Aarhus University: Aarhus, Denmark, 2011. [Google Scholar]
- Heijungs, R.; Guinée, B. An Overview of the Life Cycle Assessment. In Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products; John Wiley & Sons: Hoboken, NJ, USA, 2012; p. 15. [Google Scholar]
- Bruijn, H.D.; Duin, R.V.; Huijbregts, M.A.; Guinee, J.B.; Gorree, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; Koning, A.D.; Oers, L.V.; et al. Inventory analysis. In Handbook on Life Cycle Assessment; Springer: Dordrecht, The Netherlands, 2002; pp. 477–524. [Google Scholar]
- Halberg, N.; van der Werf, H.M.; Basset-Mens, C.; Dalgaard, R.; De Boer, I.J. Environmental assessment tools for the evaluation and improvement of European livestock production systems. Livest. Prod. Sci. 2005, 96, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Nemecek, T.; Kägi, T.; Blaser, S. Life cycle inventories of agricultural production systems. In Final Report Ecoinvent v2. 0 No; 2007; pp. 1–360. Available online: https://www.researchgate.net/publication/263239333_Life_Cycle_Inventories_of_Agricultural_Production_Systems (accessed on 1 May 2022).
- Tsangas, M.; Gavriel, I.; Doula, M.; Xeni, F.; Zorpas, A.A. Life cycle analysis in the framework of agricultural strategic development planning in the Balkan region. Sustainability 2020, 12, 1813. [Google Scholar] [CrossRef] [Green Version]
- FAO. Environmental Performance of Feed Additives in Livestock Supply Chains—Guidelines for Assessment—Version 1.; Livestock Environmental Assessment and Performance Partnership (FAO LEAP): Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Horne, R. Life cycle assessment: Origins, principles and context. In Life Cycle Assessment: Principles, Practice and Prospects; CSIRO Publishing: Melbourne, Australia, 2009; ISBN 0643094520; 9780643094529. [Google Scholar]
- Dora, J. New global standard for adapting to climate change led by a civil engineer. In Proceedings of the Institution of Civil Engineers-Civil Engineering; Thomas Telford Ltd.: London, UK, 2019; Volume 172, p. 147. [Google Scholar]
- Dekker, E.; Zijp, M.C.; van de Kamp, M.E.; Temme, E.H.; van Zelm, R. A taste of the new ReCiPe for life cycle assessment: Consequences of the updated impact assessment method on food product LCAs. Int. J. Life Cycle Assess. 2020, 25, 2315–2324. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, M.; Eory, V.; Gruère, G.; Lankoski, J. Cost-Effectiveness of Greenhouse Gas Mitigation Measures for Agriculture: A Literature Review; OECD: Paris, France, 2015. [Google Scholar]
- Winkler, T.; Schopf, K.; Aschemann, R.; Winiwarter, W. From farm to fork–A life cycle assessment of fresh Austrian pork. J. Clean. Prod. 2016, 116, 80–89. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, M.; Gerber, P.; Mottet, A.; Tempio, G.; Falcucci, A.; Opio, C.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Pig and Chicken Supply Chains–A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- GreenDelta. OpenLCA–the Life Cycle and Sustainability Modeling Suite. Available online: https://www.openlca.org/openlca/ (accessed on 22 April 2022).
- OpenLCA. OpenLCA is a Free, Professional Life Cycle Assessment (LCA) and Footprint Software with a Broad Range of Features and Many Available Databases, Created by GreenDelta Since 2006. Available online: https://www.openlca.org/ (accessed on 8 November 2021).
- Cruz, A.S.; Cunha, E.G. The impact of climate change on the thermal-energy performance of the SCIP and ICF wall systems for social housing in Brazil. Indoor Built Environ. 2021, 31, 838–852. [Google Scholar] [CrossRef]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J.; Van Zelm, R. ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Hague Minist. VROM 2009, 1, 1–26. [Google Scholar]
- Reckmann, K.; Traulsen, I.; Krieter, J. Life Cycle Assessment of pork production: A data inventory for the case of Germany. Livest. Sci. 2013, 157, 586–596. [Google Scholar] [CrossRef]
- Mathew, A. Organic pig production systems, welfare and sustainability Sandra Edwards, University of Newcastle, UK; and Christine Leeb, University of Natural Resources and Life Sciences, Austria. In Achieving Sustainable Production of Pig Meat; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; Volume 1, pp. 265–286. [Google Scholar]
- Broekema, R.; Tyszler, M.; van’t Veer, P.; Kok, F.J.; Martin, A.; Lluch, A.; Blonk, H.T. Future-proof and sustainable healthy diets based on current eating patterns in the Netherlands. Am. J. Clin. Nutr. 2020, 112, 1338–1347. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.N.; Brossard, L.; Gilbert, H.; Dourmad, J.Y. Environmental impacts and their association with performance and excretion traits in growing pigs. Front. Vet. Sci. 2021, 8, 677857. [Google Scholar] [CrossRef]
- Monteiro, A.N.; Dourmad, J.Y.; Pozza, P.C. Análise do ciclo de vida como ferramenta para avaliar o impacto da redução do conteúdo de proteína bruta da dieta de suínos. Ciência Rural 2017, 47, e20161029. [Google Scholar]
- Reckmann, K. Life Cycle Assessment of Pork Especially Emphasising Feed and Pig Production; Selbstverl. des Inst. für Tierzucht und Tierhaltung der Christian-Albrechts-University: Kiel, Germany, 2013. [Google Scholar]
- Dourmad, J.Y.; Ryschawy, J.; Trousson, T.; Bonneau, M.; Gonzàlez, J.; Houwers, H.W.; Hviid, M.; Zimmer, C.; Nguyen, T.L.; Morgensen, L. Evaluating environmental impacts of contrasting pig farming systems with life cycle assessment. Animal 2014, 8, 2027–2037. [Google Scholar] [CrossRef] [Green Version]
- Makara, A.; Kowalski, Z.; Lelek, Ł.; Kulczycka, J. Comparative analyses of pig farming management systems using the Life Cycle Assessment method. J. Clean. Prod. 2019, 241, 118305. [Google Scholar] [CrossRef]
- Reckmann, K.; Blank, R.; Traulsen, I.; Krieter, J. Comparative life cycle assessment (LCA) of pork using different protein sources in pig feed. Arch. Anim. Breed. 2016, 59, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Dolman, M.A.; de Boer, I.J.M.; Vrolijk, H.C.J. Explaining relations between economic and life cycle assessment indicators for Dutch pig fattening farms. In Proceedings of the VII International Conference on Life Cycle Assessment in the Agri-Food Sector LCA, Bari, Italy, 22–24 September 2010; pp. 249–254. [Google Scholar]
- McAuliffe, G.A.; Chapman, D.V.; Sage, C.L. A thematic review of life cycle assessment (LCA) applied to pig production. Environ. Impact Assess. Rev. 2016, 56, 12–22. [Google Scholar] [CrossRef]
- Bava, L.; Zucali, M.; Sandrucci, A.; Tamburini, A. Environmental impact of the typical heavy pig production in Italy. J. Clean. Prod. 2017, 140, 685–691. [Google Scholar] [CrossRef]
- Schauberger, G.; Schönhart, M.; Zollitsch, W.; Hörtenhuber, S.J.; Kirner, L.; Mikovits, C.; Baumgartner, J.; Piringer, M.; Knauder, W.; Anders, I.; et al. Economic risk assessment by weather-related heat stress indices for confined livestock buildings: A case study for fattening pigs in Central Europe. Agriculture 2021, 11, 122. [Google Scholar] [CrossRef]
- Schauberger, G.; Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Knauder, W.; Anders, I.; Andre, K.; et al. Global warming impact on confined livestock in buildings: Efficacy of adaptation measures to reduce heat stress for growing-fattening pigs. Clim. Chang. 2019, 156, 567–587. [Google Scholar] [CrossRef] [Green Version]
- Heller, M.C.; Willits-Smith, A.; Meyer, R.; Keoleian, G.A.; Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Let. 2018, 13, 044004. [Google Scholar] [CrossRef]
- Thoma, G.; Matlock, M.D.; Bandekar, P.; Ulrich, R.; Leh, M. LCA of Alternate Swine Management Practices; University of Arkansas: Fayetteville, AR, USA, 2013. [Google Scholar]
- Van Zanten, H.H.; Bikker, P.; Meerburg, B.G.; de Boer, I.J. Attributional versus consequential life cycle assessment and feed optimisation: Alternative protein sources in pig diets. Int. J. Life Cycle Assess. 2018, 23, 1. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, T.; Gilbert, H. An approach to achieve overall farm feed efficiency in pig production: Environmental evaluation through individual life cycle assessment. Int. J. Life Cycle Assess. 2021, 26, 455–469. [Google Scholar] [CrossRef]
- Bandekar, P.A.; Leh, M.; Bautista, R.; Matlock, M.D.; Thoma, G.; Ulrich, R. Life cycle assessment of alternative swine management practices. J. Anim. Sci. 2019, 97, 472–484. [Google Scholar] [CrossRef]
- McGlone, J.J.; Von Borell, E.H.; Deen, J.; Johnson, A.K.; Levis, D.G.; Meunier-Salaon, M.; Morrow, J.; Reeves, D.; Salak-Johnson, J.L.; Sundberg, P.L. Reviews: Compilation of the scientific literature comparing housing systems for gestating sows and gilts using measures of physiology, behavior, performance, and health. Prof. Anim. Sci. 2004, 20, 105–117. [Google Scholar] [CrossRef]
Impact Category | Unit | Without Phytase | Xylanase | Benzoic Acid (5*) | Benzoic Acid (10*) | All |
---|---|---|---|---|---|---|
Climate change Excl. LUC | kg CO2 eq | 0.9% | −1.0% | −0.7% | 0.9% | −0.1% |
Climate change | kg CO2 eq | 1.9% | −0.2% | −1.2% | −0.1% | −0.3% |
Acidification | mol H+ eq | 1.1% | 0.0% | −8.0% | −12.6% | −12.7% |
Eutrophication freshwater | kg P eq | 5.4% | 1.6% | −1.8% | −1.2% | 0.4% |
Eutrophication marine | kg N eq | −0.1% | −2.3% | −2.8% | −3.1% | −5.4% |
Eutrophication terrestrial | mol N eq | 0.7% | 0.0% | −8.1% | −12.7% | −12.8% |
Ecotoxicity freshwater | CTUe | 0.4% | 1.4% | −2.3% | −2.3% | −0.9% |
Land use | Pt | 0.4% | −1.1% | −2.4% | −2.4% | −3.5% |
Water scarcity | m3 deprived. | 14.0% | 2.4% | −1.9% | −1.4% | 2.5% |
Resource use, Energy Carriers | MJ | 2.0% | −1.3% | 0.7% | 3.8% | 2.4% |
Resource use, minerals, and metals | kg Sb eq | 93.4% | 1.1% | −0.5% | 1.3% | −0.8% |
Conventional | Organic | Label Rouge (Outdoor) | Label Rouge (Run Systems) | |
---|---|---|---|---|
Fossil resource scarcity (kg oil eq) | 0.178 | 0.272 | 0.185 | 0.207 |
Freshwater ecotoxicity (kg 1,4-DCB) | 0.026 | 0.033 | 0.023 | 0.024 |
Freshwater eutrophication (kg P eq) | 0.000 | 0.001 | 0.000 | 0.000 |
Global warming (kg CO2 eq) | 2.462 | 4.272 | 2.412 | 3.343 |
Land use (m2 a crop eq) | 3.303 | 10.267 | 5.083 | 3.637 |
Marine ecotoxicity (kg 1,4-DCB) | 0.034 | 0.048 | 0.031 | 0.033 |
Marine eutrophication (kg N eq) | 0.003 | 0.010 | 0.005 | 0.003 |
Mineral resource scarcity (kg Cu eq) | 0.018 | 0.015 | 0.019 | 0.018 |
Terrestrial acidification (kg SO2 eq) | 0.038 | 0.079 | 0.057 | 0.046 |
Terrestrial ecotoxicity (kg 1,4-DCB) | 2.913 | 4.216 | 3.068 | 3.117 |
Water consumption (L) | 45.253 | 87.692 | 35.628 | 34.441 |
Study | Fossil Resource Scarcity (kg Oil eq) | Freshwater Eutrophication (kg P eq) | Global Warming (kg CO2 eq) | Land Use (m2 a crop eq) | Marine Eutrophication (kg N eq) | Terrestrial Acidification (kg SO2 eq) |
---|---|---|---|---|---|---|
Present article (2022) | 0.178 | 0.003 | 2.462 | 3.303 | 0.003 | 0.046 |
Zira et al., 2021 | 1.3 | n/a | 7.1 | n/a | 0.11 | 0.2 |
Nguyen et al., 2011, 2019 | n/a | n/a | 2.95 | 5.5 | 0.2315 | 0.0585 |
Sandrucci et al., 2017 | 0.0235 | 0.025 | 4.7 | n/a | n/a | 0.0285 |
McAuliffe et al., 2017 | n/a | n/a | 3.5 | n/a | 0.321 | 0.445 |
Alexandra and Morten (2016) | n/a | 0.07 | 3.94 | n/a | 0.34 | n/a |
Noya et al., 2016 | 0.0125 | 0.0002 | 3.42 | 4.96 | 0.05 | 0.186 |
Winker et al., 2016 | n/a | 0.364 | 4.751 | n/a | 0.006 | |
Dourmad et al., 2014 | 0.01622 | 0.019 | 2.251 | 4.127 | n/a | 0.044 |
Espagnol and Demartini (2014) | 0.0162 | 0.044 | 2.25 | 4.13 | n/a | 0.019 |
Reckmann et al., 2013 | 0.0195 | 0.0233 | 3.22 | n/a | n/a | 0.0571 |
Dolman et al., 2009 | 0.001995 | n/a | 5.3 | 9.37 | 0.859 | 0.093 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndue, K.; Pál, G. Life Cycle Assessment Perspective for Sectoral Adaptation to Climate Change: Environmental Impact Assessment of Pig Production. Land 2022, 11, 827. https://doi.org/10.3390/land11060827
Ndue K, Pál G. Life Cycle Assessment Perspective for Sectoral Adaptation to Climate Change: Environmental Impact Assessment of Pig Production. Land. 2022; 11(6):827. https://doi.org/10.3390/land11060827
Chicago/Turabian StyleNdue, Kennedy, and Goda Pál. 2022. "Life Cycle Assessment Perspective for Sectoral Adaptation to Climate Change: Environmental Impact Assessment of Pig Production" Land 11, no. 6: 827. https://doi.org/10.3390/land11060827
APA StyleNdue, K., & Pál, G. (2022). Life Cycle Assessment Perspective for Sectoral Adaptation to Climate Change: Environmental Impact Assessment of Pig Production. Land, 11(6), 827. https://doi.org/10.3390/land11060827