Optimizing Crowdsourced Land Use and Land Cover Data Collection: A Two-Stage Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Two Class Model
- For each user, simulate the number of correct testing stage responses out of m from the Binomial distribution, and thus estimate each user’s accuracy as in Equation (6).
- For each item, simulate the responses obtained from the set of users classifying this item, using the true user accuracy .
- Apply BF to the estimated user accuracy from step 1 and classification responses from step 2 to produce the final classification as in Equation (2).
- Evaluate the overall accuracy as the proportion of correct identifications.
2.2. Generalization of the Model to K Classes
2.3. Data from the Geo-Wiki Field Size Campaign
- Very large fields: >100 ha;
- Large fields: 16 to 100 ha;
- Medium fields: 2.56 to 16 ha;
- Small fields: 0.64 to 2.56; and
- Very small fields: <0.64 ha.
- Very small: fields smaller than the 1 grid square;
- Small: fields between 1 and 4 grid squares cells (2.56 ha);
- Medium: fields smaller than the red box (16 ha) and larger than 4 grid squares;
- Large: fields smaller than the blue box (100 ha) and larger than the red box; and
- Very large: fields larger than the blue box.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. R Code for Evaluating Accuracy
References
- Bonney, R.; Shirk, J.L.; Phillips, T.B.; Wiggins, A.; Ballard, H.L.; Miller-Rushing, A.J.; Parrish, J.K. Next steps for citizen science. Science 2014, 343, 1436–1437. [Google Scholar] [CrossRef] [PubMed]
- Pocock, M.J.; Tweddle, J.C.; Savage, J.; Robinson, L.D.; Roy, H.E. The diversity and evolution of ecological and environmental citizen science. PLoS ONE 2017, 12, e0172579. [Google Scholar] [CrossRef] [PubMed]
- Turbé, A.; Barba, J.; Pelacho, M.; Mugdal, S.; Robinson, L.D.; Serrano-Sanz, F.; Sanz, F.; Tsinaraki, C.; Rubio, J.M.; Schade, S. Understanding the Citizen Science Landscape for European Environmental Policy: An Assessment and Recommendations. Citiz. Sci. Theory Pract. 2019, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Haklay, M. Citizen science and volunteered geographic information: Overview and typology of participation. In Crowdsourcing Geographic Knowledge; Sui, D., Elwood, S., Goodchild, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 105–122. [Google Scholar]
- Howe, J. The rise of crowdsourcing. Wired Mag. 2006, 14, 1–4. [Google Scholar]
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; See, L.; Schepaschenko, D.; van der Velde, M.; Kraxner, F.; Obersteiner, M. Geo-Wiki: An online platform for improving global land cover. Environ. Model. Softw. 2012, 31, 110–123. [Google Scholar] [CrossRef]
- Simpson, R.; Page, K.R.; De Roure, D. Zooniverse: Observing the world’s largest citizen science platform. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014; ACM: New York, NY, USA, 2014; pp. 1049–1054. [Google Scholar]
- Dickinson, J.L.; Zuckerberg, B.; Bonter, D.N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 149–172. [Google Scholar] [CrossRef] [Green Version]
- Buytaert, W.; Zulkafli, Z.; Grainger, S.; Acosta, L.; Alemie, T.C.; Bastiaensen, J.; De Bièvre, B.; Bhusal, J.; Clark, J.; Dewulf, A.; et al. Citizen science in hydrology and water resources: Opportunities for knowledge generation, ecosystem service management, and sustainable development. Front. Earth Sci. 2014, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- d’Andrimont, R.; Yordanov, M.; Lemoine, G.; Yoong, J.; Nikel, K.; van der Velde, M. Crowdsourced street-level imagery as a potential source of in-situ data for crop monitoring. Land 2018, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Krupowicz, W.; Czarnecka, A.; Grus, M. Implementing crowdsourcing initiatives in land consolidation procedures in Poland. Land Use Policy 2020, 99, 105015. [Google Scholar] [CrossRef]
- Franzoni, C.; Sauermann, H. Crowd science: The organization of scientific research in open collaborative projects. Res. Policy 2014, 43, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Tulloch, A.I.; Possingham, H.P.; Joseph, L.N.; Szabo, J.; Martin, T.G. Realising the full potential of citizen science monitoring programs. Biol. Conserv. 2013, 165, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Barrón, J.P.; Manso-Callejo, M.A.; Alcarria, R. Needs, drivers, participants and engagement actions: A framework for motivating contributions to volunteered geographic information systems. J. Geogr. Syst. 2019, 21, 5–41. [Google Scholar] [CrossRef]
- Lemmens, R.; Falquet, G.; Tsinaraki, C.; Klan, F.; Schade, S.; Bastin, L.; Piera, J.; Antoniou, V.; Trojan, J.; Ostermann, F.; et al. A conceptual model for participants and activities in citizen science projects. In The Science of Citizen Science; Vohland, K., Land-Zandstra, A., Ceccaroni, L., Lemmens, R., Perelló, J., Ponti, M., Samson, R., Wagenknecht, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 159–182. [Google Scholar] [CrossRef]
- Clery, D. Galaxy Zoo volunteers share pain and glory of research. Science 2011, 333, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Franzen, M.; Kloetzer, L.; Ponti, M.; Trojan, J.; Vicens, J. Machine learning in citizen science: Promises and implications. In The Science of Citizen Science; Vohland, K., Land-Zandstra, A., Ceccaroni, L., Lemmens, R., Perelló, J., Ponti, M., Samson, R., Wagenknecht, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 183–198. [Google Scholar] [CrossRef]
- Lesiv, M.; Laso Bayas, J.C.; See, L.; Duerauer, M.; Dahlia, D.; Durando, N.; Hazarika, R.; Kumar Sahariah, P.; Vakolyuk, M.; Blyshchyk, V.; et al. Estimating the global distribution of field size using crowdsourcing. Glob. Chang. Biol. 2019, 25, 174–186. [Google Scholar] [CrossRef]
- Ballatore, A.; Zipf, A. A conceptual quality framework for Volunteered Geographic Information. In Spatial Information Theory; Fabrikant, S.I., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9368, pp. 89–107. [Google Scholar]
- Senaratne, H.; Mobasheri, A.; Ali, A.L.; Capineri, C.; Haklay, M.M. A review of volunteered geographic information quality assessment methods. Int. J. Geogr. Inf. Sci. 2017, 31, 139–167. [Google Scholar] [CrossRef]
- Balázs, B.; Mooney, P.; Nováková, E.; Bastin, L.; Jokar Arsanjani, J. Data Quality in Citizen Science. In The Science of Citizen Science; Vohland, K., Land-Zandstra, A., Ceccaroni, L., Lemmens, R., Perelló, J., Ponti, M., Samson, R., Wagenknecht, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 139–157. [Google Scholar] [CrossRef]
- Lukyanenko, R.; Wiggins, A.; Rosser, H.K. Citizen Science: An Information Quality Research Frontier. Inf. Syst. Front. 2020, 22, 961–983. [Google Scholar] [CrossRef] [Green Version]
- Crall, A.W.; Newman, G.J.; Stohlgren, T.J.; Holfelder, K.A.; Graham, J.; Waller, D.M. Assessing citizen science data quality: An invasive species case study. Conserv. Lett. 2011, 4, 433–442. [Google Scholar] [CrossRef]
- Allahbakhsh, M.; Benatallah, B.; Ignjatovic, A.; Motahari-Nezhad, H.; Bertino, E.; Dustdar, S. Quality control in crowdsourcing systems: Issues and directions. IEEE Internet Comput. 2013, 17, 76–81. [Google Scholar] [CrossRef]
- Kestler, H.A.; Lausser, L.; Lindner, W.; Palm, G. On the fusion of threshold classifiers for categorization and dimensionality reduction. Comput. Stat. 2011, 26, 321–340. [Google Scholar] [CrossRef]
- Gengler, S.; Bogaert, P. Integrating Crowdsourced Data with a Land Cover Product: A Bayesian Data Fusion Approach. Remote Sens. 2016, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- De Lellis, P.; Nakayama, S.; Porfiri, M. Using demographics toward efficient data classification in citizen science: A Bayesian approach. PeerJ Comput. Sci. 2019, 5, e239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruger, J.; Dunning, D. Unskilled and Unaware of It: How Difficulties in Recognizing One’s Own Incompetence Lead to Inflated Self-Assessments. J. Personal. Soc. Psychol. 1999, 77, 121–1134. [Google Scholar] [CrossRef]
- Kim, H.C.; Ghahramani, Z. Bayesian Classifier Combination. In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, Virtual Event, 21–23 April 2012; pp. 619–627. [Google Scholar]
- Mugford, J.; Moltchanova, E.; Plank, M.; Sullivan, J.; Byrom, A.; James, A. Citizen science decisions: A Bayesian approach optimises effort. Ecol. Inform. 2021, 63, 101313. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Salk, C.F.; Sturn, T.; See, L.; Fritz, S. Limitations of majority agreement in crowdsourced image interpretation. Trans. GIS 2017, 21, 207–223. [Google Scholar] [CrossRef] [Green Version]
- Salk, C.F.; Sturn, T.; See, L.; Fritz, S.; Perger, C. Assessing quality of volunteer crowdsourcing contributions: Lessons from the Cropland Capture game. Int. J. Digit. Earth 2015, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Salk, C.; Moltchanova, E.; See, L.; Sturn, T.; McCallum, I.; Fritz, S. How many people need to classify the same image? A method for optimizing volunteer contributions in binary geographical classifications. PLoS ONE 2022, 17, e0267114. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2013. [Google Scholar]
- Foody, G.M.; See, L.; Fritz, S.; Velde, M.V.d.; Perger, C.; Schill, C.; Boyd, D.S. Assessing the accuracy of volunteered geographic information arising from multiple contributors to an internet based collaborative project. Trans. GIS 2013, 17, 847–860. [Google Scholar] [CrossRef] [Green Version]
Classified as | ||||||
---|---|---|---|---|---|---|
GT | 1 | 2 | 3 | 4 | 5 | Total () |
1 | 3582 | 849 | 41 | 13 | 16 | 4501 |
0.796 | 0.189 | 0.009 | 0.003 | 0.004 | 0.101 | |
2 | 934 | 9867 | 1233 | 128 | 118 | 12,280 |
0.076 | 0.804 | 0.100 | 0.010 | 0.010 | 0.276 | |
3 | 72 | 1356 | 6155 | 1108 | 269 | 8960 |
0.008 | 0.151 | 0.687 | 0.124 | 0.030 | 0.201 | |
4 | 13 | 106 | 868 | 3172 | 1653 | 5812 |
0.002 | 0.018 | 0.149 | 0.546 | 0.284 | 0.131 | |
5 | 19 | 124 | 318 | 1112 | 11369 | 12,942 |
0.001 | 0.010 | 0.025 | 0.086 | 0.878 | 0.291 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moltchanova, E.; Lesiv, M.; See, L.; Mugford, J.; Fritz, S. Optimizing Crowdsourced Land Use and Land Cover Data Collection: A Two-Stage Approach. Land 2022, 11, 958. https://doi.org/10.3390/land11070958
Moltchanova E, Lesiv M, See L, Mugford J, Fritz S. Optimizing Crowdsourced Land Use and Land Cover Data Collection: A Two-Stage Approach. Land. 2022; 11(7):958. https://doi.org/10.3390/land11070958
Chicago/Turabian StyleMoltchanova, Elena, Myroslava Lesiv, Linda See, Julie Mugford, and Steffen Fritz. 2022. "Optimizing Crowdsourced Land Use and Land Cover Data Collection: A Two-Stage Approach" Land 11, no. 7: 958. https://doi.org/10.3390/land11070958