Protected Area Effectiveness in the Scientific Literature: A Decade-Long Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Literature Review
- String 1 (broader): (‘protected area’ or ‘MPA’ or ‘reserve’ or ‘natura 2000 site’ or ‘park’) AND (‘effect’ or ‘impact’ or ‘effectiveness’ or ‘performance’ or ‘efficacy’): 2787 articles.
- String 2 (narrower): (‘protected area’ or ‘MPA’ or ‘reserve’ or ‘natura 2000 site’ or ‘park’) AND (‘effect’ or ‘impact’ or ‘effectiveness’ or ‘performance’ or ‘efficacy’) AND (‘biodiversity’ or ‘gene’ or ‘genetic’ or ‘species’ or ‘ecosystem’ or ‘habitat’ or ‘land’ or ‘environment *’): 411 articles.
2.2. Bibliometric Analysis
3. Results
3.1. Articles’ Metrics
3.2. Journals’ Metrics
3.3. Correlations
- Very strong and significant correlations occurred between the following variables:Quartile and Journal Ranking by subject category (), Impact Factor and Journal Ranking by subject category (), and Normalized citations and FWCI ().
- There was a strong negative correlation between Quartile and Impact Factor ().
- Finally, moderate correlations were found between the following variables:
- Studies that used more complete semiexperimental methods were published in journals with a higher Impact Factor in the year of publication ().
- Studies with Supplementary Data had more Normalized citations (), more Normalized usage counts (), higher Impact Factor (), FWCI (), greater Number of centers (), Number of article pages (), and Number of references (). In addition, they were more articles published by the first authors’ institutions in countries with a very high HDI () and by research funding institutions with a higher scope ().
- OA articles were more frequent by the first authors’ institutions in countries with a very high HDI () and by research funding institutions with a larger scope ().
- International collaboration led to a greater Number of authors (), centers (), and article pages ().
4. Discussion
4.1. Bibliometric Assessment
4.2. Systematic Literature Review and Bibliometric Procedure
4.3. Methodological Remarks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gough, D.A.; Oliver, S.; Thomas, J. An Introduction to Systematic Reviews, 2nd ed.; SAGE: London, UK, 2012. [Google Scholar]
- Chalmers, I.; Altman, D.G. Systematic Reviews; BMJ Publications: London, UK, 1995. [Google Scholar]
- Basten, D.; Sunyaev, A. A Systematic Mapping of Factors Affecting Accuracy of Software Development Effort Estimation. Commun. Assoc. Inf. Syst. 2014, 34, 51–86. [Google Scholar] [CrossRef]
- Pittway, L. Systematic literature reviews. In The SAGE Dictionary of Qualitative Management Research; Thorpe, R., Holt, R.R., Eds.; SAGE: London, UK, 2008. [Google Scholar]
- Okoli, C.; Schabram, K. A Guide to Conducting a Systematic Literature Review of Information Systems Research. SSRN 2010. [Google Scholar] [CrossRef] [Green Version]
- Boell, S.K.; Cecez-Kecmanovic, D. On being ‘systematic’ in literature reviews in IS. J. Inf. Technol. 2015, 30, 161–173. [Google Scholar] [CrossRef]
- Guyatt, G.; Cairns, J.; Churchill, D.; Cook, D.J.; Haynes, B.; Hirsh, J.; Irvine, J.; Levine, M.; Levine, M.; Nishikawa, J.; et al. Evidence-Based Medicine: A New Approach to Teaching the Practice of Medicine. JAMA 1992, 268, 2420–2425. [Google Scholar] [CrossRef]
- Ross, S. Management of Newly Diagnosed Patients with Epilepsy: A Systematic Review of the Literature; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2001.
- Levine, C.; Ganz, N.; Estok, R.; Ludensky, V. Systematic Review of the Current Literature Related to Disability and Chronic Fatigue Syndrome; U.S. Department of Health and Human Services, Public Health: Rockville, MD, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK36735/ (accessed on 15 April 2022).
- Levine, C. Diagnosis and Treatment of Parkinson’s Disease: A Systematic Review of the Literature; U.S. Department of Health and Human Services, Public Health: Rockville, MD, USA, 2003.
- SBU. Obstructive Sleep Apnoea Syndrome: A Systematic Literature Review. Available online: https://www.ncbi.nlm.nih.gov/books/NBK447983/ (accessed on 31 January 2022).
- Bowes, A.; Dawson, A. Designing Environments for People with Dementia: A Systematic Literature Review; Emerald Publishing: Bingley, UK, 2019; ISBN 978-1-78769-974-8. [Google Scholar]
- Anaya-Baz, B.; Maldonado, N.; Palacios-Baena, Z.R.; Palomo, V.; Pezzani, M.D.; Chiesi, S.; Razzaboni, E.; Compri, M.; Tacconelli, E.; Rodriguez-Baño, J. Systematic literature review of the burden and outcomes of infections due to multidrug-resistant organisms in Europe: The ABOUT-MDRO project protocol. BMJ Open 2020, 10, e030608. [Google Scholar] [CrossRef] [PubMed]
- Petticrew, M.; Roberts, H. Systematic Reviews in the Social Sciences: A Practical Guide; Blackwell: Malden, MA, USA, 2006. [Google Scholar] [CrossRef]
- Réchauchère, O.; Bispo, A.; Gabrielle, B.; Makowski, D. (Eds.) Sustainable Agriculture Reviews 30: Environmental Impact of Land Use Change in Agricultural Systems; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Rodríguez-Caballero, E.; Chamizo, S.; Juez, C.; Cantón, Y.; García-Ruiz, J.M. Mediterranean badlands: Their driving processes and climate change futures. Earth Surf. Process. Landf. 2021, 47, 17–31. [Google Scholar] [CrossRef]
- de Santana, M.M.M.; Mariano-Neto, E.; de Vasconcelos, R.N.; Dodonov, P.; Medeiros, J.M.M. Mapping the research history, collaborations and trends of remote sensing in fire ecology. Scientometrics 2021, 126, 1359–1388. [Google Scholar] [CrossRef]
- Santos, S.M.B.D.; Bento-Gonçalves, A.; Vieira, A. Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis. Forests 2021, 12, 604. [Google Scholar] [CrossRef]
- Bezak, N.; Mikos, M.; Borrelli, B.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Biddoccu, M.; Cerdà, A.; et al. Soil erosion modelling: A bibliometric analysis. Environ. Res. 2021, 197, 111087. [Google Scholar] [CrossRef]
- Renzi, M.; Pauna, V.H.; Provenza, F.; Munari, C.; Mistri, M. Marine Litter in Transitional Water Ecosystems: State of The Art Review Based on a Bibliometric Analysis. Water 2020, 12, 612. [Google Scholar] [CrossRef] [Green Version]
- Partelow, S.; Schluter, A.; von Wehrden, H.; Janig, M.; Senff, P. A Sustainability Agenda for Tropical Marine Science. Conserv. Lett. 2018, 11, e12351. [Google Scholar] [CrossRef] [Green Version]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Appolloni, L.; Buonocore, E.; Fulvio Russo, G.; Franzese, P.P. The use of remote sensing for monitoring Posidonia oceanica and Marine Protected Areas: A systemic review. Ecol. Quest. 2020, 31, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, W.Y. Ecotourism Research Progress: A Bibliometric Analysis During 1990–2016. SAGE Open 2020, 10, 2158244020924052. [Google Scholar] [CrossRef]
- Hockings, M.; Stolton, S.; Dudley, N. Evaluating Effectiveness: A Framework for Assessing the Management of Protected Areas; IUCN: Gland, Switzerland; Cambridge, UK, 2000. [Google Scholar]
- Ervin, J. Rapid Assessment and Prioritization of Protected Area Management (RAPPAM) Methodology; WWF: Gland, Switzerland, 2003. [Google Scholar]
- Stolton, S.; Hockings, M.; Dudley, N.; MacKinnon, K.; Whitten, T.; Leverington, F. Reporting Progress in Protected Areas a Site-Level. In Management Effectiveness Tracking Tool, 2nd ed.; 2007; Available online: http://assets.panda.org/downloads/mett2_final_version_july_2007.pdf (accessed on 31 January 2022).
- Mas, J.F. Assessing protected areas effectiveness using surrounding (buffer) areas environmentally similar to the target area. Environ. Monit. Assess. 2005, 105, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Andam, K.S.; Ferraro, P.J.; Pfaff, A.; Sanchez-Azofeifa, G.A.; Robalino, J.A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 16089–16094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spracklen, B.D.; Kalamandeen, M.; Galbraith, D.; Gloor, E.; Spracklen, D.V. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 2015, 10, e0143886. [Google Scholar] [CrossRef]
- Caveen, A.; Polunin, N.; Gray, T.; Stead, S. The Controversy over Marine Protected Areas: Science Meets Policy; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Slabbert, L.; Du Preez, E.A. Where did all the visitor research go? A systematic review of application areas in national parks. J. Hosp. Tour. Man. 2021, 49, 12–24. [Google Scholar] [CrossRef]
- Correia, R.A.; Malhado, A.C.M.; Lins, L.; Gamarra, N.C.; Bonfim, W.A.G.; Valencia-Aguilar, A.; Bragagnolo, C.; Jepson, P.; Ladle, R.J. The scientific value of Amazonian protected areas. Biodivers. Conserv. 2016, 25, 1503–1513. [Google Scholar] [CrossRef]
- van Wilgen, B.W.; Boshoff, N.; Smit, I.P.J.; Solano-Fernandez, S.; van der Walt, L. A bibliometric analysis to illustrate the role of an embedded research capability in South African National Parks. Scientometrics 2016, 107, 185–212. [Google Scholar] [CrossRef]
- Picone, F.; Buonocore, E.; Chemello, R.; Russo, G.F.; Franzese, P.P. Exploring the development of scientific research on Marine Protected Areas: From conservation to global ocean sustainability. Ecol. Inform. 2021, 61, 101200. [Google Scholar] [CrossRef]
- CBD. COP 10 Decision X/2: X/2. Strategic Plan for Biodiversity 2011–2020. 2010. Available online: https://www.cbd.int/decision/cop/?id=12268 (accessed on 31 January 2022).
- Hoepner, A.G.F.; Benjamin, K.; Scholtens, B.; Yu, P.S. Environmental and ecological economics in the 21st century: An age adjusted citation analysis of the influential articles, journals, authors and institutions. Ecol. Econ. 2012, 77, 193–206. [Google Scholar] [CrossRef]
- Vigna, I.; Besana, A.; Comino, E.; Pezzoli, A. Application of the Socio-Ecological System Framework to Forest Fire Risk Management: A Systematic Literature Review. Sustainability 2021, 13, 2121. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Vuong, Q.H. Evaluation of the Aichi Biodiversity Targets: The international collaboration trilemma in interdisciplinary research. Pac. Conserv. Biol. 2021. [Google Scholar] [CrossRef]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 31 January 2022).
- Gratzer, G.; Keeton, W.S. Mountain Forests and Sustainable Development: The Potential for Achieving the United Nations’ 2030 Agenda. Mt. Res. Dev. 2017, 37, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Ament, J.M.A.; Collen, B.; Carbone, C.; Mace, G.M.M.; Freeman, R. Compatibility between agendas for improving human development and wildlife conservation outside protected areas: Insights from 20 years of data. People Nat. 2019, 1, 305–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maestro, M.; Pérez-Cayeiro, M.L.; Chica-Ruiz, J.A.; Reyes, R. Marine protected areas in the 21st century: Current situation and trends. Ocean Coast. Manag. 2019, 171, 28–36. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Radeloff, V.C.; Joppa, L.N.; Hamilton, C.M.; Helmers, D.P.; Plantinga, A.J.; Lewis, D.J. Scenarios of future land use change around United States’ protected areas. Biol. Conserv. 2015, 184, 446–455. [Google Scholar] [CrossRef]
- Gallardo, M.; Martínez-Vega, J. Modeling Land-Use Scenarios in Protected Areas of an Urban Region in Spain. In Geomatic Approaches for Modeling Land Change Scenarios; Camacho Olmedo, M.T., Paegelow, M., Mas, J.F., Escobar, F., Eds.; Springer: Cham, Switzerland, 2018; pp. 307–328. [Google Scholar] [CrossRef]
- Gollnow, F.; Göpel, J.; de Barros Viana Hissa, L.; Schaldach, R.; Lakes, T. Scenarios of land-use change in a deforestation corridor in the Brazilian Amazon: Combining two scales of analysis. Reg. Environ. Chang. 2018, 18, 143–159. [Google Scholar] [CrossRef]
- Armenteras, D.; Murcia, U.; González, T.M.; Barón, O.J.; Arias, J.E. Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness. Glob. Ecol. Conserv. 2019, 17, e00567. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondízio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Duan, P.; Wang, Y.; Yin, P. Remote Sensing Applications in Monitoring of Protected Areas: A Bibliometric Analysis. Remote Sens. 2020, 12, 772. [Google Scholar] [CrossRef] [Green Version]
- Götmark, F.; Kirby, K.; Usher, M.B. Strict reserves, IUCN classification, and the use of reserves for scientific research: A comment on Schultze et al. (2014). Biodivers. Conserv. 2015, 24, 3621–3625. [Google Scholar] [CrossRef]
- Ferreira, H.M.; Magris, R.A.; Floeter, S.R.; Ferreira, C.E. Drivers of ecological effectiveness of marine protected areas: A meta-analytic approach from the Southwestern Atlantic Ocean (Brazil). J. Environ. Manag. 2022, 301, 113889. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Chen, M.; Zeng, C.; Cheng, S.; Wang, Z.; Liu, S.; Zou, C.; Ye, S.; Zhu, Z.; Cao, L. Assessing the management effectiveness of China’s marine protected areas: Challenges and recommendations. Ocean Coast. Manag. 2022, 224, 106172. [Google Scholar] [CrossRef]
- Kwiek, M. What large-scale publication and citation data tell us about international research collaboration in Europe: Changing national patterns in global contexts. Stud. High. Educ. 2021, 46, 2629–2649. [Google Scholar] [CrossRef]
- Abramo, G.; D’Angelo, C.A. The relationship between the number of authors of a publication, its citations and the impact factor of the publishing journal: Evidence from Italy. J. Informetr. 2015, 9, 746–761. [Google Scholar] [CrossRef] [Green Version]
- Franceschet, M.; Costantini, A. The effect of scholar collaboration on impact and quality of academic papers. J. Informetr. 2010, 4, 540–553. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Bever, J.D.; Yu, F.H. Open access increases citations of papers in ecology. Ecosphere 2017, 8, e01887. [Google Scholar] [CrossRef] [Green Version]
- Piwowar, H.; Priem, J.; Larivière, V.; Alperin, J.P.; Matthias, L.; Norlander, B.; Farley, A.; West, J.; Haustein, S. The state of OA: A large-scale analysis of the prevalence and impact of Open Access articles. PeerJ 2018, 6, e4375. [Google Scholar] [CrossRef] [Green Version]
- Piwowar, H.A.; Day, R.S.; Fridsma, D.B. Sharing Detailed Research Data Is Associated with Increased Citation Rate. PLoS ONE 2007, 2, e308. [Google Scholar] [CrossRef] [Green Version]
- Gazni, A.; Didegah, F. Investigating different types of research collaboration and citation impact: A case study of Harvard University’s publications. Scientometrics 2011, 87, 251–265. [Google Scholar] [CrossRef]
- Bornmann, B. Is collaboration among scientists related to the citation impact of papers because their quality increases with collaboration? An analysis based on data from F1000Prime and normalized citation scores. J. Assoc. Inf. Syst. 2016, 68, 1036–1047. [Google Scholar] [CrossRef] [Green Version]
- Tahamtan, I.; Safipour Afshar, A.; Ahamdzadeh, K. Factors affecting number of citations: A comprehensive review of the literature. Scientometrics 2016, 107, 1195–1225. [Google Scholar] [CrossRef]
- Seglen, P.O. Citation rates and journal impact factors are not suitable for evaluation of research. Acta Orthop. Scand. 1998, 69, 224–229. [Google Scholar] [CrossRef] [Green Version]
- European Commission. EU Support for Open Access, What It Means, How Its Integrated into the Funding Programmes, Advice for Projects and Working with EU Countries. 2022. Available online: https://ec.europa.eu/info/research-and-innovation/strategy/strategy-2020-2024/our-digital-future/open-science/open-access_en (accessed on 12 April 2022).
- McCabe, M.J.; Snyder, C.M. Identifying the effect of Open Access on citations using a panel of science journals. Econ. Inq. 2014, 52, 1284–1300. [Google Scholar] [CrossRef] [Green Version]
- Langham-Putrow, A.; Bakker, C.; Riegelman, A. Is the open access citation advantadge real? A systematic review of the citation of open access and subscription-based articles. PLoS ONE 2021, 16, e0253129. [Google Scholar] [CrossRef]
- Martínez-Vega, J.; Rodríguez-Rodríguez, D.; Fernández-Latorre, F.M.; Ibarra, P.; Echeverría, M.; Echavarría, P. Proposal of a System for Assessment of the Sustainability of Municipalities (Sasmu) Included in the Spanish Network of National Parks and Their Surroundings. Geosciences 2020, 10, 298. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Jurdao, S.; Pettinari, M.L.; Yebra, M.; Salas, J.; Hantson, S.; de la Riva, J.; Ibarra, P.; Rodrigues, M.; et al. Integrating geospatial information into fire risk assessment. Int. J. Wildland Fire 2012, 23, 606–619. [Google Scholar] [CrossRef]
- Vasconcelos, R.N.; Lima, A.T.C.; Lentini, C.A.D.; Miranda, G.V.; Mendonça, L.F.; Silva, M.A.; Cambuí, E.C.B.; Lopes, J.M.; Porsani, M.J. Oil spill detection and mapping: A 50-year bibliometric analysis. Remote Sens. 2020, 12, 3647. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, W. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef]
- IUCN. IUCN Green List of Protected and Conserved Areas. IUCN. Gland and Cambridge. 2021. Available online: https://www.iucn.org/theme/protected-areas/our-work/iucn-green-list-protected-and-conserved-areas (accessed on 13 June 2022).
- Protected Planet. Protected Planet Report 2020. Coverage. Chapter 3. 2020. Available online: https://livereport.protectedplanet.net/chapter-3 (accessed on 13 June 2022).
- Rodríguez-Rodríguez, D.; Martínez-Vega, J. Protected area effectiveness against land development in Spain. J. Environ. Manag. 2018, 215, 345–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Luo, Z.; Mallon, D.; Li, C.; Jiang, Z. Biodiversity conservation status in China’s growing protected areas. Biol. Conserv. 2017, 210, 89–100. [Google Scholar] [CrossRef]
- Vieira, R.R.S.; Pressey, R.L.; Loyola, R. The residual nature of protected areas in Brazil. Biol. Conserv. 2019, 233, 152–161. [Google Scholar] [CrossRef]
- Burgess, N.D.; Butynski, T.M.; Cordeiro, N.J.; Doggart, N.H.; Fjeldså, J.; Howell, K.M.; Kilahama, F.B.; Loader, S.P.; Lovett, J.C.; Mbilinyi, B.; et al. The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biol. Conserv. 2007, 134, 209–231. [Google Scholar] [CrossRef]
Indicator | Mean ± SD |
---|---|
Number of authors | 4.50 ± 2.68 |
Number of centers | 3.00 ± 2.02 |
Number of pages | 12.33 ± 5.24 |
Number of references | 60.12 ± 25.77 |
Normalized citations | 3.95 ± 3.89 |
Field-weighted citation impact (FWCI) | 1.33 ± 1.23 |
Normalized usage counts | 109.51 ± 332.66 |
Journal Name | Number of Articles | Quartile | Average Impact Factor | Journal Ranking by Subject Category | Total Citations | Total Normalized Citations (No./Year) |
---|---|---|---|---|---|---|
Conservation Letters | 4 | 1 | 5.246 | 0.90 | 281 | 34.36 |
Biological Conservation | 4 | 1 | 4.151 | 0.91 | 158 | 19.33 |
PLoS One | 4 | 1 | 2.762 | 0.74 | 46 | 13.42 |
Ecological Indicators | 3 | 1 | 3.814 | 0.83 | 93 | 21.00 |
Ecology and Society | 2 | 1 | 2.755 | 0.85 | 27 | 4.73 |
Regional Environmental Change | 2 | 1 | 2.704 | 0.78 | 35 | 5.83 |
Biodiversity and Conservation | 2 | 2 | 2.301 | 0.69 | 43 | 4.43 |
Aquatic Conservation: Marine and Freshwater Ecosystems | 2 | 1 | 2.164 | 0.68 | 9 | 2.25 |
Ocean and Coastal Management | 2 | 2 | 2.012 | 0.69 | 28 | 5.61 |
Fisheries Research | 2 | 1 | 1.920 | 0.77 | 19 | 2.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Vega, J.; Rodríguez-Rodríguez, D. Protected Area Effectiveness in the Scientific Literature: A Decade-Long Bibliometric Analysis. Land 2022, 11, 924. https://doi.org/10.3390/land11060924
Martínez-Vega J, Rodríguez-Rodríguez D. Protected Area Effectiveness in the Scientific Literature: A Decade-Long Bibliometric Analysis. Land. 2022; 11(6):924. https://doi.org/10.3390/land11060924
Chicago/Turabian StyleMartínez-Vega, Javier, and David Rodríguez-Rodríguez. 2022. "Protected Area Effectiveness in the Scientific Literature: A Decade-Long Bibliometric Analysis" Land 11, no. 6: 924. https://doi.org/10.3390/land11060924
APA StyleMartínez-Vega, J., & Rodríguez-Rodríguez, D. (2022). Protected Area Effectiveness in the Scientific Literature: A Decade-Long Bibliometric Analysis. Land, 11(6), 924. https://doi.org/10.3390/land11060924